
Chapter 3

Large Time.

3.1 Introduction.

The goal of this chapter is to prove the following theorem.

Theorem 3.1.1. Let Sn = X1 + X2 + · · · + Xn be the nearest neighbor random walk on
Zd with each Xi = ±er with probability 1

2d where {er} are the unit vectors in the d positive
coordinate directions. Let Dn be the range of S1, S2, . . . , Sn on Zd. |Dn| is the cardinality
of the range Dn. Then

lim
n→∞

1

n
d

d+2

logE[e−ν|Dn|] = −k(ν, d)

where

k(ν, d) = inf
"

[
v(d)"d + λ(d)"−2

]

with v(d) equal to the volume of the unit ball, and λ(d) is the smaller eigenvalue of − 1
2d∆

in the unit ball with Dirichlet boundary conditions.

The starting point of the investigation is a result on large deviations from the ergodic
theorem for Markov Chains. Let Π = {p(x, y)} be the matrix of transition probability of
a Markov Chain on a finite state space X . We will assume that for any pair x, y, there is
some power n with Πn(x, y) > 0. Then there is a unique invariant probability distribution
π = {π(x)} such that

∑
x π(x)p(x, y) = π(y) and according to the ergodic theorem for any

f : X → R, almost surely with respect to the Markov Chain Px starting at time 0 from
any x ∈ X

lim
n→∞

1

n

n∑

j=1

f(Xj) =
∑

x

f(x)π(x)

27
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The natural question on large deviations here is to determine the rate of convergence to 0
of

P [|
1

n

n∑

j=1

f(Xj) =
∑

x

f(x)π(x)| ≥ δ]? (3.1)

More generally on the spaceM of probability distributions on X we can define a probability
measure Qn,x defined as the distribution of the empirical distribution 1

n

∑n
j=1 δXj which is

a random point in M. The ergodic theorem can be reinterpreted as

lim
n→∞

Qn,x = δπ

i.e. the empirical distribution is close to the invariant distribution with probability nearly
1 as n → ∞. We want to establish a large deviation principle and determine the corre-
sponding rate function I(µ). One can then determine the behavior of (3.1) as

lim
n→∞

1

n
logP [|

1

n

n∑

j=1

f(Xj)−
∑

x

f(x)π(x)| ≥ δ] = inf
[
I(µ) :

∣∣
∑

f(x)[µ(x)− π(x]
∣∣ ≥ δ

]

With a little extra work, under suitable transitivity conditions one can show that for x ∈ A

lim
n→∞

1

n
log Pn,x[Xj ∈ A for 1 ≤ j ≤ n] = − inf

µ:µ(A)=1
I(µ)

There are two ways of looking at I(µ). For the upper bound if we can estimate for V ∈ V

lim sup
n→∞

1

n
logEP [V (X1) + V (X2) + · · · + V (Xn)] ≤ λ(V )

then by standard Tchebychev type estimate

I(µ) = lim
δ→0

lim sup
n→∞

1

n
logP [

1

n

n∑

i=1

δXi ∈ N(µ, δ)] ≤ − sup
V ∈V

[

∫
V (x)dµ(x) − λ(V )]

Of course when the state space is finite
∫
V (x)dµ(x) =

∑
x V (x)µ(x). Notice that λ(V +

c) = λ(V ) + c of any constant c. Therefore

I(µ) ≥ sup
V ∈V

λ(V )=0

∫
V (x)dµ(x) (3.2)

It is not hard to construct V such that λ(V ) = 0.

Lemma 3.1.2. Suppose for some u : X → R satisfies C ≥ u(x) ≥ c > 0 for all x, then

with V (x) = log u(x)
(πu)(x) where (πu)(x)

∑
y π(x, y)u(y), uniformly in x and n,

c

C
≤ Ex[exp[

n∑

i=1

V (Xi)] ≤
C

c
(3.3)

In particular λ(V ) = 0, and (3.2) holds.
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Proof. An elementary calculation shows that

Ex[Pini=1
u(Xi)

(πu)(Xi)
] ≤

1

c
Ex[Π

n−1
i=1

u(Xi)

(πu)(Xi)
u(Xn)] =

u(x)

c
≤

C

c

and

Ex[Pini=1
u(Xi)

(πu)(Xi)
] ≥

1

C
Ex[Π

n−1
i=1

u(Xi)

(πu)(Xi)
u(Xn)] =

u(x)

C
≤

c

C

To prove the converse one ”tilts” the measure Px with transition probability π(x, y) to a
measure Qx with transition probability q(x, y) > 0 that has µ as the invariant probability.
Then by the law of large numbers if An,µ,δ = {(x1, . . . , xn} :

∑n
i=1 δxi ∈ N(µ, δ)}, then

Qx[An,µ,δ] → 1

as n → ∞. On the other hand with x0 = x, using Jensen’s inequality

Px[An,µ,δ] =

∫

An,µ,δ

[
Πn−1

i=0

π(xi, xi+1)

q(xi, xi+1)

]
dQx

= Qx[An,µ,δ]
1

Qx[An,µ,δ]

∫

An,µ,δ

[
Πn−1

i=0
π(xi, xi+1)

q(xi, xi+1)

]
dQx

≥ Qx[An,µ,δ] exp

[
−

∫

An,µ,δ

[ n−1∑

i=0

log
q(xi, xi+1)

π(xi, xi+1)

]
dQx

]

A simple application of the ergodic theorem yields

lim inf
n→∞

1

n
logPx[An,µ,δ] ≥ −

∑

x,y

µ(x)q(x, y) log
q(x, y)

π(x, y)

Since q(·, ·) can be arbitrary provided µq = q, i.e
∑

x µ(x)q(x, y) = µ(y), we have

lim
δ→0

lim inf
n→∞

1

n
logPx[

1

n

n∑

i=1

δXi ∈ N(µ, δ)] ≥ − inf
q:µq=µ

∑

x,y

µ(x)q(x, y) log
q(x, y)

π(x, y)

In the next lemma we will prove that for any µ,

sup
u>0

∑

x

µ(x) log
u(x)

(πu)(x)
= inf

µ:µq=µ

∑

x,y

µ(x)q(x, y) log
q(x, y)

π(x, y)

With that we will have the following theorem.
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Theorem 3.1.3. Let π(x, y) > 0 be the transition probability of a Markov chain {Xi}
on a finite state space X . Let Qn,x be the distribution of the empirical distribution γn =
1
n

∑n
i=1 δXi of the Markov Chain started from x on the space M(X ) of probability measures

on X . Then it satisfies a large deviation principle with rate function

I(µ) = sup
u>0

∑

x

µ(x) log
u(x)

(πu)(x)
= inf

µ:µq=µ

∑

x,y

µ(x)q(x, y) log
q(x, y)

π(x, y)

Since we have already proved the upper and lower bounds we only need the following
lemma.

Lemma 3.1.4.

sup
u>0

∑

x

µ(x) log
u(x)

(πu)(x)
= inf

q:µq=µ

∑

x,y

µ(x)q(x, y) log
q(x, y)

π(x, y)

Proof. The proof depends on the following minimax theorem. Le F (x, y) be a function
defined on C ×D which are convex sets in some nice topological vector space. Let F be
lower semicontinuous and convex in x and upper semicontinuous and concave in y. Let
either C or D be compact. Then

inf
x∈C

sup
y∈D

F (x, y) = sup
y∈D

inf
x∈C

F (x, y)

We take C = {v : X → R} and D = M(X × X ) and for v ∈ C,m ∈ D,

inf
q:µq=µ

∑

x,y

µ(x)q(x, y) log
q(x, y)

π(x, y)

= inf
q
sup
v

[∑

x,y

[v(x)− v(y)]q(x, y)µ(x) +
∑

x,y

µ(x)q(x, y) log
q(x, y)

π(x, y)

]

= sup
v

inf
q

[∑

x,y

[v(x)− v(y)]q(x, y)µ(x) +
∑

x,y

µ(x)q(x, y) log
q(x, y)

π(x, y)

]

The function F is clearly linear and hence concave in v while being convex in q. Here the
supremum over v of the first term is either 0 or infinite. It is 0 when µq = µ and infinite
otherwise. The infimum over q is over all transition matrices q(x, y). The infimum over q
can be explicitly carried out and yields for some u and v.

log
q(x, y)

π(x, y)
= u(y)− v(x)
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The normalization
∑

y q(x, y) ≡ 1 implies ev(x) = (πeu)(x). The supremum over v turns
into

sup
u>0

∑

x

µ(x) log
u(x)

(πu)(x)

Remark 3.1.5. It is useful to note that the function f log f is bounded below by its value
at f = e−1 which is −e−1. For any set A, any function f and any probability measure µ,

∫

A
f log fdµ ≤

∫
f log fdµ+ e−1

3.2 Large Deviations and the principal eigen-values.

Let {p(x, y)}, x, y ∈ X , be a matrix with strictly positive entries. Then there is a positive
eigenvalue ρ such that it is simple, has a corresponding eigenvector with positive entries,
and the remaining eigenvalues are of modulus strictly smaller than ρ. If p(·, ·) is a stochastic
matrix then

∑
y p(x, y) = 1 i.e. ρ = 1 and the corresponding eigenvector u(x) ≡ 1. In

general if
∑

p(x, y)u(y) = ρu(x), then π(x, y) = p(x,y)u(y)
u(x) is a stochastic matrix. An

elementary calculation yields
∑

y

p(n)(x, y)u(y) = ρnu(x)

and consequently

infx u(x)

supx u(x)
ρn ≤ inf

x

∑

y

p(n)(x, y) ≤ sup
x

∑

y

p(n)(x, y) ≤
supx u(x)

infx u(x)
ρn

Combined with the recurrence relation

p(n+1)(x, y) =
∑

z

p(n)(x, z)p(z, y)

it is easy to obtain a lower bound

p(n+1)(x, y) ≥ inf
z,y

p(z, y) inf
x

∑

z

p(n)(x, z) ≥ inf
z,y

p(z, y)
supx u(x)

infx u(x)
ρn

In any case there are constants C, c such that

cρn ≤ p(n)(x, y) ≤ Cρn

ρ = ρ(p(·)) is the spectral radius of p(·, ·). Of special interest will be the case when
p(x, y) = pV (x, y) = π(x, y)eV (y) i.e p multiplied on the right by the diagonal matrix with
entries {eV (x)}. The following lemma is a simple computation easily proved by induction
on n.
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Lemma 3.2.1. Let Px be the Markov process with transition probability π(x, y) starting
from x. Then

EPx

[
exp[

n∑

i=1

V (Xi)]

]
=

∑

y

p(n)V (x, y)

where pV (x, y) = π(x, y)eV (y).

It is now easy to connect large deviations and the principal eigenvalue.

Theorem 3.2.2. The principal eigenvalue of a matrix p(·, ·) with positive entries is its
spectral radius ρ(p(·, ·)) and the large deviation rate function I(µ) for the distribution of
the empirical distribution 1

n

∑n
i=1 δXi on the space M(X ) is the convex dual of

λ(V ) = log ρ(pV (·, ·))

Remark 3.2.3. It is not necessary to demand that π(x, y) > 0 for all x, y. It is enough to
demand only that for some k ≥ 1, π(k)(x, y) > 0 for all x, y. One can allow periodicity by
allowing k to depend on x, y. These are straight forward modifications carried out in the
study of Markov Chains.

3.3 Dirichlet Eigenvalues.

Let F ⊂ X . Our aim is to estimate for a Markov Chain Px with transition probability
π(x, y) and starting form x ∈ F

Px

[
Xi ∈ F, i = 1, . . . , n] =

∑

x1,...,xn∈F

π(x, x1)p(x1, x2) · · · π(xn−1, xn)

=
∑

y

p(n)F (x, y)

where pF (x, y) = π(x, y) if x, y ∈ F and 0 otherwise. In other words pF is a sub-stochastic
matrix on F . In some sense this corresponds to pV where V = 0 on F and −∞ on F c.
The spectral radius ρ(F ) of pF has the property that for x ∈ F ,

lim
n→∞

1

n
log Px

[
Xi ∈ F, i = 1, . . . , n] = log ρ(pF )

In our case it is a little more complicated, because we have a ball of radius cnα and we want
our random walk in n steps to be confined to this ball. The set F of the previous discussion
depends on n. The idea is if we scale space and time and use the invariance principle as
our guide this should be roughy the same as the probability that a Brownian motion with
covariance 1

dI remains inside a ball of radius c during the time interval 0 ≤ t ≤ n1−2α.
We have done the Brownian rescaling by factors n2α for time and nα for space. This will
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have probability decaying like λd(c)n1−2α where λd(c) =
λd
c2

is the eigenvalue of ∆
2d for the

unit ball in Rd with Dirichlet boundary conditions. The volume of the ball of radius cnα

is vdcdndα and that is roughly the maximum number of lattice points that can be visited
by a random walk confined to the ball of radius cnα. The contribution form such paths is
exp[−νvdcdnαd − λd

c2
n1−2α]. It is clearly best to choose α = 1

d+2 so that we have

lim inf
n→∞

1

n
d

d+2

logE[exp[−ν|Dn|]] ≥ −[νvdc
d +

λd
c2

]

If we compute

inf
c>0

[νvdc
d +

λd
c2

] = k(d)ν
2

d+2

then

lim inf
n→∞

1

n
d

d+2

logE[exp[−ν|Dn|]] ≥ −k(d)ν
2

d+2

We will first establish this lower bound rigorously and then prove the upper bound.

3.4 Lower Bound.

We begin with a general inequality that gets used repeatedly. Let Q << P with ψ = dQ
dP

and
∫
ψ logψdP = H(Q,P ) = H < ∞. Then

Lemma 3.4.1. For any function f

EQ[f ] ≤ logEP [ef ] +H

Moreover

Q(A) ≤
H + e

log 1
P (A)

and

P (A) ≥ Q(A) exp[−H −
∫

|H − logψ|dQ]

Proof. It is a simple inequality to check that for any x and y > 0, xy ≤ ex + y log y − y.
Therefore

EQ[f ] = EP [fψ] ≤ EP [ef + ψ logψ − ψ] = EP [ef ] +H − 1

Replacing f by f + c
EQ[f ] ≤ ecEP [ef ] +H − 1− c

With the choice of c = − logEP [ef ], we obtain

EQ[f ] ≤ logEP [ef ] +H
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If we take f = cχA,

Q(A) ≤
1

c
[log[ecP (A) + 1− P (A)] +H]

with c = − logP (A),

Q(A) ≤
H + 2

log 1
P (A)

Finally

P (A) ≥
∫

A
e− logψdQ ≥ Q(A)

1

Q(A)

∫

A
e− logψdQ ≥ Q(A) exp[−

1

Q(A)

∫

A
logψdQ]

and
1

Q(A)

∫

A

logψdQ ≤ H +

∫
|H − logψ|dQ

Lemma 3.4.2. Let c, c1, c2 be constants. with c2 < c. Then for the random walk {Px}

lim
n→∞

n−αxn→x

Pxn [Xi ∈ B(0, c nα) ∀ 1 ≤ i ≤ c1 n
2α & Xc1n2α ∈ B(0, c2 n

α)]

= Qx[x(t) ∈ B(0, c) ∀ t ∈ [0, c1] & x(c1) ∈ B(0, c2)]

= f(x, c, c1, c2)

where Qx is Brownian motion with covariance 1
dI.

This is just the invariance principle asserting the convergence of random walk to Brow-
nian motion under suitable rescaling. The set of trajectories confined to a ball of radius c
for time c1 and end up at time c1 inside a ball of radius c2 is easily seen to be a continuity
set for Brownian motion. The convergence is locally uniform and consequently

lim
n→∞

inf
x∈B(0,c2nα)

Px[Xi ∈ B(0, c nα) ∀ 1 ≤ i ≤ c1 n
2α & Xc1n2α ∈ B(0, c2 n

α)]

= inf
x∈B(0,c2)

f(x, c, c1, c2)

In particular from the Markov property

P0[Xi ∈ B(0, c nα) ∀ 1 ≤ i ≤ n)]

≥ inf
x∈B(0,c2nα)

Px[Xi ∈ B(0, c nα) ∀ 1 ≤ i ≤ c1n
2α & Xc1n2α ∈ B(0, c2 n

α)]
n1−2α

c1

showing

lim
n→∞

1

n1−2α
logP0[Xi ∈ B(0, c nα) ∀ 1 ≤ i ≤ n)]

≥ inf
x∈B(0,c2)

1

c1
log f(x, c, c1, c2)

Since the left hand side is independent of c1 we can let c1 → ∞.
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Lemma 3.4.3. For any c2 < c,

lim
c1→∞

inf
x∈B(0,c2)

1

c1
log f(x, c, c1, c2) = −

λd
c2

Proof. Because of the scaling properties of the Brownian motion we can assume with out
loss of generality that c = 1. Let φ(x) ≥ 0 be a function that is smooth and vanishes
outside the ball B(0, 1) and ‖φ‖2 = 1. Let g(x) = [φ(x)]2. Consider Brownian motion with
drift 1

2d
∇g
g . Then its generator is

∆g =
1

2d
∆+

1

2d

∇g

g
·∇

It has invariant measure g that solves

∆g =
1

2d
∇ ·

∇g

g
· g

The Radon-Nikodym derivative of the diffusion Q̂x with generator ∆g with respect to
Brownian motion Qx with generator 1

2d∆ is

ψt = exp

[
1

2

∫ t

0

∇g

g
(x(s))dx(s) −

1

8d

∫ t

0
[
∇g

g
]2(x(s))ds

]

with entropy

H(Q̂x, Qx) = EQ̂
x

[
1

2

∫ t

0

∇g

g
(x(s))dx(s)−

1

8d

∫ t

0
[
∇g

g
]2(x(s))ds

]

= EQ̂
x

[
1

8d

∫ t

0
[
∇g

g
]2(x(s))ds

]

-
t

8d

∫
|∇g|2

g
dx

=
t

2d

∫
|∇φ|2dx

and ∫
|
logψt

t
− H̄|dQ0 → 0

where H̄ = t
2d

∫
|∇φ|2. In view of lemma 3.4.1 this provides the lower bound

inf
x∈B(0,c2)

lim
c1→∞

1

c1
log f(x, c, c1, c2) ≥ −

1

2d

∫
|∇φ|2dx

Minimizing over g proves the lemma.
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3.5 Upper Bound.

The upper bound starts with the following simple observation. If π(x, y) is the transition

probability of a Markov Chain and V (x, y) = log u(y)
(Πu)(x) , then

EPx

[
exp[

n−1∑

i=0

V (Xi,Xi+1)]

]
= 1

Taking conditional expectation given X1, . . . ,Xn−1 gives

EPx

[
exp[

n−1∑

i=0

V (Xi,Xi+1)]

]
= EPx

[
exp[

n−2∑

i=0

V (Xi,Xi+1)]

]

because

EPXn−1 [exp[V (Xn−1,Xn)]] =

∑
y π(Xn−1, y)u(y)

(Πu)(Xn−1)
= 1

Proceeding inductively we obtain our assertion.

Let us map our random walk on Zd to the unit torus by rescaling z → z
N ∈ Rd and then

on to the torus T d by sending each coordinate xi to xi(mod)1. The transition probabilities
ΠN (x, dy) are x → x ± ei

N with probability 1
2d . Let u > 0 be a smooth function on the

torus. Then

log
u

Πu
(x) = − log

1
2d

∑
i,± u(x± ei

N )

u(x)

= − log
[
1 +

1
2d

∑
i,±[u(x± ei

N )− u(x)]

u(x)

]

- −
1

2dN2

∆u

u
(x) + o(N−2)

Denoting the the distribution of the scaled random walk on the torus starting from x, by
PN,x we first derive a large deviation principle for the empirical distribution

α(n,ω) =
1

n

n∑

i=1

δXi

whereXi ∈ T d are already rescaled. We denote by Qn,N,x the distribution of αn on M(T d).
If n → ∞, N → ∞ and k = n

N2 → ∞, then we have a large deviation principe for Qn,N,x

on M(T d).

Theorem 3.5.1. For any closed set C ∈ M(T d),

lim sup
N→∞

k= n
N2 →∞

1

k
logQn,N,x(C) ≤ − inf

µ∈C
I(µ)
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and for any open set G ∈ M(T d),

lim inf
N→∞

k= n
N2 →∞

1

k
logQn,N,x(G) ≥ − inf

µ∈G
I(µ)

where, if dµ = fdx and ∇
√
f ∈ L2(T d),

I(µ) =
1

8d

∫
‖∇f‖2

f
dx =

1

2d

∫
‖∇

√
f‖2dx

Otherwise I(µ) = +∞.

Proof. Lower Bound. We need to add a bias so that the invariant probability for the
perturbed chain on the imbedded lattice 1

NZd
N is close to a distribution with density f on

the torus. We take v(x) =
∑

y π(x, y)f(y) and the transition probability to be

π̂(x, y) = π(x, y)
f(y)

v(x)

then
∑

x v(x)π̂(x, y) =
1
2d

∑
i,± f(x ± ei) = v(x), so the invariant probability is v(x)∑

x v(x) It

is not hard to prove ( see exercise ) that if N → ∞ and n
N2 → ∞ then

1

n

∑

i=1

V (Xi) →
∫

V (x)f(x)dx

in probability under Q̂n,N,x provided V is a bounded continuous function and
∫
f(x)dx = 1.

So the probability large deviation will have a lower bound with the rate function computed
from the entropy

n
∑

x,y

v(x)π(x, y)
f(y)

v(x)
log

f(y)

v(x)
-

n

N2

∑

x,y

π(x, y)f(y) log
f(y)∑

y π(x, y)f(y)

-
n

N2

1

8d

∫
‖∇f‖2

f
dx

Upper Bound. We start with the identity

EPn,x

[
exp[−

n∑

j=1

log
1
2d

∑
i,± u(Xj ± 1

N ei)

u(Xj)
]

]

= EQn,N,x

[
exp[−n

∫
[log

1
2d

∑
i,± u(x± 1

N ei)

u(x)
]dα]

]

= 1
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N2 log
1
2d

∑
i,± u(x± 1

N ei)

u(x)
→

1

2d

∆u

u
(x)

uniformly over x ∈ T d. It follows that

lim
δ→0

lim sup
N→∞

k= n
N2 →∞

1

k
Qn,N,x[B(α, δ)] ≤ −I(α)

where

I(α) =
1

2d
sup
u>0

∫
[−

∆u

u
(x)]dα (3.4)

A routine covering argument, of closed sets that are really compact in the weak topology,
by small balls completes the proof of the upper bound. It is easy to see that I(α) is convex,
lower semi continuous and translation invariant. By replacing α by αδ = (1− δ)α ∗ φδ + δ
we see that I(αδ) ≤ I(α), αδ → α as δ → 0 and αδ has a nice density fδ. It is therefore
sufficient to prove that for smooth strictly positive f ,

1

2d
sup
u>0

∫
[−

∆u

u
(x)]f(x)dx =

1

8d

∫
‖∇f‖2

f
dx

Writing u = eh, the calculation reduces to

1

2d
sup
h

[ ∫
[−∆h− |∇h|2]f(x)dx

]
=

1

2d
sup
h

[ ∫
[< ∇h,∇f > dx−

∫
|∇h|2]f(x)dx

]

=
1

8d

∫
‖∇f‖2

f
dx

One inequality is just obtained by Schwartz and the other by the choice of h =
√
f .

Exercise 3.5.2. Let Πh be transition probabilities of a Markov Chain Ph,x on a compact
space X such that 1

h [Πh − I] → L where L is a nice diffusion generator with a unique
invariant distribution µ. Then for any continuous function f : X → R, for any ε > 0

lim sup
h→0

nh→∞

sup
x

Ph,x[|
1

n

n∑

j=1

f(Xj)−
∫

f(x)dµ(x)| ≥ ε] = 0

Hint. If we denote by µn,h,x the distribution 1
n

∑n
j=1Π

j(x, ·), then verify that any limit
point of µn,h,x′ as h → 0, nh → ∞ and x′ → x is an invariant distribution of L and
therefore is equal to µ. This implies

lim
h→0,

nh→∞

µn,h,x = µ
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uniformly over x ∈ X . The ergodic theorem is a consequence of this. If
∫
V (x)dµ(x) = 0,

then ignoring the n diagonal terms

lim
n→∞

1

n2
Ex[(V (X1) + V (X2) + · · ·V (Xn))

2]

≤ 2 lim
n→∞

1

n
sup
x,i

|V (x)E[V (Xi+1) + · · ·V (Xn)|Xi = x]|

= 0

3.6 The role of topology.

We are really interested in the number of sites visited. If αn is the empirical distribution
then we can take the convolution gn,N,ω(x) = αn(dx) ∗Nd1CN

(x) where CN is the cube of
size 1

N centered at the origin. Then

|{x : gn,N,ω(x) > 0}| =
1

Nd
|Dn(ω)|

where |Dn(ω)| is the cardinality of the set Dn(ω) of the sites visited. We are looking for a
result of the form,

Theorem 3.6.1.

lim sup
k→∞
N→∞

1

k
logEQkN2,N [exp[−ν|{x : g(x) > 0}|]] ≤ − inf

g≥0,
∫
g=1

[ν|{x : g(x) > 0}|+
1

8d

∫
|∇g|2

g
dx]

where QkN2,N is the distribution of gn,N,ω(x) = αn(dx) ∗Nd1CN
(x) on L1(T d) induced by

the random walk with n = kN2 starting from the origin.

We do have a large deviation result for QkN2,N with rate function I(g) = 1
8d

∫ |∇g|2

g dx.

We proved it for the distribution of αn,ω on M(T d) in the weak topology. In the weak
topology the map α → α ∗Nd1CN

(x) of M(T d) → M(T d) is uniformly close to identity
that the large deviation principle holds for QkN2,N that are supported on L1(T d) ⊂ M(T d)
in the weak topology.

If we had the large deviation result for QkN2,N in the L1 topology we will be in good
shape. The function F (g) = |{x : g(x) > 0}| is lower semi continuous in L1. It is not hard
to prove the following general fact.

Theorem 3.6.2. Let Pn be a family of probability distributions on a complete separable
metric space X satisfying a large deviation principle with rate function I(x). Let F (x) be
a nonnegative lower semi continuous function on X . Then

lim sup
n→∞

1

n
logEPn [exp[−F (x)]] = − inf

x∈X
[F (x) + I(x)]
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Proof. Let infx[F (x) + I(x)] = v. Given ε > 0 and y ∈ X there is neighborhood B(y, ε(y))
such that for large n

∫

B(y,ε(y))
e−F (x)dPn(x) ≤ e− infx∈B(y,ε(y)) F (x)Pn[B(y, ε(y))] ≤ e−nv+nε

Given any L < ∞, the set KL = {x : I(x) ≤ L} is compact and can be covered by a finite
union of the neighborhoods B(y, ε(y)) so that

Gε,L = ∪m(ε,L)
i=1 B(yi, ε(yi)) ⊃ KL

While

lim sup
n→∞

1

n
log

∫

Gε,L

e−nF (x)dPn ≤ −v + ε

we also have, since F (x) ≥ 0,

lim sup
n→∞

1

n
log

∫

Gc
ε,L

e−nF (x)dPn ≤ lim sup
n→∞

1

n
logPn[G

c
ε,L]

≤ − inf
y∈Gc

ε,L

I(y) ≤ − inf
y∈Kc

L

I(y)

≤ −L

We can make L large and ε small.

Let δ > 0 be arbitrary. Let φδ(x) be an approximation of identity. gδ = g ∗φδ a map of
L1 → L1. This is a continuous map from L1 ⊂ M(T d) with the weak topology to L1 with
the strong topology. If we denote the image of QkN2,N by Qδ

kN2,N it is easy to deduce the
following

Theorem 3.6.3. For any δ > 0 the distributions Qδ
kN2,N satisfy a large deviation principle

as k → ∞ and N → ∞ so that for C ∈ L1(T d) that are closed we have

lim sup
k→∞
N→∞

1

k
logQδ

kN2,N [C] ≤ inf
g:gδ∈C

I(g)

and for G that are open

lim inf
k→∞
N→∞

1

k
logQδ

kN2,N [G] ≥ inf
g:gδ∈G

I(g)

But we need the results in the result for δ = 0, and this involves interchanging the two
limits. This can be done through the super exponential estimate
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Theorem 3.6.4.

lim sup
δ→0

lim sup
k→∞
N→∞

1

k
logQδ

kN2,N [g : ‖gδ − g‖1 ≥ ε] ≤ −∞

Once we have that it is not difficult to verify that the rate function for QkN2,N in L1

is also I(g) and we would have completed our proof. We will outline first the idea of the
proof and reduce it to some lemmas. Denoting Nd1CN

by χN The quantity

‖α ∗Nd1CN
∗ φδ − α ∗Nd1CN

‖1 = sup
V :|V (x)|≤1

|
∫

V ∗ χN ∗ φδdα−
∫

V ∗ χNdα|

= sup
V ∈KN

|
∫

V ∗ φδdα−
∫

V dα|

where KN , the image of V : |V (x)| ≤ 1 under convolution with χN , is a compact set in
C(T d). Given ε > 0 it can be covered by a finite number τ(N, ε) of balls of radius ε

2 . Let
us denote the set of centers by DN,ε, whose cardinality is τ(N, ε). Then we can estimate

QkN2,N [g : ‖gδ − g‖1 ≥ ε] ≤ τ(N, ε) sup
V ∈DN,ε

QkN2,N [|
∫

(V ∗ φδ − V )dα| ≥
ε

2
]

We begin by estimating the size of τ(N, ε). The modulus continuity of any W ∈ DN,ε

satisfies

|W (x)−W (y)| ≤
∫

|χ(x− z)− χ(y − z)|dz ≤
ε

4

provided |x − y| ≤ η
N for some η = η(ε). We can chop the torus into [Nη ]

d sub cubes and

divide each interval [−1, 1] into 4
ε subintervals. Then balls around [4ε ]

[N
η
]d simple functions

will cover DN,ε. So we have proved

Lemma 3.6.5.

log τ(N, ε) ≤ C(ε)Nd

Let Jδ = {W : W = V ∗φδ −V } and ‖V ‖∞ ≤ 1. We now try to get a uniform estimate
on

QkN2,N [|
∫

Wdα| ≥
ε

2
] = PN,x[

1

kN2

kN2∑

i=1

W (Xi) ≥
ε

2
]

where PN,x is the probability measure that corresponds to the random walk on Zd
N starting

from x at time 0. We denote by

Θ(k,N,λ, δ) = sup
x∈Zd

N

sup
W∈Jδ

EPN,x

[
exp[

λ

N2

kN2∑

i=1

W (Xi)]

]
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If we can show that

lim
δ→0

lim
k→∞
N→∞

1

k
logΘ(k,N,λ, δ) = 0

for every λ, then

1

k
logQkN2,N [|

∫
Wdα| ≥

ε

2
] ≤ −[λ

ε

2
−

1

k
logΘ(k,N,λ, δ)]

and

lim sup
δ→0

lim sup
k→∞
N→∞

sup
W∈Jδ

1

k
logQkN2,N [|

∫
Wdα| ≥

ε

2
] ≤ −λ

ε

2

Since λ > 0 is arbitrary it would follow that

lim sup
δ→0

lim sup
k→∞
N→∞

sup
W∈Jδ

1

k
logQkN2,N [|

∫
Wdα| ≥

ε

2
] = −∞

Finally

Lemma 3.6.6. For any λ > 0,

lim
δ→0

lim
k→∞
N→∞

1

k
logΘ(k,N,λ, δ) = 0

Proof. We note that for any Markov Chain for any W

log sup
x

EPx

[ n∑

i=1

V (Xi)]

]

is sub additive and so it is enough to prove

lim
δ→0

lim
N→∞

inf
k

1

k
logΘ(k,N,λ, δ) = 0

We can let N2k → t and consider the limit

Θ̂(t,λ, δ) = sup
x∈T d

sup
W∈Jδ

EPx

[
exp[λ

∫ t

0
W (β(s))]

]

where Px is the distribution of Brownian motion with covariance 1
dI on the torus T d. Since

the space is compact and the Brownian motion is elliptic, the transition probability density
has a uniform upper and lower bound for t > 0 and this enables us to conclude that

lim sup
δ→0

lim sup
t→∞

log
1

t
Θ̂(t,λ, δ) = 0
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provided we show that for any λ > 0

lim sup
δ→0

sup
W∈Jδ

sup
‖f‖1=1
f≥0

[
λ

∫
Wfdx−

1

8d

∫
|∇f |2

f
dx

]

But

|
∫

Wfdx| = |
∫

(V ∗ φδ − V )fdx| ≤
∫

V |fδ − f |dx ≤ ‖fδ − f‖1

On the other hand in the variational formula we can limit ourselves to f with
∫ ‖∇f‖2

f dx ≤
8λg. But that set is compact in L1 and therefore for any C < ∞

lim
δ→0

sup
f :
∫ ‖∇f‖2

f
dx≤C

‖fδ − f‖1 = 0

3.7 Finishing up.

We have now shown that

1

n
d

d+2

logE[exp[−ν|Dn|] ≤ − inf
f≥0

‖f‖1=1

[
ν|supp f |+

1

8d

∫

T d
&

‖∇f‖2

f
dx

]

The torus T d
" can be of any size ". We will next show that we can let "→ ∞ and obtain

lim
"→∞

inf
f≥0

‖f‖1=1

[
ν|supp f |+

1

8d

∫

T d
&

‖∇f‖2

f
dx

]
= inf

r
[νvdr

d +
λd
r2

]

Here vd is the volume of the unit ball in Rd and λd is the first eigenvalue of − 1
2d∆ in the

unit ball of Rd with Dirichlet boundary condition. One side of this, namely

lim sup
"→∞

inf
f≥0

‖f‖1=1

[
ν|supp f |+

1

8d

∫

T d
&

‖∇f‖2

f
dx

]
≤ inf

r
[νvdr

d +
λd
r2

]

is obvious, because if " > 2r the ball can be placed inside the torus with out distortion.
For the other side, given a periodic f on T d

" supported on a set of certain volume, it has to
be transplanted as a function with compact support on Rd without increasing either the

value of
∫
T d
&

‖∇‖2

f dx or the volume of the support of f by more than a negligible amount,

more precisely by an amount that can be made arbitrarily small if " is large enough. We
do a bit of surgery by opening up the torus. Cut out the set ∪d

i=1|xi| ≤ 1. This is done by
multiplying f = g2 by Π(1−φ(xi)) where φ(·) is a smooth function with φ(x) = 1 on [−1, 1]
and 0 outside [−2, 2]. It is not hard to verify that if

∫
∪i{x:|xi|≤2}[g

2 + ‖∇g‖2]dx is small

then [gΠd
i=1(1 − φ(xi))]2 normalized to have integral 1 works. While A = ∪i{x : |xi| ≤ 2}
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may not work, we can always find some translate of it will that will work because for any
f

"−d

∫

T d
&

[

∫

A+x
f(y)dy]dx = "−d|A|

∫
fdx


