Due May 10, 2006 (You must submit your work in the pdf format. Email to cai@cims.nyu.edu with subject line "Final exam, PDE in Finance". I will acknowledge with a receipt to your submission)

1. Consider a random walker:

$$
d y=f d t+g d W
$$

on the interval $[a, b]$.
(a) Let $G(x, y, t)$ be the probability of the walker, starting from x at time 0 , being at y at time t without having yet hit the boundary. What version of the forward Kolmogorov equation does G solve?
(b) Express, as an integral involving G_{t}, the first passage time density to the boundary, i.e., the probability that the process, starting from $a<x<b$, first hits the boundary at time t.
(c) Using your answers to (a) and (b), show that the first passage time density to the boundary can be expressed as

$$
-\left.\frac{1}{2} \frac{\partial}{\partial y}\left(g^{2} G(x, y, t)\right)\right|_{y=b}+\left.\frac{1}{2} \frac{\partial}{\partial y}\left(g^{2} G(x, y, t)\right)\right|_{y=a}
$$

2. Consider scaled Brownian motion with jumps:

$$
d y=\sigma d W+J d N
$$

starting at $y(0)=x$. Assume the jump occurrences are Poisson with rate λ and the jumps have mean 0 and variance δ^{2}
(a) Find $\mathbb{E}\left[y^{2}(T)\right]$.
(b) What backward Kolmogorov equation does part (a) solve?
3. Suppose

$$
d X_{t}=B\left(X_{t}\right) d t+\sqrt{A\left(X_{t}\right)} d W_{t}
$$

is an SDE in one dimension.
(a) Show that, for $a<x<b$, the solution $u(a, b, x)$ of

$$
\frac{1}{2} A(x) u_{x x}+B(x) u_{x}=0, \quad u(a)=1, u(b)=0
$$

gives the probability that the solution to the SDE starting from x exits from a before exiting from b.
(b) Calculate $u(x)$ explicitly for the geometric Brownian motion

$$
d X_{t}=\mu X_{t} d t+\sigma X_{t} d W_{t}
$$

(c) Calculate

$$
u(a, x)=\lim _{b \rightarrow \infty} u(a, b, x)
$$

(d) Under what conditions on μ and σ, is it true that

$$
\lim _{a \rightarrow 0} u(a, x)=0
$$

for any $x>0$?
4. For a diffusion process $d y_{t}=f\left(y_{t}\right) d t+g\left(y_{t}\right) d W_{t}$ starting at x at time 0 , show that the k-th moment of the arrival time τ to the boundary, i.e., $\mu^{(k)} \equiv \mathbb{E}\left[\tau^{k}\right]$, satisfies the recursive system

$$
\frac{1}{2} g^{2}(x) \mu_{x x}^{(k)}+f(x) \mu_{x}^{(k)}=-k \mu^{(k-1)}, \quad a<x<b
$$

with $\mu^{(k)}=0$ at $x=a, b$ for $k \geq 2$.
5. For the usual lognormal process

$$
d y=\mu y d s+\sigma y d W
$$

consider an Asian option whose payoff function is $\Phi\left(y(T), \frac{1}{T} \int_{0}^{T} y(s) d s\right)$.
(a) Show that, if $z(s)=\int_{t}^{s} y(u) d u$, then $(y(s), z(s))$ solves

$$
\begin{aligned}
d y & =\mu y d t+\sigma y d W \\
d z & =y d s
\end{aligned}
$$

with initial condition $y(t)=x, \quad z(t)=0$.
(b) Show that

$$
u(x, \zeta ; t)=\mathbb{E}_{y(t)=x, z(t)=\zeta}\left[\Phi\left(y(T), \frac{1}{T} z(T)\right)\right]
$$

solves the backward Kolmogorov equation

$$
u_{t}+\mu x u_{x}+x u_{\zeta}+\frac{1}{2} \sigma^{2} x^{2} u_{x x}=0
$$

for $t<T$, with final value $u(x, \zeta, T)=\Phi(x, \zeta / T)$ at $t=T$.
(c) Conclude that $\mathbb{E}_{y(0)=x}\left[\Phi\left(y(T), \frac{1}{T} \int_{0}^{T} y(s) d s\right)\right]$ is equal to $u(x, 0 ; 0)$.
6. Consider the stochastic volatility model with continuous dividend yield D_{0} :

$$
\begin{aligned}
d X_{t} & =\left(r-D_{0}\right) X_{t} d t+f\left(Y_{t}\right) X_{t} d W_{t} \\
d Y_{t} & =\frac{1}{\varepsilon}\left(m-Y_{t}\right) d t+\frac{\nu \sqrt{2}}{\sqrt{\varepsilon}}\left(\rho d W_{t}+\sqrt{1-\rho^{2}} d Z_{t}\right)
\end{aligned}
$$

where $\varepsilon \ll 1, \sigma_{t}=f\left(Y_{t}\right)>0, W_{t}$ and Z_{t} are independent Brownian motions.
(a) Generalize the PDE for a European option price to include the dividend in this stochastic volatility environment.
(b) Letting the price

$$
P(t, x)=P_{0}+\sqrt{\varepsilon} P_{1}+\cdots
$$

use the perturbation theory to derive the PDE that governs P_{0} (make sure you give all detailed arguments).
(c) Show that the first correction to the price can still be expressed as

$$
\tilde{P}_{1}(t, x)=-(T-t)\left(V_{2} x^{2} \frac{\partial^{2}}{\partial x^{2}} P_{0}+V_{3} x^{3} \frac{\partial^{3}}{\partial x^{3}} P_{0}\right)
$$

where P_{0} is the $0 t h$ order solution and $\tilde{P}_{1}=\sqrt{\varepsilon} P_{1}$. (make sure you give all detailed arguments).
(d) Describe how to use the implied volatility surface to extract the parameters V_{2} and V_{3} for European puts.

