Answers to Assignment 8

Read the section on Peano's postulates, pp 43-48 of the notes. For the following problems, you can use only the recursive definitions of addition and multiplication (p. 44, Equations 1 and 2) as well as the definition of 1,2,3, etc. on that page. You can also use all of the proved results on addition on pages 45-46, and the proved left distributive law, as well as the comment on the sum of various terms such as $a + b + c + d$.

1. Prove that $1 \cdot x = x$ and $x \cdot 1 = x$. (Hint: Use induction.)
 Answer: We prove $1 \cdot x = x$ by induction on x. It is true for $x = 0$ since $1 \cdot 0 = 0$ by the recursive definition of multiplication. Assuming $1 \cdot x = x$, we get

 $$1 \cdot x' = 1 \cdot x + 1 = x + 1 = x'$$

 The proof that $x \cdot 1 = x$ uses the definition of multiplication:

 $$x \cdot 1 = x \cdot 0' = x \cdot 0 + x = 0 + x = x.$$

2. Prove that $(a + b)c = ac + bc$. (Hint: Use induction on c.)
 Answer: This is clear for $c = 0$. Now assume it for c. Then

 $$(a + b)c' = (a + b)c + a + b = ac + bc + a + b = ac + a + bc + b = ac' + bc'.$$

 This is the result for c', proving the result.

Extra credit problem. Prove the commutative law for multiplication.
 Answer: We prove $ab = ba$ by induction on b. It is true for $b = 0$. Assuming it true for b, we have

 $$ab' = ab + a = ba + a = ba + 1 \cdot a = (b + 1)a = b'a.$$

 Note that we used the previous result when we factored out a on the right.