
Chapter 6

Non-gradient systems

6.1 Two color system

Let us look at the situation where there are two types of particles. Type 1 and type 2.
The state space is ΩN = {0, 1, 2}Nd

. We define

ζ1(x) = 1 if there is a type 1 particle at x and 0 otherwise

ζ2(x) = 1 if there is a type 2 particle at x and 0 otherwise

η(x) = ζ1(x) + ζ2(x) = 1 if there is a particle at x and 0 otherwise

η(x) = 0 if there is no particle at x

ζ(x) = {ζ1(x), ζ2(x)}
ζ = {ζ(x)}

We have three empirical measures

λ1(s, du) =
1

Nd

∑

x

δ x
N
ζ1(s, x)

λ2(s, du) =
1

Nd

∑

x

δ x
N
ζ2(s, x)

λ(s, du) =
1

Nd

∑

x

δ x
N
η(s, x)

λ(s, du) = λ1(s, du) + λ2(s, du)

The evolution is specified by the generator of the Markov process quite similar to the old
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one of a single type.

(N2ANF )(ζ1, ζ2) = N2
∑

x,y∈Zd
N

π(y − x)η(x)(1 − η(y))[F (ζx,y)− F (ζ)]

=
N2

2

∑

x,y∈Zd
N

π(y − x)ax,y(ζ)[F (ζx,y)− F (ζ)]

where
ax,y(ζ) = [η(x)(1 − η(y)) + η(y)(1 − η(x))

ax,y(ζ) is either 0 or 1, and when it is 1, one of the two sites is empty and a jump from x
to y or y to x can occur with equal rate π(y − x).

The particles evolve as before and are not affected by their type. But we keep track
of their type. Let k1 = k1(N), k2 = k2(N) and k(N) = k1(N) + k2(N) be respectively
the number of particles of type 1, type 2 and of either type. If k(N) ≤ Nd − 1, i.e if
there is at least one empty site, then the only invariant distribution for the Markov process
is the uniform distribution µN,k1(N),k2(N) over all possible configurations. In the limit,

assuming kr(N)N−d → ρr for r = 1, 2 one has a product measure µρ1,ρ2 , with each site
having independently a particle of type 1 with probability ρ1, type 2 with probability ρ2
and being empty with probability 1− ρ where ρ = ρ1+ ρ2. The situation with ρ = 1 is the
other extreme, where there is no movement and every configuration is static..

There are Dirichlet forms associated with these processes given by

〈−ANf, f〉k1,k2 = DN
k1,k2(f) =

1

4
EµN,k1,k2

[ ∑

x,y∈Zd
N

ax,y(ζ)π(y − x)[f(ζx,y)− f(ζ)]2
]

and the similar form

Dρ1,ρ2(f) =
1

4
Eµρ1,ρ2

[ ∑

x,y∈Zd

ax,y(ζ)π(y − x)[f(ζx,y)− f(ζ)]2
]

on Zd.

We can also consider our process in a box Bq of size (2q + 1)d without assuming a
periodic boundary. Jumping outside the box is not allowed. In this case a minimal number
n0, that depends only on π(·), of empty sites are needed to ensure uniqueness of the uniform
distribution µq,k1,k2 as the only invariant distribution. If π(±ei) > 0 for all i, then n0 can
be taken to be 1. The operator and the Dirichlet form look identical except x, y are now
restricted to Bq.
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We take two smooth test functions J (1)(u) and J (2)(u) on the torus T d and consider

FJ(1),J(2)(ζ) =
1

Nd

∑

x∈Zd
N

[J (1)(
x

N
)ζ1(x) + J (2)(

x

N
)ζ2(x)]

Next we compute (N2ANFJ(1),J(2))(ζ) as

N2−d
∑

x,y

π(y−x)
[
ζ1(x)(1−η(y))[J (1)(

y

N
)−J (1)(

x

N
)]+ζ2(x)(1−η(y))[J (2)(

y

N
)−J (2)(

x

N
)]
]

and can approximate it, using the symmetry of π(z) by

N1−d

2

∑

x,y

π(y − x)
[
ζ1(x)(1− η(y))(∇J (1)(

y

N
) +∇J (1)(

x

N
)) · (y − x)

+ ζ2(x)(1 − η(y))(∇J (2)(
y

N
) +∇J (2)(

x

N
)) · (y − x)]

=
N

Nd

∑

x

[(∇J (1))(
x

N
) · f1(τxζ) + (∇J (2))(

x

N
) · f2(τxζ)]

where for r = 1, 2

f ri (ζ) =
1

2

∑

z

π(z) < z, ei > [ζr(0)(1 − η(z)) − ζr(z)(1 − η(0))]

The factor N is a problem which will not go away. Can not do a summation by parts to
bring in the second difference. f1i and f2i are not gradients. Note that their sum

f1i + f2i =
1

2

∑

z

π(z) < z, ei > [η(0)(1 − η(z)) − η(z)(1 − η(0))]

=
1

2

∑

z

π(z) < z, ei > [η(0) − η(z)]

=
1

2

∑

z

π(z) < z, ei > [η(0) − (τzη)(0)]

is a ”gradient” that allows another summation by parts to get rid of the unwelcome factor
of an extra N when there is only one type of particle.

The expectations of f1i and f2i in any equilibrium µρ1,ρ2 are easily calculated and equal
0. We need to understand this combination of large N and currents f that are small on

the average. We will determine constants {cr,r
′

i,j } with r, r′ = 1, 2 and 1 ≤ i, j ≤ d, (that
are actually functions of ρ1, ρ2) such that

f ri +
1

2

∑

r′,j

cr,r
′

i,j [ζr′(ej)− ζr′(0)] = wr
i
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and {wr
i } are negligible. The sense in which they are negligible has to be specified. Unlike

in the gradient case they will become negligible only when integrated over time. The
context will be relative to process in equilibrium under the measure µρ1,ρ2 . This makes the

constants cr,r
′

i,j functions of ρ1, ρ2. We can now do another summation by parts, get rid of

the extra N , replacing {N(ζ ′r(ej)− ζ ′r(0))} by ∂ρr′
∂uj

. We end up with a weak formulation

∂

∂t

∑

r

〈Jr, ρr〉 −
1

2

∑

r

〈Jr,
∑

r′i,j

∂

∂ui
cr,r

′

i,j (ρ1, ρ2)
∂ρr′

∂uj
〉 = 0

of the elliptic system
∂ρr
∂t

=
1

2

∑

r′,i,j

∂

∂ui
cr,r

′

i,j (ρ1, ρ2)
∂ρj
∂uj

6.2 Approximations.

There are three versions of our basic simple exclusion process with two colors. On all of
Zd, on Zd

N , with periodic, or reflecting boundary conditions. Their generators are

(Af)(ζ) =
∑

x,y∈Zd

η(x)(1 − η(y))π(y − x)[f(ζx,y)− f(ζ)]

(ANf)(ζ) =
∑

x,y∈Zd
N

η(x)(1 − η(y))π(y − x)[f(ζx,y)− f(ζ)]

In a finite box Bq = [−q, q]d of size (2q + 1)d, with reflecting boundary conditions, the
generator will be

(Ao
qf)(ζ) =

∑

|x|,|y|≤q

η(x)(1 − η(y))π(y − x)[f(ζx,y)− f(ζ)]

We have the three Dirichlet forms.

D(u) =
1

4
Eµρ1,ρ2

[ ∑

x,y∈Zd

ax,y(ζ)π(x, y)[u(ζ
x,y)− u(ζ)]2

]

DN (u) =
1

4
EµN,k1,k2

[ ∑

x,y∈Zd
N

ax,y(ζ)π(x, y)[u(ζ
x,y)− u(ζ)]2

]

Do
q(u) =

1

4
Eµq,k1,k2

[ ∑

|x|,|y|≤q

ax,y(ζ)π(x, y)[u(ζ
x,y)− u(ζ)]2

]
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We have three types of local functions all having the common property that they have
mean 0 under every µρ1,ρ2 . The first type consists of functions f = Au for some local
function u. As u varies, we get a large family N of local functions {f}. The second family
of ”currents” consists of 2d functions {fai }, given by

f ri (ζ) =
1

2

∑

z

π(z) < z, ei > [ζr(0)(1 − η(z)) − ζr(z)(1 − η(0))]

=
1

2

∑

z

π(z) < z, ei > a0,z(ζ)[ζr(0)− ζr(z)]

where ax,y(ζ) = η(x)(1 − η(y)) + η(y)(1 − η(x)). Both families have the property that
their expectation is 0, under every invariant distribution in every sufficiently large box. If
u is defined in a box then Au has zero mean with respect to any invariant distribution in
any box Bq provided Aqu = Au. Finally we have the 2d microscopic ”density gradients”
dr
i = {ζr(ei) − ζb(0)}. The first type will be ”negligible”. The goal is to express the

”currents” as a linear combination of the third type, ”density gradients” modulo the first
type that are ”negligible”. The density gradients are a bit more difficult to handle because,
their expectation is not 0 if the density is 1. There will be problems when ρ is close to 1.
But the basic object we want to approximate is 0 if the density is 1, so there is a natural
cutoff when ρ is c;use to 1.

We consider a function of the form f = Au = ANu where u is a local function. Let
U(ζ) =

∑
x∈Zd

N
u(τxζ) and F (ζ) =

∑
x∈Zd

N
f(τxζ). In the speeded up time scale with

generator N2A,

N2

Nd

∫ t

0
F (ζ(s))ds =

1

Nd
[U(ζ(t))− U(ζ(0))] −MN (t)

The quadratic variation of the martingale term MN (t) is of the order Nd ×N2 ×N−2d =
N2−d. More over 1

Nd [U(ζ(t))− U(ζ(0))] is uniformly bounded. Therefore

1

Nd

∫ t

0
[NF ](ζ(s))ds = q1N (t) + q2N (t)

where |q1N (t)| ≤ C
N and q2N is a Martingale with jumps of size N−(d+1) with quadratic

variation tN−d. This makes them ”negligible”.

6.3 How do we proceed and what do we need?

For any smooth function A we need to be able to replace

1

Nd

∫ t

0
[
∑

x∈Zd
N

A(
x

N
)(N f ri )(τxζ(s))]ds
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by

− 1

2Nd

∫ t

0
[
∑

x∈Zd
N

A(
x

N
)
∑

r′,j

cr,r
′

i,j (ζ̄1,x,Nε′(s), ζ̄2,x,Nε′(s))
1

2ε
[ζ̄r′,x+Nεej,Nε′(s)−ζ̄r′,x−Nεej,Nε′(s)]ds

with an error that becomes negligible as N → ∞ followed by ε, ε′ → 0. That would lead to

−1

2

∫ t

0

∫

T d

A(u)
∑

r′,j

cr,r
′

i,j (ρ̄1,ε′(s, u), ρ̄1,ε′(s, u))[
1

2ε
[ρ̄r,ε′(s, u+ εej)− ρ̄r,ε′(s, u− εej)]ds

where

ρ̄r,ε′(s, u) =
1

(2ε′)d

∫

|v−u|≤ε′
ρr(s, v)dv

and

ζ̄r,x,Nε′ =
1

(2Nε′)d

∑

|y−x|≤Nε′

ζr(x)

As ε′, ε→ 0 this becomes

−1

2

∫ t

0

∫

T d

A(u)
∑

r′,j

cr,r
′

i,j (ρ1(s, u), ρ2(s, u))
∂ρr′(s, u)

∂uj
ds

If we consider a family of local function v(ρ1, ρ2, ζ) and f(ρ1, ρ2, ·) = Av(ρ1, ρ2, ·)
depending smoothly on ρ1, ρ2

1

Nd

∫ t

0

∑

x∈Zd
N

(Nf)(τxζ̄1,Nε′(t), ζ̄1,Nε′ , τxζ(t))

=
1

Nd+1

∑

x∈Zd
N

[v(τxζ̄1,Nε′(t), ζ̄1,Nε′ , τxζ(t))− v(τxζ̄1,Nε′(0), ζ̄1,Nε′ , τxζ(0))] +MN (t) + o(1)

is negligible. We need to show

inf
f(·,·,·)

lim sup
ε,ε′→

lim sup
N→∞

1

Nd
logEN,k1(N),k2(N)[exp[N

∫ t

0
ΘN (f, ζ(s))ds]] = 0

where

ΘN (f, ζ) =
∑

x∈Zd
N

A(
x

N
)[f ri (τxζ)− f(τxζ̄1,Nε′ , τxζ̄2,Nε′ , τxζ) + T (τxζ̄1,Nε′ , τxζ̄2,Nε′τxζ)]

=
∑

x∈Zd
N

A(
x

N
)θ(τx, ζ)
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and

T (ζ̄1,Nε′ , ζ̄2,Nε′ζ) =
1

2

∑

r′,j

cr,r
′

i,j (τxζ̄1,Nε′ , τxζ̄2,Nε′)
1

2ε
[τx+Nεej ζ̄r′,Nε′ − τx−Nεej ζ̄r′,Nε′ ]

By the use of the variational formula and Feynman-Kac representation

1

Nd
logEN,k1(N),k2(N)[exp[N

∫ t

0
ΘN (f, ζ(s))ds]]

≤ tN−d sup
G

[
NEµN,k1,k2

[
ΘN (f, ζ)G2

]
−N2DN (G)

]

= tN2−d sup
G

[
N−1EµN,k1,k2

[
ΘN (f, ζ)G2

]
−DN (G)

]

) tN−d〈ΘN (f, ζ),ΘN (f, ζ)〉CLT

= tN−d sup
G

[
EµN,k1,k2

[
ΘN (f, ζ)G

]
− 1

8
DN (G)

]

If we have an expression of the form

EµN,k1,k2
[
G
∑

x∈Zd
N

H(τxζ)]−DN (G)

to estimate, and if H(τxζ) allows us to do an integration by parts, i.e is made up of
antisymmetric pieces we can rewrite the above expression as

EµN,k1,k2
[ ∑

x,y∈Zd
N

[Hx,y(ζ
x,y)−Hx,y(ζ)][G(ζx,y)−G(ζ)]

]
−DN (G)

Both sides can be localized by breaking them up into sums over Bk. One can replace
densities over small macroscopic blocks by densities over large microscopic blocks. The
problems with ρ1 + ρ2 ) 1 has to be handled. The Dirichlet form DN can be thought of
as (2k + 1)−d

∑
x∈Zd

N
D0

x,k. The problem can now be reduced to estimating the quantity

(after trimming the edges!)

Λ(k, f) = sup
G

[
Eµk,k1,k2

[
G
∑

x∈Bk

[f ri (τxζ)−
∑

j,r′

cr,r
′

i,j [ζr(x+ei)−ζr(ei)]−f(τxζ)]
]
−D0

k,k1,k2(G)

]

with f = Au for a local function u, and showing that with the proper choice of constants

cr,r
′

i,j (ρ1, ρ2),

inf
u

lim sup
k→∞

(2k+1)−dkr→ρr

(2k + 1)−dΛ(k, f) = 0
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6.4 Calculating variances.

Given two local functions g1, g2 depending on configurations in a box Bq and having mean
0 under every invariant distribution µk,k1,k2 in Bk under Ao

k, we try to define an inner
product [g1, g2]ρ1,ρ2 in two steps.

< g1, g2 >k,k1,k2= lim
t→∞

1

t
Eµk,k1,k2

[ ∫ t

0

∑

|x|≤k−q

g1(τxζ(s))ds

∫ t

0

∑

|x|≤k−q

g2(τxζ(s))ds

]

[g1, g2]ρ1,ρ2 = lim
k→∞

kr(2k+1)−d→ρr

(2k + 1)−d < g1, g2 >k,k1,k2

We will construct, for each ρ1, ρ2 with ρ1 + ρ2 < 1, a Hilbert space H = Hρ1,ρ2 and a
map g → ĝ = σ(g) that imbeds linear combinations g = Au+

∑
i,r c

r
i f

A
i +

∑
i,r c̄

r
id

r
i with

inner product [g1, g2]ρ1,ρ2 isometrically into Hρ1,ρ2 with inner product 〈〈, 〉〉. It will turn
out that σ(Au) ⊥ σ(di

r), and H is spanned by them. Then the approximation is basically
a projection.

H will be a subspace of maps ĝ : Zd − {0} → L2[µρ1,ρ2 ] with inner product

〈〈ĝ1, ĝ2〉〉 =
1

2
Eµρ1,ρ2 [

∑

z

a0,z(ζ)π(z)ĝ1(z, ζ)ĝ2(z, ζ)]

If f = Au = A0
qu for some local u depending on Bq, since A is linear and translation

invariant,

A0
k

( ∑

|x|≤k−q

u(τxζ)
)
=

∑

|x|≤k−q

f(τxζ)

and
〈f, f〉k,k1,k2 = 2DN (

∑

|x|≤k−q

u(τxζ))

It is now easy to calculate the limit as k → ∞, if Aui = fi and for r = 1, 2 (2k+1)kr → ρr

[f1, f2]ρ1,ρ2 =
1

2
Eµρ1,ρ2 [

∑

z

a0,z(ζ)π(z)f̂
1(z, ζ)f̂2(z, ζ)] = 〈〈f̂1, f̂2〉〉

where for i = 1, 2
f̂ i(z, ζ) = Ui(ζ0,z)−Ui(ζ)

and
Ui(ζ) =

∑

x∈Zd

ui(τxζ)
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Although Ui are not well defined, f̂ i
x,y = Ui(ζx,y)−Ui(ζ) are well defined and satisfy linear

identities. f̂ i
x,y(ζ) are covariant, i.e. f̂ i

x+z,y+z(ζ) = f̂ i
x,y(τzζ). If {σj} are permutations of

the form x ↔ x + ei for some i, and σ1σ2 · · · σk = Id , then with σj = x ↔ x + eα(j) for
some e = eα(j)

0 =
k∑

j=1

Ui(σjσj−1 · · · σ1ζ)−Ui(σj−1 · · · σ1ζ) =
k∑

i=1

f̂ i
xj ,x+eα(j)

(σj−1 · · · σ1ζ)

The Hilbert space H consists of all such maps h0,z(ζ) such that hx,y(ζ) = h0,y−x(τxζ)
satisfy these linear identities, with inner product

〈〈h1, h2〉〉ρ1,ρ2 =
1

2
Eµρ1,ρ2

[∑

z

a0,z(ζ)π(z)h
1(z, ζ)h2(z, ζ)

]

and H0 ⊂ H is the closure of the span of f̂ as f ranges over N . We need to consider two
families of functions that are not in N . {f ri } and ζr(ei) − ζr(0), with r equal to 1 or 2
and 1 ≤ i ≤ d. We will show that they can be imbedded in H as well. Imbedding f ri is
relatively easy. We can take

V r
i (ζ) =

∑

x∈Bd
k

< x, ei > ζr(x)

A calculation of Ao
kV

r
i yields

(Ao
kV

r
i )(ζ) =

∑

x,y∈Zk

ζ(x)(1− η(y))π(y − x) < y − x, ei >)
∑

x

f ri (τxζ)

the error coming entirely from boundary terms. They can be controlled and become neg-
ligible for large k. Therefore

σ(f ri )(z, ζ) = V r
i (ζ

0,z)− V r
i (ζ) =< z, ei > [ζr(0)− ζr(z)]

While we defer saying anything about σ(dr
i ) till later we can compute its inner product in

H with objects in H0 and σ(f ri ).

< f, ζr(ei)−ζr(0) >k,k1,k2= −2Eµk,k1,k2
[
[
∑

|x|≤k−q

u(τxζ)][
∑

|x|≤k−1

(ζr(x+ei)−ζr(x))]
]
= O(kd−1)

The summation
∑

|x|≤k−1(ζr(x + ei) − ζr(x)) telescopes, µk,k1,k2 is almost a product
measure and u is local. Therefore only the boundary contributes. This proves that σ(f ri ) ⊥
σ(f) for all f = Au, i.e. σ(f ri ) ⊥ H0.

We next compute the inner product, 〈〈σ(f ri ),σ(dr′
j )〉〉ρ1,ρ2 . We can compute it as
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〈〈σ(f ri ),σ(dr′

j )〉〉ρ1,ρ2

= −2 lim
k→∞

(2k+1)−dkr→ρr

1

(2k + 1)d
Eµk,k1,k2

[
[
∑

x

< x, ei > ζr(x)][
∑

xi=k,|x|≤k

ζr′(x)−
∑

xi=−k,|x|≤k

ζr′(x)]
]

= −2[δr,r′ρr − ρrρr′ ]

We next do a calculation. With f0,z = U(ζ0,z)− U(ζ) and U(ζ) =
∑

x∈Zd
N
u(τxζ),

inf
u

1

2
Eµρ1,ρ2

[∑

z

a0,z(ζ)π(z)[< z,w > (a1(ζ1(z) − ζ1(0)) + a2(ζ2(z)− ζ2(0))− f0,z(ζ)]
2
]

= 〈w,S(ρ)w〉〈a,R1a〉+ 〈w,Dw〉〈a,R2a〉

where

R1 =

(
ρ21
ρ −ρ1ρ2

ρ

−ρ1ρ2
ρ

ρ22
ρ )

)

and

R2 =

(
ρ21

1−ρ
ρ ρ1ρ2

1−ρ
ρ

ρ1ρ2
1−ρ
ρ ρ22

1−ρ
ρ )

)

Because the semigroup leaves the class expressions linear in ζ1, ζ2 with coefficients that are
functions of η invariant, we can restrict u(ζ) to functions of the form

∑
x ζ1(x)ψ1(τxη) +

ζ2(x)ψ2(τxη). It better to choose instead of ζ1, ζ2 the combinations η = ζ1 + ζ2 and
χ = ρ2

ρ ζ1 −
ρ1
ρ ζ2 that are orthogonal. ψ1,ψ2 do not depend on η(0). In terms of χ and η,

using the orthogonality the variational problem reduces to

〈w,Dw〉〈a,R2a〉+ inf
ψ

1

2
Eµρ1,ρ2 [

∑

z

p(z)a0,z[〈z, w〉(χ(z) − χ(0)) −D0,z(
∑

x

χ(x)ψ(τxη)]
2]

The second term is simplified to give

ρ1ρ2
ρ

(a1 − a2)
2 inf
ψ

Eµρ [
∑

z

p(z)(1− η(z))[〈z, w〉 − ψ(Tzη) + ψ(η)]2 +
∑

x,y

π(y − x)[ψ(ηxy)− ψ(η)]2]

= 〈w,S(ρ)w〉〈a,R1a〉

The variational formula for S(ρ) is easily checked by doing the variation explicitly.

The last calculation is to show that σ(f ri ) +
∑

j,r′ c
i,r
j,r′σ(d

r′
j ) ∈ H0 for a suitable choice

of ci,rj,r′ and determine them. If we denote the projections of σ(f ri ) in the orthogonal com-

plement of H0 by f̂ r
i then we know that

Ai,r
j,r′(ρ) =

1

2
〈〈f̂ r

i , f̂
r′

j 〉〉 = Si,j(ρ)(ρrδr,r′ −
ρrρr′

ρ
) +Di,jρrρr′

1− ρ

ρ
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we also know

1

2
〈〈f̂ r

i ,d
r′

j 〉〉 =
1

2
〈〈σ(f ri ),dr′

j 〉〉 = −[δr,r′ρr − ρrρr′ ] = −χ−1
r,r′

By elementary calculation
C = Aχ

Where
A = S ⊗R1 + I ⊗R2

and

χ =

(
1
ρ1

+ 1
1−ρ

1
1−ρ

1
1−ρ

1
ρ2

+ 1
1−ρ

)


