1. Consider the lognormal process

$$
d y=\mu y d y+\sigma y d W
$$

starting at $y(0)=x$. Assume $\mu \neq \frac{1}{2} \sigma^{2}$. In the lecture, we used the PDE for the mean exit time from the interval $[a, b]$,

$$
\begin{equation*}
\mu x u_{x}+\frac{1}{2} \sigma^{2} x^{2} u_{x x}=-1 \quad \text { for } 0<a<x<b \tag{1}
\end{equation*}
$$

with boundary conditions $u(a, t)=u(b, t)=0$, to derive an explicit formula for u.
(a) Show that the general solution of (1), without taking any boundary conditions into account, is

$$
u=\frac{1}{\frac{1}{2} \sigma^{2}-\mu} \log x+c_{1}+c_{2} x^{\gamma}
$$

with $\gamma=1-2 \mu / \sigma^{2}$. Here c_{1} and c_{2} are arbitrary constants.
(b) Argue as in Prof. Kohn's notes to show that the mean exit time from the interval $[a, b]$ is finite.
(c) Let p_{a} be the probability that the process exits at a, and $p_{b}=1-p_{a}$ the probability that it exits at b. Give an equation for p_{a} in terms of the barriers a, b and the initial value x.
(d) What if $\mu=\frac{1}{2} \sigma^{2}$ in problems $(a),(b),(c)$ above?
2. For a diffusion $d y=f(y) d t+g(y) d W$ starting at x at time 0 , show that the second moment of the arrival time τ to the boundary, i.e., $h(x)=\mathbb{E}\left[\tau^{2}\right]$ satisfies

$$
f h_{x}+\frac{1}{2} g^{2} h_{x x}=-2 v(x)
$$

with $h=0$ at $x=a, b$, where $v(x)$ is the mean arrival time to the boundary, i.e. $v(x)=\mathbb{E}[\tau]$
3. Consider a diffusion $d y=f(y) d t+g(y) d W$, with initial condition $y(0)=x$. Suppose $u(x, t)$ is the solution of the PDE

$$
\left\{\begin{array}{c}
f u_{x}+\frac{1}{2} g^{2} u_{x x}-r(x) u=0 \quad \text { for } a<x<b \\
u(a, t)=u(b, t)=1
\end{array}\right.
$$

for some function $r(x)$. Assuming $\mathbb{E}[\tau]<\infty$, where τ is the exit time from $[a, b]$, show that

$$
u(x)=\mathbb{E}_{y(0)=x}\left[e^{-\int_{0}^{\tau} r(y(s)) d s}\right] .
$$

4. For Asian option, if we define

$$
A_{t}=\frac{1}{t} \int_{0}^{t} S_{\tau} d \tau
$$

assuming S satisfies the risk-neutral lognormal process, show that the option value satisfies

$$
\partial_{t} V+\frac{1}{2} \sigma^{2} S^{2} \partial_{S S}^{2} V+r S \partial_{S} V+\frac{1}{t}(S-A) \partial_{A} V-r V=0
$$

