
Chapter 6

Markov Processes

Kolmogorov’s equations

A Markov process with values in Rd can be specified by prescribing the transition
probability functions p(s, x, t, A) for s < t. They are probability measures in A

for fixed s < t and x and measurable functions of x for each s < t and Borel set
A. They alsosatisfy the Chapman-Kolmogorov equations, i.e for s < t < u

p(s, x, u, A) =

∫
p(y, t, u, A)p(s, x, t, dy)

If we impose some regularity conditions on

∆ǫ(h) = sup
x∈Rd

0≤s<t≤s+h≤T

p(s, x, t, {y : |y − x| ≥ ǫ}) (6.1)

we can construct the process on C[0, T ] or D[0, T ].

Theorem 6.1. If ∆ǫ(h) → 0 as h → 0 for every ǫ > 0, then for each (s0, x0) ∈
[0, T ]×Rd, there is a measure Ps0,x0

on D[s0, T ] such that Ps0,x0
[x(s0) = x0] = 1

and Ps0,x0
is a Markov Process with transition probability p(s, x, t, y). In other

words for s0 < s < t ≤ T

Ps0,x0
[x(t) ∈ A|Fs] = p(s, x, t, A) a.e.

Moreover if ∆ǫ(h) = o(h) for every ǫ > 0, as h → 0, then the process Ps0,x0
is

supported on C[s0, T ].

Proof. Markov property and the assumption that ∆ǫ(h) → 0 together imply
that for every ǫ > 0,

lim
h→0

sup
ω

0≤s<t≤s+h≤T

P [|x(s) − x(t)| ≥ ǫ|Ft]
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We saw in Theorem ?? that this is sufficient for the process to be realizable on
D[0, T ]. The condition ∆ǫ(h) = o(h) allows to show that

P [ sup
1≤j≤ T

h

|x(jh) − x((j − 1)h)| ≥ ǫ] ≤
T

h
∆ǫ(h) → 0

for every ǫ > 0 proving that there are no jumps that are of size larger than ǫ.
Since ǫ > 0 is arbitrary the measure is supported on continuous paths.

Let f(x) be a bounded uniformly continuous function of x. Then

u(s, x) =

∫
f(y)p(s, x, T, dy)

defines a bounded function on [0, T )×Rd that satisfies supx |u(s, x)−f(x)| → 0
as s → T . For any ǫ > 0,

sup
x

|u(s, x) − f(x)| ≤ 2 sup
x

|f(x)| sup
x

p(s, x, T, {y : |y − x| ≥ ǫ})

+ sup
|x−y|≤ǫ

|f(x) − f(y)|

≤ 2 sup
x

|f(x)|∆ǫ(T − s) + sup
|x−y|≤ǫ

|f(x) − f(y)|

We can first let s → T and then ǫ → 0. If we want to consider a diffusion
process with its increments x(s + h) − x(s) having a conditional distribution
that is Gaussian with expectation {hbj(s, x)} and covariance {hai,j(s, x)}, it is
natural to demand that for 1 ≤ j ≤ d

lim
h→0

1

h

∫
|y−x|≤ℓ

∫
(yj − xj)p(s, x, s + h, dy) = bj(s, x)

and for 1 ≤ i, j ≤ d,

lim
h→0

1

h

∫
|y−x|≤ℓ

∫
(yi − xi)(yj − xj)p(s, x, s + h, dy) = ai,j(s, x)

and the condition ∆ǫ(h) = o(h) guarantees that if the limits exist for some
ℓ ∈ (0,∞), then they do for every ℓ > 0.

Theorem 6.2. If u(s, x) has one bounded continuous s derivative and two

bounded continuous x derivatives, then it satisfies the Kolmogorov backward

equation

∂u

∂s
+

∑
j

bj(s, x)
∂u

∂xj

(s, x) +
1

2

∑
i,j

ai,j(s, x)
∂2u

∂xi∂xj

(s, x) = 0

with the boundary condition u(s, x) → f(x) as s → T .
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Proof. We use the Chapman-Kolmogorov equation to express

u(s, x) =

∫
u(s + h, y)p(s, x, s + h, dy)

and the Taylor expansion to write

u(s + h, y) = u(s, x) + h us(s, x) +
∑

j

uxj
(s, x)(yj − xj)

+
1

2

∑
i,j

ai,j(s, x)uxi,xj
(s, x)(yi − xi)(yj − xj) + Error

If |y − x| ≤ ℓ, the the error is bounded by δ(ℓ)|y − x|2 where δ(ℓ) → 0 with ℓ.
We can split the integral over |x − y| ≤ ℓ and |x − y| > ℓ, divide by h and let
h → 0. Because ∆ℓ(h) = o(h), the contribution from |x − y| ≥ ℓ goes to 0 even
when divided by h. The first three terms yield

∂u

∂s
+

∑
j

bj(s, x)
∂u

∂xj

(s, x) +
1

2

∑
i,j

ai,j(s, x)
∂2u

∂xi∂xj

(s, x)

and the error term can contribute at most Cδ(ℓ) sups,x |ai,j(s, x)|. Since ℓ can
be arbitrarily small and δ(ℓ) → 0 as ℓ → 0 we are done.

If the Markov Process has stationary transition probabilities, i.e p(s, x, t, A) =
p(t− s, x, A) depends only on the difference t− s, then bj(s, x) and ai,j(s, x) are
independent of s and the backward equation takes the form

us +
∑

j

bj(x)
∂u

∂xj

(s, x) +
1

2

∑
i,j

ai,j(x)
∂2u

∂xi∂xj

(s, x)

It is now possible to write u(T −t, x) instead of u(t, x) and the equation becomes

ut =
∑

j

bj(x)
∂u

∂xj

(s, x) +
1

2

∑
i,j

ai,j(x)
∂2u

∂xi∂xj

(s, x) = Lu

and u(t, x) → f(x) as t → 0. u(t, x) is of course now given by

u(t, x) =

∫
f(y)p(t, x, dy)

The basic question in the study of diffusion processes is one of associating in
a some canonical fashion a Markov process for a given set of coefficients. This
could be done in many ways. Given {bj(s, x)}, {ai,j(s, x)} one can ask for a
family Ps,x of probability measures on C[[s, T ]; Rd] such that Ps,x[x(s) = x] = 1
and Ps,x ∈ I(a(t, x(t)), b(t, x(t))) on C[[s, T ],Ft]. We would expect {Ps,x} to
be a Markov family with transition probability

p(s, x, t, A) = Ps,x[x(t) ∈ A]
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One way of constructing p(s, x, t, A) is to solve Kolmogorov’s equation

us +
∑

j

bj(s, x)
∂u

∂xj

(s, x) +
1

2

∑
i,j

ai,j(s, x)
∂2u

∂xi∂xj

(s, x) = 0

for s < t with boundary condition u(t, x) = f(x). the solution u(s, x) will
be unique under suitable assumptions, and the map f → u is a linear map.
Moreover the maximum principle for parabolic equations will guarantee that
the linear functional u(t, x) = Λs,x,t(f) is nonnegative and we can use Riesz
representation theorem to express

u(s, x) =

∫
f(y)p(s, x, t, dy)

In PDE theory one obtains, under suitable conditions, a ”fundamental solution”
p(s, x, t, y) that satisfies for s < t, y ∈ Rd

ps(s, x) +
∑

j

bj(s, x)
∂p

∂xj

(s, x) +
1

2

∑
i,j

ai,j(s, x)
∂2p

∂xi∂xj

(s, x) = 0

and p(s, x, t, ·) → δx(·) as s → t. p(s, x, t, y)dy will satisfy the Chapman-
Kolmogorov equations and can be used to construct a Markov process with
continuous trajectories. This will define the Diffusion process corresponding to
[{ai,j(t, x)}, {bj(t, x)}]. The conditions on the coefficients for this approach to
work are:

• There exist constants C < ∞ and 0 < α ≤ 1 such that

sup
i,j

|ai,j(s, x) − ai,j(t, y)| + sup
j

|bj(s, x) − bj(t, y) ≤ C[|t − s|α + |x − y|α]

• For som constant C < ∞

sup
i,j,s,x

|ai,j(s, x)| + sup
j,s,x

|bj(s, x)| ≤ C

• The symmetric matrices {ai,j(s, x)} are all uniformly elliptic, i.e. uni-
formly positive definite. For some constant c > 0,

∑
i,j

ai,j(s, x)ξiξj ≥ c
∑

j

ξ2

j

for all s, x and {ξj} ∈ Rd.

A proof can be found in PDE texts, for example in Avner Friedman’s book ”Par-
tial Differential Equations of Parabolic Type”. Once we have the fundamental
solution, the backward equation is easily solved, by the formula

u(s, x) =

∫
f(y)p(s, x, T, y)dy
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Another approach due to Itô to construct a diffusion process is to start with a

Brownian motion (Ω,Ft, β(t), P ) and try to solve the equation

dx(t) = σ(t, x(t)) · dβ(t) + b(t, x(t))dt

where σ(s, x)σ∗(s, x) = a(s, x). By a solution we mean an almost surely contin-
uous process x(t, ω) that is progressively measurable on (Ω,Ft, P ) that satisfies
for t ≥ s0

x(t, ω) = x(s0, ω) +

∫ t

s0

σ(s, ω) · dβ(s) +

∫ t

0

b(s, x(s))ds (6.2)

Under the following hypotheses

• There exist constant C such that

sup
i,j,s

|σi,j(s, x) − σi,j(s, y)| + sup
j,s

|bj(s, x) − bj(s, y)| ≤ C|x − y|

• There exist constant C such that

sup
i,j,s,x

|σi,j(s, x)| + sup
j,s,x

|bj(s, x)| ≤ C

according to Itô’s theory, for every s0 and ξ(ω) : Ω →∈ Rd that is measurable
with respect to Fs0

and satisfies E[‖ξ‖2] < ∞ there is a unique solution of (6.2),
with x(s0, ω) = ξ(ω). In particular if we solve with ξ(ω) = x with probability
1, then we obtain the transition probbaility

p(s0, x, t, A) = P [x(t) ∈ A|x(s0) = x]

There is also the approach of trying to solve the Kolmogorov equation in
some generalized sense, i.e in a suitable Sobolev space. Of course if more than
one method work they should lead to the same answer! We will use the fol-
lowing formulation. We are given the functions {ai,j(s, x)}, {bj(s, x)} that are
uniformly bounded and measurable. For given (s0, x0) we can look for a proba-
bility measure P = Ps0,x0

on C[[s0, T ]; Rd] such that Ps0,x0
[x(s0) = x0] = 1 and

x(s) ∈ I({ai,j(s, x(s))}, {bj(s, x(s))}). We can use the as definition

f(t, x(t)) − f(s0, x0) −

∫ t

s0

[fs + (Lsf)(s, x(s))]ds

is a martingale with respect to (Ω,Ft, P ) for t ≥ s0, where

(Lsf)(s, x) =
1

2

∑
i,j

ai,j(s, x)fi,j(s, x) +
∑

j

bj(s, x)fj(s, x)

Under suitable conditions we would like to prove that P exists, is unique and is
a Markov process with transition probabilities given by

p(s0, x0, t, A) = Ps0,x0
[x(t) ∈ A]

It will turn out that if any other method works then the formulation in terms
of martingales will also work.


