Chapter 6

Markov Processes
Kolmogorov’s equations

A Markov process with values in R? can be specified by prescribing the transition
probability functions p(s,z,t, A) for s < t. They are probability measures in A
for fixed s < t and x and measurable functions of z for each s < t and Borel set
A. They alsosatisty the Chapman-Kolmogorov equations, i.e for s <t < u

p(s,z,u,A) = /p(y,t,u,A)p(s,w,t,dy)
If we impose some regularity conditions on

Aﬁ(h) = sup p(s,x,t, {y : |y - CC| > 6}) (6'1)

z€ R4
0<s<t<s+h<T

we can construct the process on C[0,T] or DI[0,T].

Theorem 6.1. If A.(h) — 0 as h — 0 for every ¢ > 0, then for each (so,xq) €
[0, T] x R%, there is a measure Ps, », on D[so, T| such that Ps, .,[z(s0) = zo] = 1
and Py 4, s a Markov Process with transition probability p(s,x,t,y). In other
words for so < s<t<T

Py wol2(t) € AlFS] = p(s,2,t, A) a.e.

Moreover if Ac(h) = o(h) for every € > 0, as h — 0, then the process P, 4, is
supported on C[sg, T].

Proof. Markov property and the assumption that A.(h) — 0 together imply
that for every e > 0,

lim sup Pllz(s) — z(t)| > €|Fi]
h—=0 0§s<t§s+h§T
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We saw in Theorem 7?7 that this is sufficient for the process to be realizable on
DI0,T]. The condition A (h) = o(h) allows to show that

Pl sup [z(jh) —a((j —1)h)| > € <

—A(h) =0
1<<E h

for every € > 0 proving that there are no jumps that are of size larger than e.
Since € > 0 is arbitrary the measure is supported on continuous paths. o

Let f(x) be a bounded uniformly continuous function of z. Then

ul(s, ) = / F(w)p(s,x. T, dy)

defines a bounded function on [0, T) x R¢ that satisfies sup,, [u(s,z)— f(z)| — 0
as s — T. For any € > 0,

sup lu(s,z) — f(z)] < 2s1m1p |f ()] Stmlpp(sa z, T, {y: |y — x| > €})

+ sup |f(z) = f(y)l

|z—y|<e

§2sgp|f($)|Ae(T—S)+ sup |f(z) — f(y)|

|z—y|<e

We can first let s — T and then ¢ — 0. If we want to consider a diffusion
process with its increments x(s + h) — z(s) having a conditional distribution
that is Gaussian with expectation {hb;(s,x)} and covariance {ha; ;(s,x)}, it is
natural to demand that for 1 < j <d

lim — / / p(s,z, s+ h,dy) = b;(s,x
h—0 h ly—z|<t ) ( )
and for 1 <i,j <d,
lim — / / yi — xi)(y; — x;)p(s,z, s + h,dy) = a; ;(s, x)
h—0 h ly—z|<e J

and the condition A.(h) = o(h) guarantees that if the limits exist for some
£ € (0,00), then they do for every £ > 0.

Theorem 6.2. If u(s,x) has one bounded continuous s derivative and two
bounded continuous x derivatives, then it satisfies the Kolmogorov backward
equation

Zb 8, ) Zawsxaxza (s,z) =0

with the boundary condition u(s,z) — f(z) as s — T.



Proof. We use the Chapman-Kolmogorov equation to express

u(s,x) = /u(s + h,y)p(s,x,s + h,dy)
and the Taylor expansion to write
u(s+h,y) =u(s,z) + hus(s,z) + Zuzj(s, z)(y; — xj)
J
+ % Z i (8, 2)Us, o, (5, 0) (ys — 23)(y; — 5) + Error
5,

If |y — x| < £, the the error is bounded by 6(¢)|y — z|? where §(¢) — 0 with £.
We can split the integral over |z — y| < ¢ and |z — y| > ¢, divide by h and let
h — 0. Because Ay(h) = o(h), the contribution from |z — y| > £ goes to 0 even
when divided by h. The first three terms yield

U ou 0%y
_+¥bj(8’x)8—xj( Zjaw s, x 8%81:]( ,T)

and the error term can contribute at most Cd(¢) supy , |a; ;(s,r)|. Since £ can
be arbitrarily small and 6(¢) — 0 as £ — 0 we are done. O

If the Markov Process has stationary transition probabilities, i.e p(s, z,t, A) =
p(t—s,z, A) depends only on the difference t — s, then b;(s, z) and a; ; (s, z) are
independent of s and the backward equation takes the form

u —l—Zb (s,2) Z O ——(s,x)
s 2 i 8%8%

It is now possible to write u(T —t, z) instead of u(¢, z) and the equation becomes

ou 1 0%u
J

%,

and u(t,x) — f(x) ast — 0. u(t,z) is of course now given by

u(t, ) /f p(t, z,dy)

The basic question in the study of diffusion processes is one of associating in
a some canonical fashion a Markov process for a given set of coeflicients. This
could be done in many ways. Given {b;(s,x)},{a; j(s,z)} one can ask for a
family P; . of probability measures on C[[s, T]; RY] such that P; ,[z(s) = z] = 1
and P, € Z(a(t, z(t)),b(t,z(t))) on C[[s,T],Fi]. We would expect {Ps ,} to
be a Markov family with transition probability

p(s,z,t, A) = Ps . [x(t) € A]
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One way of constructing p(s, z,t, A) is to solve Kolmogorov’s equation

ou 1 0%u
us + Z bj(s,x)a—%(s, z) + 3 Z ai,j(s,x)m(s,x) -0
J ]

for s < ¢ with boundary condition w(t,z) = f(z). the solution u(s,z) will
be unique under suitable assumptions, and the map f — w is a linear map.
Moreover the maximum principle for parabolic equations will guarantee that
the linear functional w(t,z) = As;+(f) is nonnegative and we can use Riesz
representation theorem to express

u(s, ) = / F)p(s,z.t, dy)

In PDE theory one obtains, under suitable conditions, a ” fundamental solution”
p(s,z,t,y) that satisfies for s < t,y € R?

Op 1 0%p B
ps(s,x) + ;b](s, :E)a—xj(s,x) + 3 Zlzjaw(s, x) o0, (s,2) =0

and p(s,x,t,) — 0.(-) as s — t. p(s,z,t,y)dy will satisfy the Chapman-
Kolmogorov equations and can be used to construct a Markov process with
continuous trajectories. This will define the Diffusion process corresponding to
[{ai;(t,x)},{b;(t,x)}]. The conditions on the coefficients for this approach to
work are:

e There exist constants C' < oo and 0 < a < 1 such that

sup |ai ; (s, 2) — ai;(t,y)] + sup [b; (s, z) = b;(t,y) < C[|t — s|* + & — y[*]
i, J

e For som constant C' < co

sup [a;;(s, )| + sup [b;(s, 2)| < C

,7,8,T J:8,T

e The symmetric matrices {a; ;(s,z)} are all uniformly elliptic, i.e. uni-
formly positive definite. For some constant ¢ > 0,

Y ais(sa)6g = ey &
i,j J

for all s,z and {¢;} € RY.

A proof can be found in PDE texts, for example in Avner Friedman’s book ” Par-
tial Differential Equations of Parabolic Type”. Once we have the fundamental
solution, the backward equation is easily solved, by the formula

u(s, ) = / F)p(s, 2. T,y)dy



Another approach due to Ité to construct a diffusion process is to start with a

Brownian motion (9, F;, 3(t), P) and try to solve the equation
dz(t) = o(t,z(t)) - dB(t) + b(t, z(t))dt

where o(s,z)0*(s,x) = a(s, ). By a solution we mean an almost surely contin-
uous process z(t,w) that is progressively measurable on (2, F, P) that satisfies
for t > sg

x(t,w) = z(sp,w) +/ o(s,w) - dB(s) —|—/ b(s,x(s))ds (6.2)

S0 0
Under the following hypotheses

e There exist constant C' such that

sup |o,j(s,2) — 0ij(s,y)| +sup|b;(s,z) — b;(s,y)| < Clz —y|

i,4,s 38
e There exist constant C' such that

sup |0y,5(s, )| + sup [b;(s,z)| < C

1,3,8,Z 7,8,T

according to Itd’s theory, for every so and £(w) : Q —€ R? that is measurable
with respect to F, and satisfies E[||£]|?] < oo there is a unique solution of (6.2),
with 2(sg,w) = &(w). In particular if we solve with {(w) = x with probability
1, then we obtain the transition probbaility

p(so, z,t, A) = Pla(t) € Alz(so) = x]

There is also the approach of trying to solve the Kolmogorov equation in
some generalized sense, i.e in a suitable Sobolev space. Of course if more than
one method work they should lead to the same answer! We will use the fol-
lowing formulation. We are given the functions {a; ;(s, )}, {b;(s,z)} that are
uniformly bounded and measurable. For given (sg, 2) we can look for a proba-
bility measure P = Py, ., on C[[so, T]; R%] such that Ps, ., [¥(s0) = z0] = 1 and
z(s) € Z({ai,;(s,2(s))}, {b;(s,x(s))}). We can use the as definition

t
f(t,z(t)) — f(s0, 7o) —/ [fs + (Lo f)(s,2(s)))ds
0

S

is a martingale with respect to (2, 7, P) for t > sg, where
1
(Lsf)(s,2) = 5 > aij(s,2)fi (s, m) + > bi(s, ) f5(s,7)
i j

Under suitable conditions we would like to prove that P exists, is unique and is
a Markov process with transition probabilities given by

p(SOVIOvtaA) = Psoﬁlo[x(t) € A]

It will turn out that if any other method works then the formulation in terms
of martingales will also work.



