
Chapter 7

Stochastic Differential

Equations

We will fix σ(s, x) such that σ(s, x)σ∗(s, x) = a(s, x) and b(s, x). Assume that
σ, b are uniformly bounded and Lipschitz. We have Brownian motion on some
(ω,Ft, P ). Given (x0, s0) we want solve

x(t) = x(s0) +

∫ t

s0

σ(s, x(s))dβ(s) +

∫ t

0

b(s, x(s))ds (7.1)

Theorem 7.1. Under the regularity conditions on σ, b, for given s0, x0, the

solution x(t) = x(t, s0, x0) exists for all s ≥ s0. It is unique with in the class of

progressively measurable solutions.

Proof. We do a Picard iteration. Let x0(s) ≡ x0 for s ≥ s0. Define recursively

xn(s) = x0 +

∫ t

s0

σ(s, xn−1(s))dβ(s) +

∫ t

s0

b(s, xn−1(s))ds

Since σ(s, x) and b(s, x) are bounded we can prove by induction that xn(·)
are well defined for s ≥ s0 and are progressively measurable. We denote by
Zn(s) = xn+1(s) − xn(s) the difference. Then

Zn(t) =

∫ t

s0

[σ(s, xn(s)) − σ(s, xn−1(s)]dβ(s) +

∫ t

s0

[b(s, xn(s)) − b(s, xn−1(s))]ds

We will try to estimate ∆n(t) = EP [sups0≤s≤t |Zn(s)|2] in some fixed interval
s0 ≤ t ≤ T .

sup
s0≤s≤t

|Zn(s)| ≤ sup
s0≤s≤t

|Xn(s)| + sup
s0≤s≤t

|Yn(s)|

where

Xn(t) =

∫ t

s0

[σ(s, xn(s)) − σ(s, xn−1(s)]dβ(s)
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and

Yn(t) =

∫ t

s0

[b(s, xn(s)) − b(s, xn−1(s))]ds

Xn(t) is a martingale and by Doob’s inequlaity

EP [ sup
s0≤s≤t

‖Xn(s)‖2] ≤ 4EP [‖Xn(t)‖2] ≤ 4C2EP [

∫ t

s0

|xn(s) − xn−1(s)|
2ds]

and

EP [ sup
s0≤s≤t

‖Yn(s)‖2] ≤ (T − s0)C
2 EP [

∫ t

s0

|xn(s) − xn−1(s)|
2ds]

Therefore there is a constant C(T ) such that for s0 ≤ t ≤ T and n ≥ 2,

∆n(t) ≤ C(T )

∫ t

s0

∆n−1(s)ds

with

∆1(t) ≤ C(T )(t − s0)

It follows by induction that

∆n(t) ≤
(t − s0)

n[C(T )]n

n!

Convergence of
∑

n[∆(n)]
1

2 implies that xn(·) is a Cauchy sequence in L2(P )
with values in the space C[s0, T ]. The limit x(t) exists in the sense that

EP [ sup
s0≤t≤T

|xn(t) − x(t)|2] → 0

implying that that x(t) is indeed an almost surely continuous, progressively
measurable solution of (7.1). Uniqueness is almost the same proof. If x(t), y(t)
are two solutions with the same initial starting point then with Z(t) = x(t)−y(t),
∆(t) = E[sups0≤s≤t |Z(s)|2] satisfies

∆(t) ≤ C(T )

∫ t

s0

∆(s)ds

with ∆(t) ≤ C(T )(t − s0). We show by induction that

∆(t) ≤
(t − s0)

n[C(T )]n

n!

Letting n → ∞ we arrive at ∆(t) = 0 proving uniqueness.
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Once we have uniqueness we can study the properties of the unique solution
which we will now call ξ(t) as a function of the starting point x. In other words

ξ(t, x) = x +

∫ t

s0

σ(s, ξ(s, x))dβ(s) +

∫ t

s0

b(s, ξ(s, x))ds

If we let η(t, x, y) = ξ(t, x) − ξ(t, y) then using the Lipschitz condition we can
estimate

E[|η(t, x, y)|2] = ∆(t, x, y) ≤ c|x − y|2 + c(T )

∫ t

s0

∆(s, x, y)ds

Providing an estimate of the form

E[|ξ(t, x) − ξ(t, y)|2] ≤ c|x − y|2ec(T )(t−s0)

Lemma 7.2. If

ξ(t) =

∫ t

0

c(s, ω)dβ(s)

is a stochastic integral, we know that

E[[ξ(t)]2] = E[

∫ t

0

|c(s, ω)|2ds]

For higher moments we have the estimate

E[[ξ(t)]2k] ≤ ckE[[

∫ t

0

|c(s, ω)|2ds]k]

where ck depends only on k.

Proof. By Itô’s formula, with the help of Doob’s inequality, we can find ck such
that

E[[ξ(t)]2k] = k(2k − 1)E[

∫ t

0

|c(s, ω)|2|ξ(s)|2k−2ds]

≤ k(2k − 1)E[ sup
0≤s≤t

|ξ(s)|2k−2

∫ t

0

|c(s, ω)|2ds]

≤ k(2k − 1)[E[ sup
0≤s≤t

|ξ(s)|2k]]
k−1

k E[[

∫ t

0

|c(s, ω)|2ds]k]
1

k

≤ k(2k − 1)[E[ sup
0≤s≤t

|ξ(s)|2k]]
k−1

k E[[

∫ t

0

|c(s, ω)|2ds]k]
1

k

≤ c
1

k

k [E[|ξ(t)|2k]]
k−1

k E[[

∫ t

0

|c(s, ω)|2ds]k]
1

k

providing

E[[ξ(t)]2k] ≤ ckE[[

∫ t

0

|c(s, ω)|2ds]k]

We need to assume first that c(s, ω) is bounded , so that all the quantities are
finite. Once we have the bound we can approximate.
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It is now possible to estimate

E[|ξ(t, x) − ξ(t, y)|2k] ≤ c(T )ec(T )(t−s0)|x − y|2k

as well as
E[|ξ(t, x) − ξ(s, x)|2k] ≤ c(T )|t − s|k

Together they show that ξ(t, x) is almost surely jointly continuous as a function
of t and x. In particular if we want to solve with ξ(s, x) = ξ0(ω), a Fs0

mea-
surable function the solution is given by ξ(t, ξ0). This opens up the possibility
of viewing solutions of SDE (7.1) as continuous random maps of Rd → Rd, i.e
random flows.

Remark 7.1. The solution x(t, s0, x0, ω) can be expressed as x(t, s, x(s, s0, x0, ω), ω)
i.e the solution starting at x(s) from time s. This depends on the increments of
the Brownian motion β(s′) − β(s), t ≥ s′ ≥ s. They are independent of Fs. It
is therefor clear that the conditional distribution of x(t) given Fs depends only
on x(s) and is given by p(s, x(s), t, A), where p(s, x, t, A) = P [x(t, s, x) ∈ A],
proving that x(t) is a Markov process with transition probabilities {p(s, x, t, A)}.

Remark 7.2. The independence of β(t+τ)−β(τ) and the σ−field Fτ is valid for
stopping times τ just as it is for constant times s. This establishes the strong
Markov property for the process x(t).

For each x0 the approximations xn(t) in the Picard iteration scheme are
measurable function of the Brownian increments β(t) − β(s0) and so the limit
x(t) really defines a map of the Brownian path β(t) − β(s0) to the diffusion
paths x(t). Even if Ft is larger it does not play any role.

One can formulate a general uniqueness question. If xi(t, ω), i = 1, 2 are
both almost surely continuous, progressively measurable solutions to

xi(t) = x0 +

∫ t

s0

σ(s, xi(s))dβ(s) +

∫ t

s0

b(s, xi(s))ds

on some (Ω,Ft, P, β(t)) does it follow that x1(t) ≡ x2(t) with probability 1?
This is of course a property of σ and b. If the answer is yes we will say that
pathwise or strong uniqueness holds for σ, b. If σ, b are Lipschitz the answer as
we saw, is yes.

One can also ask the following question. Let {ai,j(t, x)}, {bj(t, x)} be given.
If P i for i = 1, 2 both satisfy P i ∈ I(a, b) as well as P i[x(s0) = x0] = 1, does it
follow that P 1 = P 2. If the answer is yes we say that distribution uniqueness
holds for [a, b]. The following theorem provides a connection.

Theorem 7.3. If pathwise uniqueness holds for some [σ, b] with σσ∗ = a, then

distribution uniqueness holds for [a, b].

Remark 7.3. σ need not be a square matrix. We can use more (or less) number
of Brownian motions than d dimension of x(t). If σ is d× k, then the rank of a

can not exceed min(d, k).
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Proof. 1. We start with the measure P i ∈ I(a, b). We can assume that P i is
defined on C[[s0, T ]; Rd], with the natural Ft and coordinate function x(·).
We can construct a measure Qi on C[[s0, T ]; Rd × Rn] with components
x(t), β(t), with marginals P i and P the Wiener measure such that for
i = 1, 2

x(t) = x0 +

∫ t

s0

σ(s, x(s))dβ(s) +

∫ t

s0

b(s, x(s))ds

a.e. P i.

2. We couple the two processes by constructing a Q on C[[s0, T ]; Rd×Rd×Rn

with components x1(t), x2(t), β(t) such that [xi(·), β(·)] are distributed
according to Qi. Then

xi(t) = x0 +

∫ t

s0

σ(s, xi(s))dβ(s) +

∫ t

s0

b(s, xi(s))ds

3. If pathwise uniqueness holds x1(t) ≡ x2(t) implying P 1 = P 2.

4. We now turn to the construction of the coupling. Let us define πi[dx|β]
as the conditional distribution of x(·) given β under Qi. Define

Q = π1(dx1|β) ⊗ π2(dx2|β) ⊗ P (dβ)


