PDE for Finance, Spring 2006 - Homework 3
Due 4/10/06

1. Consider the linear heat equation $u_{t}-u_{x x}=0$ on the interval $0<x<1$, with boundary condition $u=0$ at $x=0 ; 1$ and initial condition $u=1$.
(a) Interpret u as the value of a suitable double-barrier option.
(b) Express $u(t, x)$ as a Fourier sine series.
(c) At time $t=1 / 100$, how many terms of the series are required to give $u(t, x)$ within one percent accuracy?
2. Consider the SDE $d y=f(y) d t+g(y) d W$. Let $G(x, y, t)$ be the fundamental solution of the forward Kolmogorov PDE, i.e. the probability that a walker starting at x at time 0 is at y at time t. Show that if the infinitesimal generator is self-adjoint, i.e.

$$
-(f u)_{x}+\frac{1}{2}\left(g^{2} u\right)_{x x}=f u_{x}+\frac{1}{2} g^{2} u_{x x}
$$

then the fundamental solution is symmetric, i.e. $G(x, y, t)=G(y, x, t)$.
3. Consider the stochastic differential equation $d y=f(y, s) d s+g(y, s) d W$, and the associated backward and forward Kolmogorov equations

$$
u_{t}+f(x, t) u_{x}+\frac{1}{2} g^{2}(x, t) u_{x x}=0 \quad \text { for } t<T, \text { with } u=\Phi \text { at } t=T
$$

and

$$
\rho_{s}+(f(z, s) \rho)_{z}-\frac{1}{2}\left(g^{2}(z, s) \rho\right)_{z z}=0 \quad \text { for } s>0 \text { with } \rho(z)=\rho_{0}(z) \text { at } s=0
$$

Recall that $u(x, t)$ is the expected value (starting from x at time t) of payoff $\Phi(y(T)$), whereas $\rho(z, s)$ is the probability distribution of the diffusing state $y(s)$ (if the initial distribution is ρ_{0}).
(a) The solution of the backward equation has the following property: if $m=\min _{z} \Phi(z)$ and $M=$ $\max _{z} \Phi(z)$ then $m \leq u(x, t) \leq M$ for all $t<T$. Give two distinct justications: one using the maximum principle for the PDE, the other using the probabilistic interpretation.
(b) The solution of the forward equation does not in general have the same property; in particular, $\max _{z} \rho(z, s)$ can be larger than the maximum of ρ_{0}. Explain why not, by considering the example $d y=-y d s$. (Intuition: $y(s)$ moves toward the origin; in fact, $y(s)=e^{-s} y_{0}$. Viewing $y(s)$ as the position of a moving particle, we see that particles tend to collect at the origin no matter where they start. So $\rho(z, s)$ should be increasingly concentrated at $z=0$.) Show that the solution in this case is $\rho(z, s)=e^{s} \rho_{0}\left(e^{s} z\right)$. This counterexample has $g=0$; can you also give a counterexample using $d y=-y d s+\varepsilon d W$?
4. The solution of the forward Kolmogorov equation is a probability density, so we expect it to be nonnegative (assuming the initial condition $\rho_{0}(z)$ is everywhere nonnegative). There is a question whether the PDE has this property. Let's show that it does.
(a) Consider the initial-boundary-value problem

$$
w=a(x, t) w_{x x}+b(x, t) w_{x}+c(x, t) w
$$

with $x \in(0,1)$ and $t=\in(0, T)$. We assume as usual that $a(x, t)>0$. Suppose furthermore that $c<0$ for all x and t. Show that if $0 \leq w \leq M$ at the initial time and the spatial boundary then $0 \leq w \leq M$ for all x and t. (Hint: a positive maximum cannot be achieved in the interior or at the final boundary. Neither can a negative minimum.)
(b) Now consider the same PDE but with $\max _{x, t} c(x ; t)$ positive. Suppose the initial and boundary data are nonnegative. Show that the solution w is nonnegative for all x and t. (Hint: apply part (a) not to w but rather to $\tilde{w}=e^{-C t} w$ with a suitable choice of C).
(c) Consider the solution of the forward Kolmogorov equation in the interval, with $\rho=0$ at the boundary. (It represents the probability of arriving at z at time s without hitting the boundary first.) Show using part (b) that $\rho(z, s) \geq 0$ for all s and z.
[Comment: statements analogous to (a)-(c) are valid for the initial-value problem as well, when we solve for all $x \in \mathbb{R}$ rather than for x in a bounded domain. The justification takes a little extra work however, and it requires some hypothesis on the growth of the solution at ∞.]
5. Consider the solution of

$$
u_{t}+a u_{x x}=0 \quad \text { for } t<T, \quad \text { with } u=\Phi \quad \text { at } t=T
$$

where a is a positive constant. Recall that in the stochastic interpretation, a is $\frac{1}{2} g^{2}$ where g represents volatility. Let's use the maximum principle to understand qualitatively how the solution depends on volatility.
(a) Show that if $\Phi_{x x} \geq 0$ for all x then $u_{x x} \geq 0$ for all x and t. (Hint: differentiate the PDE.)
(b) Suppose \bar{u} solves the analogous equation with a replaced by $\bar{a}>a$, using the same final-time data Φ. We continue to assume that $\Phi_{x x} \geq 0$. Show that $\bar{u} \geq u$ for all x and t. (Hint: $w=\bar{u}-u$ solves $w_{t}+\bar{a} w_{x x}=f$ with $\left.f=(a-\bar{a}) u_{x x} \leq 0\right)$
6. Consider the standard finite difference scheme

$$
\begin{equation*}
\frac{u((m+1) \Delta t, n \Delta x)-u(m \Delta t, n \Delta x)}{\Delta t}=\frac{u(m \Delta t,(n+1) \Delta x)-2 u(m \Delta t, n \Delta x)+u(m \Delta t,(n-1) \Delta x)}{(\Delta x)^{2}} \tag{1}
\end{equation*}
$$

for solving $u_{t}-u_{x x}=0$. The stability restriction $\Delta t<\frac{1}{2} \Delta x^{2}$ leaves a lot of freedom in the choice of Δx and Δt. Show that

$$
\Delta t=\frac{1}{6} \Delta x^{2}
$$

is special, in the sense that the numerical scheme (1) has errors of order Δx^{4} rather than Δx^{2}. In other words: when u is the exact solution of the PDE, the left and right sides of (1) differ by a term of order Δx^{4}.

