
PDE for Finance, Spring 2006 – Homework 4
Due 05/01/06

1. Suppose the stock price Xt and the process Yt underlying the stochastic volatility are described by

dXt = µXtdt+ σtXtdWt

σt = f (Yt)

dYt =
1

ε
µY (t, Yt) dt+

1√
ε
σY (t, Yt) dZ̃t

where f is a positive function and Z̃t = ρWt +
p
1− ρ2Zt, with Wt and Zt being two independent

Brownian motions. Derive the PDE that governs the price of a European option with the payoff
function h (x) and maturity T.

2. For stochastic volatility models,
dXt = µXtdt+ σtXtdW

and σt = f (Yt) and Yt is described by a diffusion process. If we assume σt and Wt are independent,
under certain conditions, one can show that the implied volatility curve I (K) (for fixed stock price
x, time t and maturity T ) is a locally convex function around Km = xer(T−t). We will demonstrate a
special case of this using the following procedure. Under the assumption that

σ̄2 ≡ 1

T − t

Z T

t

f2 (Ys) ds

is a Bernoulli random variable, i.e.,

σ̄2 =

½
σ21 with probability p
σ22 with probability 1− p

(a) Show that, from the Hull-White pricing formula, we can determine the implied volatility from

CBS (K; I (p,K)) = pCBS (K;σ1) + (1− p)CBS (K;σ2) (1)

where CBS (K;σ) is the standard Black-Scholes pricing formula for a European call with strike
K and volatility σ and I (p,K) is the implied volatility.

(b) Define g (p) by

g (p) ≡ p
∂CBS

∂K
(σ1) + (1− p)

∂CBS

∂K
(σ2)− ∂CBS

∂K
(I (p,K)) ,

show that

sign

µ
∂I

∂K

¶
= sign (g (p))

and g (0) = g (1) = 0 (Note that ∂CBS/∂σ > 0)

(c) From Eq. (1), show that

CBS (σ1)− CBS (σ2) =
∂CBS

∂σ
(I (p,K))

∂I

∂p

and further show that

d2g

dp2
= 2

(CBS (σ1)− CBS (σ2))
2

∂CBS

∂σ

¯̄̄̄
σ=I

log
¡
xer(T−t)/K

¢
(T − t) I3

1



(d) By noticing I > 0, show that

sign

µ
d2g

dp2

¶
= sign

µ
log

µ
xer(T−t)

K

¶¶
,

and further using (b) above show that the implied volatility I (K) is locally convex around Km =
xer(T−t), which is the forward price of the stock.

3. Let us generalize the two-state Markov chain. Suppose that, instead of merely jumping between
two states, the process Yt jumps after exponentially holding times to random variables, uniformly
distributed between −1 and +1. We assume that (1) the jump sizes and holing times are independent,
so Yt is a pure jump Markov process in [−1,+1], (2) the mean holding time is 1/α (which means that
the number of jumps Nt before time t is a Poisson process with intensity α, i.e.,

P {Nt = k} = (αt)
k

k!
e−αt

for integers k > 0.

(a) For any bounded function g on (−1, 1) , show that

E [g (Yt)] = g (y) e−αt +
µZ

g (z) p (z) dz

¶
αte−αt +O ¡t2¢

where E [g (Yt)] = E [g (Yt) |Nt = 0]P {Nt = 0} + E [g (Yt) |Nt ≥ 1]P {Nt ≥ 1} , and p (y) is the
density function for the uniformly distributed jumps, i.e., p (y) = 1

21(−1,1) (y) .

(b) By taking the limit,

lim
t→0+

E [g (Yt)]− g (y)

t

show that the infinitesimal generator for this process is

Lg (y) = α

Z
[g (z)− g (y)] p (z) dz

(c) Find the invariant distribution p∗ for the process Yt.

(d) Defining

hgi ≡
Z

g (z) p∗ (z) dz

show that
E [g (Y0)h (Yt)] = hgi hhi+ e−αt [hghi− hgi hhi]

for any continuous bounded functions g and h. Therefore, as t → ∞, Yt decorrelates from the
initial Y0 at the exponential rate α.

(e) Find the solution u that satisfies
Lu (y) = 0.
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