
1 Phase Spaces and the Liouville Equation

emphasize the change of language from deterministic to probablistic description.
Under the dynamics: ½

mv̇i = Fi

ẋi = vi

with initial data given.
What is the joint probability density of finding simultaneously the first particle at point

of x1 with velocity v1, the second particle at point of x2 with velocity v2, · · · , and N th

particle at xN with velocity vN? Here "the point at xi with velocity vi" means "the point
between xi and xi + dxi with velocity between vi and vi + dvi.
The trajectory is ½

xi = xi (t)
vi = ẋi (t)

Define the probability density

P ({x,v} , t) ≡ P (x1, · · · ,xN ;v1, · · · ,vN , t)
= δ (x1 − x1 (t)) δ (x2 − x2 (t)) · · · δ (xN − xN (t))

·δ (v1 − ẋ1 (t)) δ (v2 − ẋ2 (t)) · · · δ (vN − ẋN (t))

A state of the system is described by a point (x1, · · · ,xN ;v1, · · · ,vN) in this 6N dimen-
sional space. The space is referred to as the phase space of the dynamics.

1.1 Liouville Equation

Derivation of the Liouville Equation:

∂

∂t
P = −

NX
j=1

NY
k=1
k 6=j

δ (xk − xk (t)) δ (vk − ẋk (t)) ·
∂

∂xj
δ (xj − xj (t)) δ (vj − ẋj (t)) · ẋj

−
NX
j=1

NY
k=1
k 6=j

δ (xk − xk (t)) δ (vk − ẋk (t)) · δ (xj − xj (t))
∂

∂vj
δ (vj − ẋj (t)) · ẍj

Note that:
ẋj (t) δ (vj − ẋj (t)) = vjδ (vj − ẋj (t))

also note that ⎧⎪⎨⎪⎩
ẍj (t) =

Fi

m
≡ fi

ẋj = vj
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where fi = Fi
m
is the force per unit mass over the jth particle. Therefore,

∂

∂t
P = −

NX
j=1

vj
∂

∂xj
δ (xj − xj (t)) δ (vj − ẋj (t))

NY
k=1
k 6=j

δ (xk − xk (t)) δ (vk − ẋk (t))

−
NX
j=1

Fi

m

∂

∂vj
δ (vj − ẋj (t)) δ (xj − xj (t))

NY
k=1
k 6=j

δ (xk − xk (t)) δ (vk − ẋk (t))

= −
NX
j=1

vj
∂

∂xj
P −

NX
j=1

Fi

m

∂

∂vj
P

i.e.,
∂

∂t
P +

NX
j=1

vj
∂

∂xj
P +

NX
j=1

Fi

m

∂

∂vj
P = 0

which is the Liouville equation – a linear, homogeneous, first order partial differential
equation.

If we know the initial state {x0i ,v0i } , i = 1, · · · , N, then

P ({x,v} , t = 0) =
NY
k−1

δ
¡
xk − x0k

¢
δ
¡
vk − v0k

¢

If the initial data of the system is described by a probability density

ρ ({x,v} , t = 0) ,

then the evolution of this system is described by ρ ({x,v} , t) ,

ρ ({x,v} , t) = E (P ({x,v} , t))

where E is the expectation operator over initial data ensemble. Therefore,

∂

∂t
ρ+

NX
j=1

vj
∂

∂xj
ρ+

NX
j=1

fi
∂

∂vj
ρ = 0
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1.1.1 Hamiltonian Dynamics

Under the Hamiltonian dynamics: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṗi = −

∂H

∂qi

q̇i =
∂H

∂pi

(1)

i = 1, 2, · · · , 3N.
e.g.

H =
p2

2m
+ V (q)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṗ = −∂H

∂q
= − d

dq
V (q)

q̇i =
∂H

∂pi
=

p

m

Note that H is independent of the time derivative of pi and qi. If H is explicitly time-
independent, then Eq.(1) is time reversal symmetric. As a consequence of this symmetry,
we have

1. The locus of a representative point is either a simple closed curve or a curve that never
intersects itself.

2. The loci of two distinct representative points never intersect.

Then the Liouville Theorem is

∂

∂t
ρ+

3NX
j=1

µ
ṗj

∂

∂pj
ρ+ q̇i

∂

∂qj
ρ

¶
= 0

i.e.,
D

Dt
ρ = 0

the density of representative points remains constant along the Hamiltonian flow. This can

be easily seen from the Divergence Theorem. Since

− d

dt

Z
Γ

dΓρ =

Z
s

dSn ·Vρ
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where V =(ṗ1,ṗ2, · · · , ṗ3N , q̇1, · · · q̇3N) , we haveZ
Γ

dΓ

∙
∂ρ

∂t
+∇ · (Vρ)

¸
= 0

therefore,

−∂ρ
∂t

=
3NX
i=1

µ
∂ρ

∂pi
ṗi +

∂ρ

∂qi
q̇i

¶

+
3NX
i=1

ρ

µ
∂ṗi
∂pi

+
∂q̇i
∂qi

¶
Since a Hamiltonian system has the Liouville property:

∂ṗi
∂pi

+
∂q̇i
∂qi

= 0, ∀i

Hence, the Liouville equation:

−∂ρ
∂t

=
3NX
i=1

µ
∂ρ

∂pi
ṗi +

∂ρ

∂qi
q̇i

¶
i.e.,

Dρ

Dt
= 0

1.1.2 The General Case

It is important to realize that the Liouville equation holds for more general cases than the
Hamiltonian dynamics. We summarize some relevant results below. Consider the following
differential equations:

d

dt
X = F (X) , X =(X1, · · · ,XN) ∈ RN , F =(F1, · · · , FN) (2)

with X (t = 0) = X0. An associated flow map Φt (X) |t≥0
Φt : RN 7−→ RN

then is defined by

d

dt
Φt (X) = F

¡
Φt (X)

¢
Φt (X)

¯̄
t=0

= X0

If the initial ensemble of the system (2) is described by a probability density function ρ0 (X)
at t = 0. Then, under the flow Φt (X) |t≥0, the evolution of this ensemble is described by a
density ρ (X, t) , which is the pull-back of the initial probability density ρ0 (X) with the flow
map Φt (X) , i.e.,

ρ(X,t) ≡ ρ0

³¡
Φt
¢−1

(X)
´
.
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Liouville Property If the vector field F (X) satisfies the divergence-free condition, i.e.,

∇XF =
NX
j=1

∂Fj

∂Xj
= 0

the vector field F (X) is said to have the Liouville property. Then, we have

1. Φt (X) is volume preserving (or measure preserving) on the phase space, i.e.,

det
¡
∇XΦt (X)

¢
= 1

for all time t ≥ 0

2. ρ(X,t) satisfies the Liouville equation:

∂

∂t
ρ+ F·∇xρ = 0,

which shows that ρ(X,t) is a probability density function for all time.

2 The Equilibrium State of an Ideal Gas

What is a state of equilibrium? Recall Maxwellian distribution – the one-
particle distribution of ideal gas.
The ideal gas is a model gas in which the potential energy of intermolecular forces is

negligible outside a core of strong repulsive force.

We assume that the number N of molecules in a box is large, N À 1. Under the normal
condition, N ∼ 1020 in a volume of 1cm3.

For monatoms, there is no internal degrees of freedom (e.g., unlike, say, oxygen molecules,
O2, there is a vibration mode between two oxygen atoms in the molecule) and the state of
molecules can be completely specified by their three spatial coordinates and three velocity
components. These are the molecules we will consider below.

Physical Intuition: An equilibrium state is a state whose macroscopic observables
(which are the averaged microscopic quantities with the details of molecular interactions
coarse-grained out) remains constant in macroscopic times. A macroscopic state can be de-
scribed by a probability density ρ of certain microscopic states and the equilibrium condition
requires that

∂ρ

∂t
= 0 (3)
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If there is no external field, then we can show that ∂ρ
∂xi

= 0 , i.e., the gas is homogeneous
in space. We note that this ρ ({xk,vk} , t) is a coarse-grained probability density function
describing a macroscopic state of a gas with the details of molecular interactions averaged
out. It is different from the one obtained by averaging over the initial data (as we have done
above in obtaining Liouville equation for the genearl situation), therefore, it need not satisfy
the Liouville equation. However, since we can show that this coarse-grained ρ actually is
spatially uniform (see below), then it satisfies the Liouville equation trivially.

We now consider the equilibrium state of an ideal gas in a closed system – a closed
system is one which does not exchange energy nor particles with other systems. Obviously,
for a close system, the total energy of all the particle is conserved,

Etotal = constant in time.

We consider the gas is in a box (denoted by region R) with specular reflections for particles
colliding with the boundary, i.e.,

vi · n > 0 for xi ∈ ∂R

ρ (x1, · · ·xN ,v1, · · · ,vN , t) = ρ (x1, · · ·xN ,v1, · · · ,vi − 2n (n · vi) , · · · ,vN , t)

for the box at rest.
Since a particle of an ideal gas has only kinetic energy:

Ei =
1

2
mv2i

Clearly, this boundary condition conserves the energy of each particle which collides with
the wall because

(vi − 2n (n · vi))2 = v2i − 4 (n · vi) (n · vi) + 4 (n · vi)
2

= v2i

The momentum is not conserved for this particle.

Note that, corresponding to a macrostate, there are many microstates.
For a collision between any pair of particles, i, and j, inside the region R, in addition to

the momentum conservation:

mv01 +mv02 = mv1 +mv2

we have the energy conservation:

1

2
mv021 +

1

2
mv022 =

1

2
mv21 +

1

2
mv22

where the primed quantities denote the ones after collision. Therefore, the total energy is
conserved (note that the total momentum is not conserved because of the boundary). Since
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these collisions do not manifest themselves macroscopically, we postulate that the coarse-
grained ρ is a function of the total energy

E =
NX
i=1

1

2
mv2i

only. We denote the average energy per mass as

ε =
E

Nm
=

1

Nm

NX
i=1

1

2
mv2i =

1

N

NX
i=1

1

2
v2i

then we have

ρN = CNδ(
NX
i=1

v2i − 2Nε), (4)

where CN is a normalization and is determined byZ
CNρdΓ = 1

where dΓ is a volume element in the phase space. We note that in the coarse-grained picture
of the N-partical distributions, Eq. (4) expresses the fact that all the coarse-grained systems
of the same energy are equally likely to occur.

Microcanonical Ensembles
Eq. (4) can also be understood as follows: For a given total energy for an isolated system,

all possible microstates are equally likely to occur, that is, the ensemble of all microstates
are uniformly distributed over the energy surface determined by the total energy. This
hypothesis is the fundamental assumption of equilibrium statistical mechanics.

Now we proceed to study the consequence of Eq. (4). We have

CN

Z
R3N

δ(
NX
i=1

v2i − 2Nε)dv1 · · · dvN
Z
R⊗N

dx1 · · · dxN = 1 (5)

where
R
R⊗N dx1 · · · dxN = V N , V is the volume of the box. Using the polar coordinates:

NX
i=1

v2i = r2, dv1 · · · dvN = r3N−1drd3NΩ

where d3NΩ is the surface element of the unit sphere in 3N dimension. We can easily evaluate
the surface area of the unit sphere in N-Dimension.

AN ≡
Z

dNΩ =
2πN/2

Γ
¡
N
2

¢ .
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Then, Eq. (5) is

CNV
N

Z ∞

0

δ
¡
r2 − 2Nε

¢
r3N−1dr

Z
d3NΩ = 1 (6)

Using the property of the δ-function,

δ
¡
x2 − a2

¢
=

1

2 |a| [δ (x− a) + δ (x+ a)]

Eq. (6) becomes

CNV
N 1

2
(2Nε)(3N−2)/2A3N = 1

CN = 2V −N (2Nε)−(3N−2)/2A−13N

and

ρN =
2

A3N (2Nε)(3N−2)/2 V N
δ(

NX
i=1

v2i − 2Nε)

However, this expression of ρN still does not tell us much. Note that this ρN is an N-particle
probability density function. If we are interested in one-particle properties, then, we can ask
the question what is the probability density of finding a molecule (regardless which molecule)
that has velocity lying in [v,v+dv] and its position lying in [x,x+dx] without any regard
of other particles. Without loss of generality, this particle can be labeled as particle #1.
Clearly, the one-particle probability density is

ρ
(1)
N (x1,v1) ≡

Z
R3N−3

dv2dv3 · · · dvN
Z
R⊗(N−1)

dx2dx3 · · · dxNρN

= V N−1CN

Z
R3N−3

δ(
NX
i=1

v2i − 2Nε)dv2dv3 · · · dvN

Again using the polar coordinates for this space R3N−3 :
NX
i=2

v2i = r2, dv2 · · · dvN = r3N−4drd3N−3Ω

therefore

ρ
(1)
N = V N−1CNA3N−3

Z
δ
¡
r2 −

¡
2Nε− v21

¢¢
r3N−4dr

= A3N−3A
−1
3NV

−1 (2Nε)−(3N−2)/2
¡
2Nε− v21

¢(3N−5)/2
for v21 < 2Nε

For v21 < 2Nε, we have

ρ
(1)
N (x1,v1) = A3N−3A

−1
3NV

−1 (2Nε)−(3N−2)/2
¡
2Nε− v21

¢(3N−5)/2
=

µ
3

4πε

¶3/2
V −1

µ
1− v21

2Nε

¶(3N−5)/2 Γ
¡
3
2
N
¢¡

3
2
N
¢3/2

Γ
¡
3N−3
2

¢
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since AN =
2πN/2

Γ(N2 )
.

For v21 > 2Nε, we have
ρ
(1)
N (x1,v1) = 0.

Note that:

1. ρ(1)N is x1-independent, i.e., the particle is uniformly distributed in space and it can be
anywhere at random.

2. As N →∞,

ρ(1)∞ = lim
N→∞

ρ
(1)
N =

µ
3

4πε

¶3/2
V −1 exp

µ
−3v

2

4ε

¶
we will show later that

ε =
3

2

kBT

m

where kB = 1.38× 10−23 JK−1 is the Boltzmann constant. Therefore,

ρ(1)∞ (v) =

µ
m

2πkBT

¶3/2
1

V
exp

µ
− mv2

2kBT

¶
which is the Maxwellian distribution.

We can proceed to the two-particle probability density, i.e., of finding particle #1 with
its velocity in [v1,v1 + dv1] and location in [x1,x1 + dx1] and finding particle #2 with its
velocity in [v2,v2 + dv2] and location in [x2,x2 + dx2] . Obviously, the distribution is

ρ
(2)
N (x1,x2;v1,v2) ≡

Z
R3N−6

dv3dv4 · · · dvN
Z
R⊗(N−2)

dx3dx4 · · · dxNρN

For v21 + v
2
2 < 2Nε, we have

ρ
(2)
N (x1,x2;v1,v2) = V N−2CNA3N−6

1

2

¡
2Nε−

¡
v21 + v

2
2

¢¢(3N−8)/2
= A3N−6A

−1
3NV

−2 (2Nε)−(3N−4)/2
¡
2Nε−

¡
v21 + v

2
2

¢¢(3N−8)/2
=

µ
3

4πε

¶3
1

V 2

µ
1− v

2
1 + v

2
2

2Nε

¶(3N−8)/2µ
1− 2

3N

¶µ
1− 4

3N

¶µ
1− 6

3N

¶
and for v21 + v

2
2 > 2Nε, we have

ρ
(2)
N (x1,x2;v1,v2) = 0

An extremely important result follows as the limit N →∞ is taken:

ρ
(2)
N (x1,x2;v1,v2) =

µ
3

4πε

¶3
1

V 2
exp

∙
− 3
4ε

¡
v21 + v

2
2

¢¸
= ρ(1)∞ (x1,v1) ρ

(1)
∞ (x2,v2)
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i.e., the two-particle distribution becomes independent and there is no correlation between
any two particles as N →∞.

Note that, in general, two particles are correlated for the finite N case. This
is due to the fact that the total energy is conserved, if one particle is konwn to
possess high velocity, then the other will likely possess low velocity.

Comment: In the above derivation, we di

Q: Ideal gas in a spherical container with spectular reflection.
Question:
How much volume is "concentrated" on the surface?
In n-Dim, the unit ball has volume

Vn =
1

n

2πn/2

Γ
¡
n
2

¢
and the surface area on the unit sphere is

2πn/2

Γ
¡
n
2

¢
therefore

Volume in the shell dr
Volume of the unit ball

= ndr

If
dr =

1

n

then
dr → 0 as n→∞

and
Volume in the shell dr
Volume of the unit ball

= 1
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Homework

1. Truncated Burgers equation.

The inviscid Burger’s equation is

∂

∂t
u+

1

2

¡
u2
¢
x
= 0

Let PΛf = fΛ denote the finite Fourier series truncation, i.e.,

PΛf = fΛ =
X
|k|≤Λ

f̂ke
ikx

Here, all functions, such as, u, f are assumed to be 2π-periodic.

We define the Fourier-truncated Burgers equation as

∂

∂t
uΛ +

1

2
PΛ

¡
u2Λ
¢
x
= 0

and note that

uΛ (t) =
X
|k|≤Λ

ûk (t) e
ikx

û−k = û∗k.

Show that the truncated Burgers equation has a Liouville property in the variables
{ûk} , 1 ≤ |k| ≤ Λ. (more precisely, in ak, bk, where ûk = ak + ibk).

2. Given the particle number distribution of the particle in equilibrium

ρ (v) = n

µ
m

2πkBT

¶3/2
e
− mv2

2kBT

show that the equation of state for the ideal gas is

p = nkBT

where n = N/V is the number density and p is the pressure of the gas.

3. Show that for
dX

dt
= F (X)

if ∇X · F = 0, then
det

¡
∇XΦ

t (X)
¢
= 1
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