
Chapter 5

Self diffusion.

5.1 Motion of a tagged particle.

Let us look at the simple exclusion process in equilibrium on Zd at density ρ. The distri-
bution is the Bernoulli distribution µρ defined by µρ[η(x) = 1] = ρ with {η(x) : x ∈ Zd}
being independent. Let us suppose that at time 0, there is a particle at 0 which is tagged
and observed. It is convenient to move the origin with that particle. The simple exclusion
process now acts only on Zd − {0} and is the environment as seen by the particle. The
environment changes in two different ways. When one of the other particles currently at x
moves to y. The generator for this part is

A1 =
1

2

∑

x,y !=0

π(y − x)[f(ηx,y)− f(η)] (5.1)

Or the tagged particle moves from 0 to z and then the origin is shifted to z. This is a
transformation Tz that acts when η(z) = 0 and the new configuration on Zd − {0} is given
by

(Tzη)(x) = η(x+ z) if x #= −z, 0; (Tzη)(−z) = 0

contributing to the generator the term

A2 =
∑

z

π(z)(1 − η(z))[f(Tzη)− f(η)] (5.2)

The full generator is therefore

(Af)(η) =
1

2

∑

x,y !=0

π(y − x)[f(ηx,y)− f(η)]

+
∑

z

π(z)(1 − η(z))[f(Tzη)− f(η)] (5.3)

= (A1f)(η) + (A2f)(η)
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It is not difficult to check that the probability distribution µρ on Zd − {0} is a reversible
invariant distribution for A given by 5.3. The jumps x → y and y → x as well as Tz and
T−z provide pairs with detail balance. The rates are same in either direction and µρ is
invariant under the transitions.

Our main tool is a central limit theorem for additive functions of a reversible Markov
process. Given a real valued function f on a space X , a Markov process on that space with
generator A and a reversible ergodic invariant measure µ for A satisfying with Eµ[f(x)] = 0
under suitable conditions we will show that

∫ t

0
f(x(s))ds = M(t) + a(t)

where M(t) is a square integrable Martingale with stationary increments and a(t) is neg-
ligible. If A is the self adjoint generator of the process −A has a spectral resolution
−A =

∫∞
0 σE(dσ). We have the Dirichlet form D(f) = 〈−Af, f〉L2(µ) associated with A.

The space H1 is the abstract Hilbert space obtained by completing the space of square inte-
grals functions with respect to the Dirichlet inner product. One might start with functions
u in the domain of A, ensuring the finiteness of D(f). The completion will be an abstract
space H1. There will be a dual H−1 to H1 relative to the inner product of H0 = L2(µ).
Formally ‖u‖−1 = 〈(−A)−1u, u〉 and

‖u‖2−1 = sup
f

2〈u, f〉 −D(f)

We have the following theorem.

Theorem 5.1.1. If f is in L2 with spectral resolution 〈E(dσ)f, f〉, and

〈(−A)−1f, f〉 =
∫ ∞

0
σ−1〈E(dσ)f, f〉 < ∞ = σ2 < ∞

there is a square integrable Martingale M(t) with stationary increments such that
EP [M(t)2] = 2σ2t and ∫ t

0
f(x(s))ds = M(t) + a(t)

with E[|a(t)|2] = o(t) as t → ∞. The central limi theorem follows. Moreover

P [ sup
0≤t≤T

|a(t) ≥ c
√
T ] → 0

for every c > 0 implying the functional CLT.

For the proof of the theorem we need two lemmas.
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Lemma 5.1.2. Let P be a reversible stationary Markov process with invariant measure µ
and generator A. Let u ∈ L2[µ] with D(u) = 〈−Au, u〉 < ∞. Then

P [ sup
0≤t≤T

|u(x(t))| ≥ %] ≤
e

%

√
TD(u) + ‖u‖22

Proof. Since D(|u|) ≤ D(u) we can assume that u ≥ 0. If x(t) is a Markov process and τ
is the exit time from G, then Ex[e−στ ] = v(σ, x) is the solution of

σv(x)− (Av)(x) = 0 for x ∈ G; v = 1 on Gc

The function v is also the minimizer of

σ‖v‖22 +D(v)

over v such that v = 1 on Gc. Therefore the solution vσ satisfies

σ‖vσ‖22 ≤ inf
v:v=1 on Gc

[σ‖v‖22 +D(v)]

If we take for G the set u(x) < %, the function v = u∧$
$ is an admissible choice for v.

Therefore with σ = T−1,

‖vσ‖1 ≤
1

%

√
‖u‖22 + TD(u)

We obtain the estimate
∫

Px[τ < T ]dµ ≤ eσT
∫

Ex[e
−στ ]dµ = e‖vσ‖1 ≤

e

%

√
‖u‖22 + TD(u)

This lemma quantifies the statement that set of singularities of a function u on Rd that
is in the Sobolev space W 1

2 (R
d) has capacity 0. In other words even if u has singularities,

a Brownian path will not see it, i.e. u(β(t)) is almost surely continuous.

Lemma 5.1.3. Let ‖u‖2 and D(u) be finite. Then for any c > 0

lim sup
T→∞

P [ sup
0≤t≤T

|u(x(t)| ≥ c
√
T |] = 0

Proof. For any given δ > 0 find u′ ∈ L∞ such that ‖u−u′‖22 ≤ δ and D(u−u′) ≤ δ. Clearly

lim sup
T→∞

P [ sup
0≤t≤T

|u′(x(t)| ≥ c
√
T |] = 0

and

lim sup
T→∞

P [ sup
0≤t≤T

|(u− u′)(x(t))| ≥ c
√
T |] ≤

e
√
δ

c

and δ can be made arbitrarily small the lemma is proved.
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Proof. Now we return to complete the proof of Theorem 5.1.1. First let us note that the
condition is natural. An elementary calculation shows that

1

t
EP [|

∫ t

0
f(x(s))ds|2] =

1

t
EP [

∫ t

0

∫ t

0
f(x(s))f(x(s′))dsds′]

=
2

t

∫

0≤s≤s′≤t

〈Ts′−sf, f〉dsds′

= 2

∫ t

0
(1−

s

t
)〈Tsf, f〉ds

, 2

∫ ∞

0
〈Tsf, f〉ds

= 2〈(−A)−1f, f〉
= 2σ2

Since 〈Ttf, f〉 ≥ 0, the convergence has to be absolute. Let us solve the resolvent equation

λuλ −Auλ = f

Then Auλ = λuλ − f and

uλ(x(t))− uλ(x(0)) −
∫ t

0
λuλ(x(s))ds +

∫ t

0
f(x(s))ds = Mλ(t)

where Mλ(t) is a martingale with

1

t
E[Mλ(t)

2] = 2D(uλ) = 2〈−Auλ, uλ〉 = 2

∫ ∞

0

2σ

(λ+ σ)2
〈E(dσ)f, f〉

An easy computation shows that (σ + λ)−1 → σ−1 and is dominated by σ−1 which is
integrable with respect to 〈E(dσ)f, f〉. The martingales Mλ(t) have a limit in L2(P ).
λuλ → 0 in L2(µ). Therefore aλ(t) = uλ(x(0)) − uλ(x(t)) has a limit a(t) and

∫ t

0
f(x(s))ds = M(t) + a(t)

We will show that E[|a(t)|2] = o(t). Then martingale CLT will imply our result. This is
again a spectral calculation.

EP [|a(t)|2] = 2 lim
λ→0

∫ ∞

0

1− e−tσ

(λ+ σ)2
〈E(dσ)f, f〉 = 2

∫ ∞

0

1− e−tσ

σ2
〈E(dσ)f, f〉

Since 1−e−tσ

t ≤ σ and
∫∞
0

1
σ 〈E(dσ)f, f〉 < ∞, the dominated convergence theorem implies

that

lim
t→∞

1

t
EP [|a(t)|2] = 0
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To prove the functional CLT, we need to consider

1√
T

∫ tT

0
f(x(s))ds =

1√
T
Mλ(T t) +

1√
T

∫ tT

0
λuλ(s)ds −

1√
T
[uλ(x(tT ))− uλ(x(0))]

The functional CLT holds for 1√
T
Mλ(tT ) and uniformly so as λ→ 0 becauseMλ(t) → M(t)

in mean square. We note that with the help of the dominated convergence theorem,

λ‖uλ‖2 =
∫ ∞

0

λ

(λ+ σ)2
〈E(dσ)f, f〉 → 0

as λ→ 0. Clearly with the choice of λ = T−1,

ξT = sup
0≤t≤1

|
1√
T

∫ tT

0
λuλ(s)ds| ≤

1

T

∫ T

0

√
λ|uλ(x(s))|ds

and E[|ξT |2] → 0 as t → ∞. To complete the proof we need to show that, with λ = T−1

P [ sup
0≤t≤T

|u 1
T
(x(s))| ≥ c

√
T ] → 0

We can represent u 1
T
as uδ + (u 1

T
− uδ). By lemma 5.1.3, we have for any δ > 0,

lim sup
T→∞

P [ sup
0≤s≤T

|uδ(x(s))| ≥ c
√
T ] = 0

Moreover

lim
T→∞

1

T
‖u 1

T
− uδ‖22 = 0

and
lim
T→∞
δ→0

D(u 1
T
− uδ) = 0

They imply that

lim sup
δ→0

lim sup
T→∞

P [ sup
0≤t≤T

|u 1
T
(x(s))− uδ(x(s))| ≥ c

√
T ] = 0

We now return to the motion of the tagged particle. We need to keep track of its motion
as well as the changing environment seen by it. If w ∈ Zd is the location of the tagged
particle in the original reference frame, then jointly the generator for w(t) ∈ Zd and

η(·) ∈ {0, 1}Zd−{0} is

(Ãf)(η) =
∑

z

π(z)(1 − η(z))[f(w + z, Tzη)− f(w, η)] + (Af)(w, η) (5.4)
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with A acting only on η for each w. The η(t, ·) part is a Markov process by itself and is
in equilibrium at density ρ, the distribution being µρ. We are interested in establishing a
central limit theorem for w(t). We note that

w(t) − w(0) =

∫ t

0

∑

z

z π(z)(1 − η(s, z))ds +M(t)

where M(t) is a Martingale with the decomposition

M(t) =
∑

z

zMz(t)

and

Mz(t) = Nz(t)− π(z)

∫ t

0
(1− η(s, z))ds

The quantity

V (η(·)) =
∑

z

z π(z)(1 − η(z))

has mean 0 in equilibrium and one may expect a CLT for

∫ t

0
V (η(s, ·))ds

We will prove a decomposition of the form

∫ t

0
V (η(s, ·))ds = N(t) + a(t)

where N(t) is a martingale and a(t) is negligible. Then

w(t) − w(0) = M(t) +N(t) + a(t)

and since central limit theorems for martingales are automatic the result will follow. The
quantities here are vectors and the equations are for each component or they are interpreted
as

〈w(t) − w(0), ξ〉 = 〈M(t), ξ〉+ 〈N(t), ξ〉 + 〈a(t), ξ〉

for ξ ∈ Rd. We have now the main theorem.

Theorem 5.1.4. The position w(t) of the tagged particle satisfies a functional CLT, with
positive definite covariance matrix S(ρ) given by

〈S(ρ)ξ, ξ〉 = inf
f

[ ∫
[
∑

z

π(z)(1−η(z))(τzf−f−〈ξ, z〉)2+
1

2

∑

x,y

π(y−x)(f(ηx,y)−f(η))2]dµρ

]
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First we need to prove, for each vector ξ ∈ Rd, a bound of the form

|
∫ ∑

z

〈z, ξ〉(1 − η(z))π(z)f(η)dµρ| ≤
√

C(ξ)
√

Dρ(f)

We can rewrite, after combining the z and −z terms and symmetrizing

Eµρ

[∑

z

〈z, ξ〉(1 − η(z))π(z)f(η)

]

=
1

2
Eµρ

[∑

z

〈z, ξ〉[(1 − η(z)) − (1− η(−z))]π(z)f(η)

]

=
1

2
Eµρ

[∑

z

〈z, ξ〉[1 − η(z))]π(z)[f(η) − f(Tzη)]

]

≤
1

2

[
Eµρ

[∑

z

|〈z, ξ〉|2[1− η(z))]π(z)

]] 1
2
[
Eµρ

[∑

z

[1− η(z))]π(z)[f(η) − f(Tzη)]
2

]] 1
2

≤
√

C(ξ)
√

Dρ(f)

with

C(ξ) =
1− ρ

4

∑

z

|〈z, ξ〉|2π(z)

This proves the validity of functional CLT for w(t) with an upper bound on the variance.

The next step is to establish the formula and a lower bound for it. Let us compute
〈S(ρ)ξ, ξ〉. The minimizer f = fξ may not exist. The spaceH1 of functions u ∈ L2, with the
Dirichlet inner product, when completed, will admit objects that are not in L2(µρ). There
is no Poincaré inequality available. Abstractly the space consists of collections of functions
{gx,y(η)}, {gz}, that are the limits in H1 of {f(ηx,y)− f(η)}, (1−η(z))[f(Tzη)− f(η)]. The
functions gx,y(η), gz satisfy identities. gx,y is 0 unless η(x) #= η(y) and satisfies ηx,y+ηy,x =
0. Similarly gz is nonzero only when η(z) = 0 and (1−η(z))gz(η)+(1−η(−z))g−z(T−zη) =
0. The Euler equation for the variational problem is

Eµρ [
∑

z

π(z)(1− η(z))[gz(η)− 〈ξ, z〉][f(τzη)− f(η)]]

+
1

2
Eµρ [

∑

x,y

π(y − x)gx,y(η)[f(ηx,y)− f(η)]] = 0

for all f , which after a bit of calculation, takes the form

V (η) +
1

2

∑
π(y − x)gx,y +

∑

z

π(z)(1 − η(z))gz = 0
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w(t) now has the representation

〈ξ, w(t)〉 =
∫ t

0
〈ξ, V (η(s))〉ds +

∑

z

∫ t

0
〈ξ, z〉(1 − η(z))dMz(t)

with ∫ t

0
〈ξ, V (η(s))〉ds = a(t) +N(t)

and

N(t) =
∑

z

∫ t

0
gz(η(s))dMz(s) +

∑

x,y

∫ t

0
gx,y(η(s))Mx,y(t)

with

Mx,y(t) = Nx,y(t)−
∫ t

0
π(y − x)η(s, x)(1 − η(y, s))ds

Therefore

〈ξ, w(t)〉 =
∫ t

0

∑

z

[〈z, ξ〉 − gz(η(s))]dMz(s)

−
∫ t

0

∑

x,y

gx,y(η(s))dNx,y(s) + a(t)

= M(t) + a(t)

Computing the quadratic variation of the martingale M(t) proves the formula. Finally we
will prove the non degeneracy of the quadratic form 〈S(ρ)ξ, ξ〉. We have to exclude the one
dimensional nearest neighbor case, where S(ρ) ≡ 0. The proof depends on the following
fact. We can obtain an estimate of the form

Eµρ [(η(z) − η(−z))f(η)] ≤ C
√

D2(f)

in terms of the Dirichlet form

D1(u) = 〈−A1u, u〉 =
1

4
Eµρ [

∑

x,y

π(y − x)[f(ηx,y)− f(η)]2]

It is possible to shift a particle from z to −z without touching the tagged particle at 0.
Jump over it or go around it. This provides an estimate of the form

Eµρ [(η(z) − η(−z))f(η)] ≤ C(z)
[
Eµρ

∑

x,y

[π(y − x)[f(ηx,y)− f(η)]2]
] 1
2 (5.5)
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We can estimate, for any a > 0,

〈(λI −A)−1〈V, ξ〉, 〈V, ξ〉〉 ≤
√

〈(−A1(λI −A)−1〈V, ξ〉, (λI −A)−1〈V, ξ〉〉
√
〈(−A1)−1〈V, ξ〉, 〈V, ξ〉〉

≤
a

2
〈(−A1(λI −A)−1〈V, ξ〉, (λI −A)−1〈V, ξ〉〉 +

1

2a
〈(−A1)

−1〈V, ξ〉, 〈V, ξ〉〉

Letting λ→ 0,

〈S(ρ)ξ, ξ〉 ≥ 〈(−A1(−A)−1〈V, ξ〉, (−A)−1〈V, ξ〉〉 ≥
2

a
〈(−A)−1〈V, ξ〉, 〈V, ξ〉〉−

1

a2
〈(−A1)

−1〈V, ξ〉, 〈V, ξ〉〉

We can obtain a lower bound for the first quadratic form on the right form the variational
formula

〈(−A)−1g, g〉 = sup
f

[
2〈g, f〉 − 〈−Af, f〉

]

and an upper bound for the second one from (5.5). Picking a large will do it.


