## Chapter 7

## Stochastic Differential Equations

We will fix $\sigma(s, x)$ such that $\sigma(s, x) \sigma^{*}(s, x)=a(s, x)$ and $b(s, x)$. Assume that $\sigma, b$ are uniformly bounded and Lipschitz. We have Brownian motion on some $\left(\omega, \mathcal{F}_{t}, P\right)$. Given $\left(x_{0}, s_{0}\right)$ we want solve

$$
\begin{equation*}
x(t)=x\left(s_{0}\right)+\int_{s_{0}}^{t} \sigma(s, x(s)) d \beta(s)+\int_{0}^{t} b(s, x(s)) d s \tag{7.1}
\end{equation*}
$$

Theorem 7.1. Under the regularity conditions on $\sigma, b$, for given $s_{0}, x_{0}$, the solution $x(t)=x\left(t, s_{0}, x_{0}\right)$ exists for all $s \geq s_{0}$. It is unique with in the class of progressively measurable solutions.

Proof. We do a Picard iteration. Let $x_{0}(s) \equiv x_{0}$ for $s \geq s_{0}$. Define recursively

$$
x_{n}(s)=x_{0}+\int_{s_{0}}^{t} \sigma\left(s, x_{n-1}(s)\right) d \beta(s)+\int_{s_{0}}^{t} b\left(s, x_{n-1}(s)\right) d s
$$

Since $\sigma(s, x)$ and $b(s, x)$ are bounded we can prove by induction that $x_{n}(\cdot)$ are well defined for $s \geq s_{0}$ and are progressively measurable. We denote by $Z_{n}(s)=x_{n+1}(s)-x_{n}(s)$ the difference. Then
$Z_{n}(t)=\int_{s_{0}}^{t}\left[\sigma\left(s, x_{n}(s)\right)-\sigma\left(s, x_{n-1}(s)\right] d \beta(s)+\int_{s_{0}}^{t}\left[b\left(s, x_{n}(s)\right)-b\left(s, x_{n-1}(s)\right)\right] d s\right.$
We will try to estimate $\Delta_{n}(t)=E^{P}\left[\sup _{s_{0} \leq s \leq t}\left|Z_{n}(s)\right|^{2}\right]$ in some fixed interval $s_{0} \leq t \leq T$.

$$
\sup _{s_{0} \leq s \leq t}\left|Z_{n}(s)\right| \leq \sup _{s_{0} \leq s \leq t}\left|X_{n}(s)\right|+\sup _{s_{0} \leq s \leq t}\left|Y_{n}(s)\right|
$$

where

$$
X_{n}(t)=\int_{s_{0}}^{t}\left[\sigma\left(s, x_{n}(s)\right)-\sigma\left(s, x_{n-1}(s)\right] d \beta(s)\right.
$$

and

$$
Y_{n}(t)=\int_{s_{0}}^{t}\left[b\left(s, x_{n}(s)\right)-b\left(s, x_{n-1}(s)\right)\right] d s
$$

$X_{n}(t)$ is a martingale and by Doob's inequlaity

$$
E^{P}\left[\sup _{s_{0} \leq s \leq t}\left\|X_{n}(s)\right\|^{2}\right] \leq 4 E^{P}\left[\left\|X_{n}(t)\right\|^{2}\right] \leq 4 C^{2} E^{P}\left[\int_{s_{0}}^{t}\left|x_{n}(s)-x_{n-1}(s)\right|^{2} d s\right]
$$

and

$$
E^{P}\left[\sup _{s_{0} \leq s \leq t}\left\|Y_{n}(s)\right\|^{2}\right] \leq\left(T-s_{0}\right) C^{2} E^{P}\left[\int_{s_{0}}^{t}\left|x_{n}(s)-x_{n-1}(s)\right|^{2} d s\right]
$$

Therefore there is a constant $C(T)$ such that for $s_{0} \leq t \leq T$ and $n \geq 2$,

$$
\Delta_{n}(t) \leq C(T) \int_{s_{0}}^{t} \Delta_{n-1}(s) d s
$$

with

$$
\Delta_{1}(t) \leq C(T)\left(t-s_{0}\right)
$$

It follows by induction that

$$
\Delta_{n}(t) \leq \frac{\left(t-s_{0}\right)^{n}[C(T)]^{n}}{n!}
$$

Convergence of $\sum_{n}[\Delta(n)]^{\frac{1}{2}}$ implies that $x_{n}(\cdot)$ is a Cauchy sequence in $L_{2}(P)$ with values in the space $C\left[s_{0}, T\right]$. The limit $x(t)$ exists in the sense that

$$
E^{P}\left[\sup _{s_{0} \leq t \leq T}\left|x_{n}(t)-x(t)\right|^{2}\right] \rightarrow 0
$$

implying that that $x(t)$ is indeed an almost surely continuous, progressively measurable solution of (7.1). Uniqueness is almost the same proof. If $x(t), y(t)$ are two solutions with the same initial starting point then with $Z(t)=x(t)-y(t)$, $\Delta(t)=E\left[\sup _{s_{0} \leq s \leq t}|Z(s)|^{2}\right]$ satisfies

$$
\Delta(t) \leq C(T) \int_{s_{0}}^{t} \Delta(s) d s
$$

with $\Delta(t) \leq C(T)\left(t-s_{0}\right)$. We show by induction that

$$
\Delta(t) \leq \frac{\left(t-s_{0}\right)^{n}[C(T)]^{n}}{n!}
$$

Letting $n \rightarrow \infty$ we arrive at $\Delta(t)=0$ proving uniqueness.

Once we have uniqueness we can study the properties of the unique solution which we will now call $\xi(t)$ as a function of the starting point $x$. In other words

$$
\xi(t, x)=x+\int_{s_{0}}^{t} \sigma(s, \xi(s, x)) d \beta(s)+\int_{s_{0}}^{t} b(s, \xi(s, x)) d s
$$

If we let $\eta(t, x, y)=\xi(t, x)-\xi(t, y)$ then using the Lipschitz condition we can estimate

$$
E\left[|\eta(t, x, y)|^{2}\right]=\Delta(t, x, y) \leq c|x-y|^{2}+c(T) \int_{s_{0}}^{t} \Delta(s, x, y) d s
$$

Providing an estimate of the form

$$
E\left[|\xi(t, x)-\xi(t, y)|^{2}\right] \leq c|x-y|^{2} e^{c(T)\left(t-s_{0}\right)}
$$

Lemma 7.2. If

$$
\xi(t)=\int_{0}^{t} c(s, \omega) d \beta(s)
$$

is a stochastic integral, we know that

$$
E\left[[\xi(t)]^{2}\right]=E\left[\int_{0}^{t}|c(s, \omega)|^{2} d s\right]
$$

For higher moments we have the estimate

$$
E\left[[\xi(t)]^{2 k}\right] \leq c_{k} E\left[\left[\int_{0}^{t}|c(s, \omega)|^{2} d s\right]^{k}\right]
$$

where $c_{k}$ depends only on $k$.
Proof. By Itô's formula, with the help of Doob's inequality, we can find $c_{k}$ such that

$$
\begin{aligned}
E\left[[\xi(t)]^{2 k}\right] & =k(2 k-1) E\left[\int_{0}^{t}|c(s, \omega)|^{2}|\xi(s)|^{2 k-2} d s\right] \\
& \leq k(2 k-1) E\left[\sup _{0 \leq s \leq t}|\xi(s)|^{2 k-2} \int_{0}^{t}|c(s, \omega)|^{2} d s\right] \\
& \leq k(2 k-1)\left[E\left[\sup _{0 \leq s \leq t}|\xi(s)|^{2 k}\right]\right]^{\frac{k-1}{k}} E\left[\left[\int_{0}^{t}|c(s, \omega)|^{2} d s\right]^{k}\right]^{\frac{1}{k}} \\
& \leq k(2 k-1)\left[E\left[\sup _{0 \leq s \leq t}|\xi(s)|^{2 k}\right]\right]^{\frac{k-1}{k}} E\left[\left[\int_{0}^{t}|c(s, \omega)|^{2} d s\right]^{k}\right]^{\frac{1}{k}} \\
& \leq c_{k}^{\frac{1}{k}}\left[E\left[|\xi(t)|^{2 k}\right]\right]^{\frac{k-1}{k}} E\left[\left[\int_{0}^{t}|c(s, \omega)|^{2} d s\right]^{k}\right]^{\frac{1}{k}}
\end{aligned}
$$

providing

$$
E\left[[\xi(t)]^{2 k}\right] \leq c_{k} E\left[\left[\int_{0}^{t}|c(s, \omega)|^{2} d s\right]^{k}\right]
$$

We need to assume first that $c(s, \omega)$ is bounded, so that all the quantities are finite. Once we have the bound we can approximate.

It is now possible to estimate

$$
E\left[|\xi(t, x)-\xi(t, y)|^{2 k}\right] \leq c(T) e^{c(T)\left(t-s_{0}\right)}|x-y|^{2 k}
$$

as well as

$$
E\left[|\xi(t, x)-\xi(s, x)|^{2 k}\right] \leq c(T)|t-s|^{k}
$$

Together they show that $\xi(t, x)$ is almost surely jointly continuous as a function of $t$ and $x$. In particular if we want to solve with $\xi(s, x)=\xi_{0}(\omega)$, a $\mathcal{F}_{s_{0}}$ measurable function the solution is given by $\xi\left(t, \xi_{0}\right)$. This opens up the possibility of viewing solutions of $\operatorname{SDE}(7.1)$ as continuous random maps of $R^{d} \rightarrow R^{d}$, i.e random flows.
Remark 7.1. The solution $x\left(t, s_{0}, x_{0}, \omega\right)$ can be expressed as $x\left(t, s, x\left(s, s_{0}, x_{0}, \omega\right), \omega\right)$ i.e the solution starting at $x(s)$ from time $s$. This depends on the increments of the Brownian motion $\beta\left(s^{\prime}\right)-\beta(s), t \geq s^{\prime} \geq s$. They are independent of $\mathcal{F}_{s}$. It is therefor clear that the conditional distribution of $x(t)$ given $\mathcal{F}_{s}$ depends only on $x(s)$ and is given by $p(s, x(s), t, A)$, where $p(s, x, t, A)=P[x(t, s, x) \in A]$, proving that $x(t)$ is a Markov process with transition probabilities $\{p(s, x, t, A)\}$.
Remark 7.2. The independence of $\beta(t+\tau)-\beta(\tau)$ and the $\sigma$-field $\mathcal{F}_{\tau}$ is valid for stopping times $\tau$ just as it is for constant times $s$. This establishes the strong Markov property for the process $x(t)$.

For each $x_{0}$ the approximations $x_{n}(t)$ in the Picard iteration scheme are measurable function of the Brownian increments $\beta(t)-\beta\left(s_{0}\right)$ and so the limit $x(t)$ really defines a map of the Brownian path $\beta(t)-\beta\left(s_{0}\right)$ to the diffusion paths $x(t)$. Even if $\mathcal{F}_{t}$ is larger it does not play any role.

One can formulate a general uniqueness question. If $x^{i}(t, \omega), i=1,2$ are both almost surely continuous, progressively measurable solutions to

$$
x^{i}(t)=x_{0}+\int_{s_{0}}^{t} \sigma\left(s, x^{i}(s)\right) d \beta(s)+\int_{s_{0}}^{t} b\left(s, x^{i}(s)\right) d s
$$

on some $\left(\Omega, \mathcal{F}_{t}, P, \beta(t)\right)$ does it follow that $x^{1}(t) \equiv x^{2}(t)$ with probability 1 ? This is of course a property of $\sigma$ and $b$. If the answer is yes we will say that pathwise or strong uniqueness holds for $\sigma, b$. If $\sigma, b$ are Lipschitz the answer as we saw, is yes.

One can also ask the following question. Let $\left\{a_{i, j}(t, x)\right\},\left\{b_{j}(t, x)\right\}$ be given. If $P^{i}$ for $i=1,2$ both satisfy $P^{i} \in \mathcal{I}(a, b)$ as well as $P^{i}\left[x\left(s_{0}\right)=x_{0}\right]=1$, does it follow that $P^{1}=P^{2}$. If the answer is yes we say that distribution uniqueness holds for $[a, b]$. The following theorem provides a connection.

Theorem 7.3. If pathwise uniqueness holds for some $[\sigma, b]$ with $\sigma \sigma^{*}=a$, then distribution uniqueness holds for $[a, b]$.

Remark 7.3. $\sigma$ need not be a square matrix. We can use more (or less) number of Brownian motions than $d$ dimension of $x(t)$. If $\sigma$ is $d \times k$, then the rank of $a$ can not exceed $\min (d, k)$.

Proof. 1. We start with the measure $P^{i} \in \mathcal{I}(a, b)$. We can assume that $P^{i}$ is defined on $C\left[\left[s_{0}, T\right] ; R^{d}\right]$, with the natural $\mathcal{F}_{t}$ and coordinate function $x(\cdot)$. We can construct a measure $Q^{i}$ on $C\left[\left[s_{0}, T\right] ; R^{d} \times R^{n}\right]$ with components $x(t), \beta(t)$, with marginals $P^{i}$ and $P$ the Wiener measure such that for $i=1,2$

$$
x(t)=x_{0}+\int_{s_{0}}^{t} \sigma(s, x(s)) d \beta(s)+\int_{s_{0}}^{t} b(s, x(s)) d s
$$

a.e. $P^{i}$.
2. We couple the two processes by constructing a $Q$ on $C\left[\left[s_{0}, T\right] ; R^{d} \times R^{d} \times R^{n}\right.$ with components $x^{1}(t), x^{2}(t), \beta(t)$ such that $\left[x^{i}(\cdot), \beta(\cdot)\right]$ are distributed according to $Q^{i}$. Then

$$
x^{i}(t)=x_{0}+\int_{s_{0}}^{t} \sigma\left(s, x^{i}(s)\right) d \beta(s)+\int_{s_{0}}^{t} b\left(s, x^{i}(s)\right) d s
$$

3. If pathwise uniqueness holds $x^{1}(t) \equiv x^{2}(t)$ implying $P^{1}=P^{2}$.
4. We now turn to the construction of the coupling. Let us define $\pi^{i}[d x \mid \beta]$ as the conditional distribution of $x(\cdot)$ given $\beta$ under $Q^{i}$. Define

$$
Q=\pi^{1}\left(d x^{1} \mid \beta\right) \otimes \pi^{2}\left(d x^{2} \mid \beta\right) \otimes P(d \beta)
$$

