
1 Large Deviations and Statistical Ensembles
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Three-door show: emphasize the 1/3 probability is our assumption.
Homework: What if we observed 1/2 and 1/2 probability upon switching?

What would be "prior" probability?

1.1 A Conditional Limit Theorem

For example, given a loaded (unfair) die, how can you determine the actual probability
of each face?
In the notation introduced above: Assign ρk =

1
6
if no additional information available.

For n tosses, we obtain a configuration ω ∈ {1, 2, · · · , 6}n
We ask the following question: Can we calculate the probabilities of 6 faces based on the

additional information, say, the total sum of the values of the faces

Sn (ω) ≡
nX

j=1

Xj (ω) =
nX

j=1

ωj?

The answer is yes, we can obtain asymptotic results as n→∞.

1.1.1 Setup

Λ = {y1, · · · , yN} – possible outcomes of random experiments
y1 < y2 < · · · < yN , yk ∈ R

with probabilities: ρ1, ρ2, · · · , ρN ; ρk > 0,
PN

k=1 ρk = 1

ρ ≡ (ρ1, ρ2, · · · , ρN) ∈ PN ≡
(
γ ∈ RN |γ = (γ1, · · · , γN) ≥ 0,

NX
k=1

γk = 1

)
∀γ ∈ PN defines a probability measure on the set of subsets of Λ via

γ = γ(dy) ≡
NX
k=1

γkδyk (dy)
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y ∈ Λ, δyk (dy) =

½
1 if y = yk
0 otherwise

B ⊂ Λ,

γ {B} =
X
yk∈B

γk

For n trials, we define Ωn ≡ Λn ω = (ω1, · · · , ωn)

∀ω ∈ Ωn Define:

Pn {ω} ≡
nY

j=1

ρ {ωj}

B ⊂ Ωn, Pn {B} ≡
X
ω∈B

Pn {ω}

Pn {B} is the product measure with 1-dimensional marginal ρ.

Define coordinates:
Xj (ω) ≡ ωj, j = 1, 2, · · · , n

which is i.i.d. with ρ.

ω ∈ Ωn, y ∈ Λ, Relative frequency of y in configuration ω :

Ln(y) ≡ Ln (ω, y) ≡
1

n

nX
j=1

δXj(ω) {y}

i.e., 1
n
× (the number of events: ωj = y, j = 1, 2, · · · , n).

The sample mean of the i.i.d random variable
¡
δXj(ω) {y1} , · · · , δXj(ω) {yN}

¢
:

Ln ≡ Ln (ω) ≡ (Ln (ω, y1) , Ln (ω, y2) , · · · , Ln (ω, yN))

i.e., Ln takes value in PN .
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1.1.2 Conditional Limit Theorem

A conditional limit theorem for Ln.
Note that for a fair die, the sample mean

Sn (ω)

n
' theoretical mean ȳ ≡

6X
k=1

kρk = 3.5

Assume we have observed Sn(ω)
n
∈ [z − δ, z] , where δ is small, δ > 0. (For the time being, we

assume 1 ≤ z − δ < z < ȳ, similar results hold for Sn(ω)
n
∈ [z, z + δ] , ȳ ≤ z < z + δ ≤ 6. )

What we need to determine is

{ρ∗k, k = 1, 2, · · · , 6} ,
X

ρ∗k = 1, such that

ρ∗k = lim
n→∞

Pn

½
X1 = k

¯̄̄̄
Sn
n
∈ [z − δ, z]

¾
or determine the most probable configuration:

ρ∗ = (ρ∗1, · · · , ρ∗6)

of Ln, i.e., (in the setting of die, N = 6)

ρ∗ ∈ PN , such that ∀ε > 0

lim
n→∞

Pn

½
Ln ∈ B (ρ∗, ε)

¯̄̄̄
Sn
n
∈ [z − δ, z]

¾
= 1

where B (ρ∗, ε) is the open ball:

B (ρ∗, ε) = {γ ∈ PN | kγ − ρ∗k < ε}

where k· · · k denotes the Euclidean norm in RN .

More generally,

Λ = {y1, · · · , yN}
(ρ1, · · · , ρN) ∈ PN

and

Sn ≡
nX

j=1

Xj, ȳ ≡
NX
k=1

ykρk

For sufficiently small δ > 0, fix an interval [z − δ, z] ⊂ [y1, ȳ] (note that a similar theorem
holds for [z − δ, z] ⊂ [ȳ, yN ]
Theorem:
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1. ∃ρ̄ ∈ PN such that ∀ε > 0

lim
n→∞

Pn

½
Ln ∈ B (ρ̄, ε)

¯̄̄̄
Sn
n
∈ [z − δ, z]

¾
= 1

ρ̄ = (ρ̄1, · · · , ρ̄N) has the form

ρ̄k =
ρke

−βykPN
i=1 ρie

−βyi

in which β is determined by
NX
k=1

ykρ̄k = z

Note that β is a function of z.

2. For any continuous function f : PN → R

lim
n→∞

EPn

½
f (Ln)

¯̄̄̄
Sn
n
∈ [z − δ, z]

¾
= f (ρ̄)

ρ̄k = lim
n→∞

Pn

½
X1 = yk

¯̄̄̄
Sn
n
∈ [z − δ, z]

¾
Note that 2o is the immediate consequence of 1o with the continuity of f. Moreover, we

comment that ρ̄ is well defined. This can be seen as follows. For α ∈ R, define the partition
function

Z (α) ≡ log
Ã

NX
k=1

ρke
αyk

!
then, we can easily verify that

Z 0 (−β) =
NX
k=1

ykρ̄k

and that

1. Z 00 (α) > 0

Z 0 (α) → y1 as α→−∞
Z 0 (0) = ȳ

Z 0 (α) → yN as α→ +∞

Therefore,
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1. ∃!β such that Z 0 (−β) =
PN

k=1 ykρ̄k = z, where z is a constant

2. ∵ y1 < z < ȳ

∴ β = β (z) > 0

Note that
NX
k=1

ykρ̄k = z = − d

dβ

³
log
X

ρke
−βyk

´

1.2 Entropies

Consider N events, let us compare two situations:

1. if all the N events are equally probable;

2. one of the N events have much high probability to occur, (in the limitng case, for
example, it has probability one, the rest zero)

Obviously, we would regard the first situation more uncertain. How do we quantify
uncertainty? Everybody probably has heard the word entropy one way or another. Many
lines of thoughts, from statistical physics in the nineteenth century to communication theory
c.a. WWII, all arrived at the same mathematical expression in quantifying uncertainty.
Why? Here we will present the logical simplicity and inevitabilty of it (of course, nothing is
inevitable or that simple.)

1.2.1 Basic Results:

Entropy Entropy is defined as

S (ρ1, · · · , ρ2) = −
NX
i=1

ρi log ρi

which is a measure of uncertainty. A natural question arises why we have this definition for
quantifying uncertainties. The following theorem provides an answer why this is a natural
characterization.

Theorem: If a function HN : PN 7→ R, where

PN ≡
(
γ ∈ RN |γ = (γ1, · · · , γN) ≥ 0,

NX
k=1

γk = 1

)
satisfies the following propositions:
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1. HN (ρ1, · · · , ρN) is a continuous function;

2. A (N) ≡ HN

¡
1
N
, · · · , 1

N

¢
is monotonic increasing in N ;

3. If the sample space Λ = {y1, · · · , yN} is divided into two subsets:

Λ1 = {y1, · · · , yk} , Λ2 = {yk+1, · · · , yN}

with probabilityQ1 = ρ1+· · ·+ρk, Q2 = ρk+1+· · ·+ρN , i.e., the conditional probability
is µ

ρ1
Q1

, · · · ρk
Q1

¶
and

µ
ρk+1
Q2

, · · · ρN
Q2

¶
then

HN (ρ1, · · · , ρN) = H2 (Q1, Q2)

+Q1Hk

µ
ρ1
Q1

, · · · ρk
Q1

¶
+Q2HN−k

µ
ρk+1
Q2

, · · · ρN
Q2

¶
Then,

HN (ρ1, · · · , ρN) = cS (ρ1, · · · , ρN) = −c
NX
i=1

ρi log ρi, c > 0 (1)

Note that Proposition (1) above is natural requirement and Proposition (2) reflects the
following intuition: If we are confronted with two situations: (i) there are 100 equally prob-
able events; (ii) there are one million equally probable events, which appears more uncertain
to us? Shouldn’t be case (ii)?
Proof: Since HN (ρ1, · · · , ρN) is continuous, it is sufficient to prove Eq. (1) holds for

qi ∈ Q,. A set of any rational q1, · · · qN such that

0 ≤ qi ≤ 1
NX
i=1

qi = 1

can be written as

qi =
i

M
, M =

NX
i=1

i

We consider the sample space Λ = {y1, · · · , yM} with the probability {ρ1, · · · , ρM} and split
Λ into N subsets:

Λi =
©
yki−1+1, · · · , yki

ª
, i = 1, · · · , N

with k0 ≡ 0, ki = ki−1 + i, i = 1, · · · , N . The probability associated with Λi is

Qi = ρki−1+1 + · · ·+ ρki
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From Property 3 above, we have

HM (ρ1, · · · , ρM) = HN (Q1, · · · , QN) +
NX
i=1

QiH i

µ
ρki−1+1
Qi

, · · ·
ρki
Qi

¶
(2)

If ρi =
1
M
, i = 1, · · · ,M, then

Qi =
i

M
= qi

and Eq. (2) becomes

HM

µ
1

M
, · · · , 1

M

¶
= HN (Q1, · · · , QN) +

NX
i=1

QiH i

µ
1

i
, · · · 1

i

¶
Since A (N) = HN

¡
1
N
, · · · , 1

N

¢
, we have

A (M) = HN (Q1, · · · , QN) +
NX
i=1

QiA ( i) (3)

If we set i = ω, then

M = N , Qi =
M
=
1

N
∀i

and Eq. (3) becomes
A (N ) = A (N) +A ( )

Since the only continuous functional solution A (N) for the above equation is

A (N) = c logN

The constant c > 0 because A (N) is a monotonic increasing function of N. In general, with
this solution for A (N) , Eq. (3) gives

HN (Q1, · · · , QN) = c logM − c
NX
i=1

Qi log i

= −c
NX
i=1

Qi logQi

This is precisely what we desire to show.
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Relative Entropy Definition of Relative Entropy
The relative entropy of γ ∈ PN with respect to ρ ∈ PN is

Iρ (γ) ≡
NX
i=1

γi log
γi
ρi

Basic properties:

1. Non-negativity:
Iρ (γ) ≥ 0

The equality holds if and only if γ = ρ. i.e., Iρ (γ) attains its inf of 0 over PN at the
unique measure γ = ρ.

2. Convexity: Iρ (γ) is strictly convex in PN

Proof: 1)
∵ x log x ≥ x− 1

where the equality holds if and only if x = 1. Thereforeµ
γk
ρk

¶
log

γk
ρk
≥ γk

ρk
− 1 (4)

Multiplying ρk on the both sides, and then summing over k yieldsX
k

γk log
γk
ρk
≥

X
k

γk −
X
k

ρk = 0

∴ Iρ (γ) ≥ 0

where the equality holds if and only if ρ = γ.

2) Strict convexity of Iρ (γ) follows from the strict convexity of x log x, x > 0.

Theorem: ∀γ ∈ PN , ∀ small ε > 0,

Pn {Ln ∈ B (γ, ε)} ≈ e−nIρ(γ)

as n→∞.
Essence of Proof:

Pn {Ln ∈ B (γ, ε)} = Pn

½
ω ∈ Ωn : Ln (ω) ∼

1

n
(nγ1, · · ·nγN)

¾
≈ Pn {the number of {ωj = y1} ∼ nγ1, · · · the number of {ωj = yN} ∼ nγN}

≈ n!

(nγ1)! (nγ2)! · · · (nγN)!
ρ
nγ1
1 ρ

nγ2
2 · · · ρnγNN
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Using Sterling’s formula
log n! = n log n− n+O (logn)

we have

1

n
logPn {Ln ∈ B (γ, ε)} ≈ 1

n
log

µ
n!

(nγ1)! (nγ2)! · · · (nγN)!

¶
+

NX
k=1

γk log ρk

= −
NX
k=1

γk log γk +O

µ
log n

n

¶
+

NX
k=1

γk log ρk

= −
NX
k

γk log
γk
ρk
+O

µ
log n

n

¶
= −Iρ (γ) +O

µ
logn

n

¶
Note that if γ ∈ PN , γ 6= ρ, then

Iρ (γ) > 0

Therefore
Pn {Ln ∈ B (γ, ε)} ≈ e−nIρ(γ) → 0 as n→∞

which is the law of large number:

lim
n→∞

Pn {Ln ∈ B (γ, ε)} = 0

lim
n→∞

Pn {Ln ∈ B (ρ, ε)} = 1

Furthermore, it gives the exponentially fast rate of decay. More generally, if A is a Borel
subsets of PN and if ρ /∈ the closure of A, then

lim
n→∞

Pn {Ln ∈ A} = 0

Notation
Iρ (A) ≡ inf

γ∈A
Iρ (γ)

then

Pn {Ln ∈ A} =
X
γ∈A

Pn {Ln ∼ γ}

≈
X
γ∈A

e−nIρ(γ)

Since
e−nIρ(A) ≤

X
γ∈A

e−nIρ(γ) ≤ nNe−nIρ(A)
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where, in the summation, Ln has the form of k
n
, k ∈ ZN . Therefore, to exponential order,

we have
Pn {Ln ∈ A} ≈ e−nIρ(A) as n→∞

Now back to the conditional limit theorem: Let

A (z) ≡
(
γ ∈ PN :

NX
k

ykγk ∈ [z − δ, z]

)

i.e., the set of measure under which the mean is in [z − δ, z] .

Note that

1. ρ̄ ∈ A (z)

2. Since 1
n
Sn (ω) =

PN
k=1 ykLn (ω, yk) , we have½

ω ∈ Ωn :
Sn (ω)

n
∈ [z − δ, z]

¾
= {ω ∈ Ωn : Ln (ω) ∈ A (z)}

P ∗ ≡ Pn

½
Ln ∈ B (ρ̄, ε) :

Sn (ω)

n
∈ [z − δ, z]

¾
= Pn {Ln ∈ B (ρ̄, ε) : Ln (ω) ∈ A (z)}

=
Pn {Ln ∈ B (ρ̄, ε) ∩A (z)}

Pn {Ln ∈ A (z)}

≈ exp [−nIρ (B (ρ̄, ε) ∩A (z))]
exp [−nIρ (A (z))]

= e−n[Iρ(B(ρ̄,ε)∩A(z))−Iρ(A(z))]

Obviously,
Iρ (B (ρ̄, ε) ∩A (z)) ≥ Iρ (A (z))

Hence
P ∗ ∼ O (1) if Iρ (B (ρ̄, ε) ∩A (z)) = Iρ (A (z))

which is part 1 of the theorem. This is indeed the case as shown in the lemma:

Lemma: Iρ attains its inf over A (z) at the unique ρ̄ = {ρk} ,

ρ̄ =
ρke

−βykPN
i=1 ρie

−βyi

Proof: Since β = β (z) > 0,

Z [−β] = log
NX
k=1

ρke
−βyk
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Note that
ρ̄

ρk
=

e−βyk

eZ[−β]

∀γ ∈ A (z)

Iρ (γ) =
NX

γk log
γk
ρk
=

NX
k=1

γk log
γk
ρ̄k
+

NX
k=1

γk log
ρ̄k
ρk

= Iρ̄ (γ)− β
NX
k=1

γkyk − Z [−β]

for the second term of which we know γ ∈ A (z) , therefore,

Iρ (γ) ≥ Iρ̄ (γ)− βz − Z [−β]
≥ −βz − Z[−β] (∵ Iρ̄ (γ) ≥ 0, "=" holds iff γ = ρ̄)

= Iρ (ρ̄)

which can be seen from

Iρ (ρ̄) =
X

ρ̄k log
ρ̄k
ρk

=
X

ρ̄k log

Ã
ρke

−βyk

ρk
PN

i=1 ρie
−βyi

!

= −βz − log
NX
k=1

ρke
−βyk

Hence, we have
Iρ (γ) ≥ Iρ (ρ̄)

and the equality holds if and only if γ = ρ̄.
To prove part 3 of the theorem:
∀function ϕ : Λ→ R, we define a continuous function on PN via

f (γ) ≡
NX
k=1

ϕ (yk) γk

Therefore,

f (Ln) =
NX
k=1

ϕ (yk)Ln (yk)

=
1

n

nX
j=1

ϕ (Xj)
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lim
n→∞

EPn

½
ϕ (X1) :

Sn
n
∈ [z − δ, z]

¾
= lim

n→∞

1

n

nX
j=1

EPn

½
ϕ (Xj) :

Sn
n
∈ [z − δ, z]

¾
(by symmetry)

= lim
n→∞

EPn

½
f (Ln) :

Sn
n
∈ [z − δ, z]

¾
= f (ρ̄) (using Part 2)

=
NX
k=1

ϕ (yk) ρ̄k

Choose ϕ = Iyk , then

lim
n→∞

Pn

½
X1 = yk :

Sn
n
∈ [z − δ, z]

¾
= ρ̄k

QED.

1.2.2 Maximum Entropy Principle

As discussed above, conditioned on Sn
n
∈ [z − δ, z] , the asymptotically most probable con-

figuration of Ln is ρ̄. If we define

S (γ, ρ) ≡ −Iρ (γ) ,

then, ρ̄ is uniquely determined by maximizing S (γ, ρ) , i.e.,

min
γ∈A(z)

Iρ (γ) = maxS (γ, ρ) .

Clearly, were not for the condition, γ ∈ A (z) , we would have

β = 0, ρ̄k = ρk

then,
Pn [Ln ∈ B (γ, ε)] ≈ e−nIρ(γ) as n→∞

TheMaximum Entropy Principle is as follows:

γ0 ∈ PN is an equilibrium value of Ln with respect to Pn if and only if

minPN Iρ (γ) yields γ0 = ρ
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1.2.3 An Application – Discrete Ideal Gas

Consider n identical, noninteracting particles, each having N equally likely energy levels
y1, · · · , yN . Clearly, in this case, we have

Λ = {y1, · · · , yN}

ρk =
1

N

A possible configuration, ω, of the gas is an element of Ωn = Λn, the total energy of the
configuration ω is

En (ω) =
nX

j=1

ωj = Sn (ω)

Suppose our measurement of the average energy per particle gives approximately En
n
≈ z.

More precisely,
En (ω)

n
∈ [z − δ, z]

where y1 ≤ z − δ < z < ȳ, where

ȳ =
NX
k=1

ykρk

The asymptotically most likely probability of a particle occupying the energy level k is

ρ̄k = lim
n→∞

Pn

½
X1 = yk :

En (ω)

n
∈ [z − δ, z]

¾
According to our conditional limit theorem above, this most probably probability is given
by the maximum entropy principle, i.e.,

ρ̄k =
e−βykP
i e
−βyi

where the parameter β is determined by

NX
k=1

ykρ̄k = z

Homework:

1. For the discrete gas, consider the situation where the measurement yields En/n ∈
[z − δ, z] ⊂ (ȳ, yN ]. Is the parameter β positive for this case?

2. Find the most probable measure ρ = ρ∗ on Λ = {y1, · · · , yN} that is consistent with
the following conditions:
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(a) a finite number of statistical measurements Fj of given function fj, j = 1, · · · , r.
r ≤ N − 1, i.e.,

Fj = hfjip =
NX
k=1

fj (yk) pk, j = 1, · · · , r

and

(b) the external bias given by ρ0.

Solution for problem 2: We have to solve the optimization problem:

max
Fj=hfji,j=1,··· ,r

N
k=1 pk=1

S
¡
ρ, ρ0

¢
In the absence of the constraints, Fj = hfjip, the optimization would yields

ρ∗ = ρ0

as our external bias. With the constraints, we invoke the Lagrange multipliers, which yields(
∂ρS

¡
ρ, ρ0

¢
−

rX
j=1

βj∂ρ hfjiρ − β0∂ρ

NX
k=1

ρk

)¯̄̄̄
¯
ρ=ρ∗

= 0

Thus, we have

ln
ρk
ρ0k
= −

rX
j=1

βjfj (yk)− (β0 + 1) , 1 ≤ k ≤ N

therefore,
ρ∗k = ρ0ke

− r
j=1 βjfj(yk)e−(β0+1) (5)

Since
NX
k=1

ρ∗k = 1,

Eq. (5) leads to

e−(β0+1) =
NX
k=1

ρ0ke
− r

j=1 βjfj(yk)

thus

ρ∗k =
ρ0ke

− r
j=1 βjfj(yk)PN

k0=1 ρ
0
k0e
− r

j=1 βjfj(yk0)
, k = 1, · · · , N

The corresponding partition function is

Z
¡©
βj
ª
, ρ0
¢
≡ log

"
NX
k=1

ρ0ke
− r

j=1 βjfj(yk)

#
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where the Lagrange multipliers satisfy

hfjiρ∗ = −
∂

∂βj
Z
¡©
βj
ª
, ρ0
¢
.

2 Canonical Ensemble:

2.1 Liouville Property and Liouville’s Theorem

If a system is described by ½
d
dt
X = F (X) , X ∈RN

X|t=0 = X0

Liouville property:

∇x · F =
NX
j=1

∂Fj

∂Xj
= 0

the corresponding flow map Φt :
RN 7−→ RN½

d
dt
Φt (X)= F (Φt (X)) , X ∈RN

Φt (X) |t=0 = X0

Then,

1. det (∇xΦt (X)) = 1, i.e., volume preserving.

2. If p (X,t) ≡ p0
³
(Φt)

−1
(X)

´
, p0 (X) is the initial probability density function at t = 0,

then
∂

∂t
p+ F ·∇Xp = 0

3. If G (p) is any function of the pdf p, then

∂

∂t
G (p) + F ·∇XG (p) = 0

i.e., G (p) satisfies the Liouville’s theorem. Therefore,

d

dt

Z
RN

G (p (X (t))) dX = 0
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this can be seen as follows:

∂

∂t
G (p) + F ·∇XG (p) = G0 (p)

µ
∂

∂t
p+ F ·∇Xp

¶
= 0

d

dt

Z
RN

G (p (X (t))) dX =

Z
RN

∂

∂t
G (p) dX

= −
Z
RN
F ·∇XG (p) dX

= −
Z
∇X · [G (p)F] dX (∵ ∇x · F = 0, i.e., Liouville Property)

= 0 (Vanishing boundary conditions)

2.2 Conservation Laws

Suppose there exist L conserved quantities El (X (t)), i.e.,

El (X (t)) = El (X0) , 1 ≤ l ≤ L

The average with respect to the pdf p is defined by

hElip ≡
Z
RN

El (X) p (X) dX

It can be easily seen that the averages are conserved in time, that is,

hElip(X,t) = hEip0(X) , ∀t

since

hElip(X,t) =

Z
RN

El (X) p (X,t) dX

=

Z
RN

El (X) p0
³¡

Φt
¢−1

(X)
´
dX

=
Y=(Φt)−1X

Z
RN

El

¡
Φt (Y)

¢
p0 (Y) dY (Volume preserving under Φ)

=

Z
RN

El (Y) p0 (Y) dY (El is conserved)

= hElip0
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2.3 Entropy and Maximum Entropy Principle

Entropy is defined as

S (p) ≡ −
Z
RN

p (X) ln p (X) dX

Clearly, S (p) is conserved in time since, for any function G of p, G (p) satisfies

d

dt

Z
G (p) dX = 0

The question is which p one should use for describing statistical ensembles. From the large
deviation principle, we know that it should be a pdf such that it satisfies the maximum
entropy principle, i.e., p∗ for the most probable state, such that

S (p∗) = max
p∈C

S (p)

where C is the set of constraints:

C =

½
p (X) ≥ 0,

Z
RN

p (X) dX = 1, hElip = El, 1 ≤ l ≤ L

¾
.

2.4 The Most Probable State and Gibbs Measure

Using Lagrange multipliers β0, β1, · · ·βL, we maximize

S (p)−
LX
l=1

βl

³
hElip −El

´
− β0

µZ
pdX− 1

¶
.

δS (p)

δp (X)
= −

Z
δp (X0)

δp (X)
ln p (X0) dX−

Z
p (X0)

∂ ln p (X0)

∂p (X)

δp (X0)

δp (X)
dX0

Since

δp (X0)

δp (X)
= δ (X−X0) – Dirac δ-function

∴ δS (p)

δp (X)
= − ln p (X)− 1

Furthermore

δ hElip
δp (X)

=

Z
El (X

0)
δp (X0)

δp (X)
dX0

= El (X)
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therefore,

− (1 + ln p∗) = β0 +
LX
l=1

βlEl (X)

∴ p∗ (X) = N exp
"
−

LX
l=1

βlEl (X)

#

where N is a normalization factor. This is precisely the Gibbs measure for canonical ensem-
bles.
Hence, a Gibbs measure describes the most probable state in the sense of maximum

entropy with constraints.

Note that

1. Gibbs measure solves the steady Liouville’s equation. This is merely a special case of
the following general theorem.

Theorem: If El, 1 ≤ l ≤ L, are conserved under the evolution:½
d
dt
X = F (X) , X ∈RN

X|t=0 = X0,

For any smooth function g (E1, · · · , EL) , g (E1, · · · , EL) satisfies

F ·∇Xg = 0

This is obvious since

El (X (t)) is conserved in time,

∴ 0 =
d

dt
El (X (t)) =

∂El

∂t
+ F ·∇XEl = F ·∇XEl, ∀l

∴ F ·∇Xg (E1, · · · , EL) =
LX
l=1

F ·∇XEl
∂g

∂El
= 0

2. Gibbs measure is an invariant measure.

What is an invariant measure? A measure µ on RN is invariant under the flow map
Φt if

µ
³¡

Φt
¢−1

(Ω)
´
= µ (Ω) ∀t

for any measurable set Ω ⊂ RN . The invariance of the Gibbs measure now can be seen
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as follows:

d

dt

Z
(Φt)−1Ω

p∗ (X) dX

=
d

dt

Z
Ω

p∗
³¡

Φt
¢−1

(Y)
´
dY

¡
Y =Φt (X) and volume preserving

¢
=

Z
Ω

F ·∇Xp
∗ (X) |X=(Φt)−1(Y)dY

= 0

∴
Z
(Φt)−1Ω

p∗ (X) dX is independent of time t

i.e.,
Z
(Φt)−1Ω

p∗ (X) dX =

Z
Ω

p∗ (X) dX

– Gibbs measure is an invariant measure of Φt.

3. Relation between Energy and Entropy under the Gibbs measure:

δS (p (X))

δ hE (X)i

¯̄̄̄
p∗
=

δS(p(X))
δp(X)

δhE(X)i
δp(X)

¯̄̄̄
¯
p∗

=
− ln p∗ (X)− 1

E (X)
(6)

Using

p∗ (X) =
e−βE(X)R
e−βE(X)dX

then, Eq. (6) becomes

δS (p (X))

δ hE (X)i

¯̄̄̄
p∗

=
βE (X) + β0

E (X)

−→ β

in the thermodynamic limit (N →∞ =⇒ E (X)→∞).
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2.5 Thermodynamic Relations

Physically, entropy is defined with a unit, i.e.,

S = −kB
Z
RN

p (X) ln (Np (X)) dX

where, e.g., dX =d3Npd3Nq and

N =

½
N ! (2π~)3N for indistinguishable particles
(2π~)3N for distinguishable particles

2.5.1 Partition function and Free Energy

The partition function is defined as

QN (V, T ) ≡
Z

d3Npd3Nq

N e−βH(p,q)

where H (p, q) is the Hamiltonian of a system in interest and

β =
1

kBT

Helmholtz free energy is defined as

A (V, T ) ≡ −kBT logQN (V, T )

Note that
A = U − TS

where U = hHi, which can be seen as follows:

∵ QN = e−βA

∴
Z

d3Npd3Nq

N e−β[A(V,T )−H(p,q)] = 1

∂
∂β
:=⇒ Z

d3Npd3Nq

N e−β[A(V,T )−H(p,q)]
∙
A (V, T )−H (p, q) + β

µ
∂A

∂β

¶
V

¸
= 0

i.e.,

A (V, T )− U (V, T ) + kBT

∙
β2
µ
∂A

∂β

¶
V

¸
= 0 (7)

Since

A = − 1
β
lnQN = −

1

β
ln

Z
dXe−βH
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(where, for simplicity, we have set N = 1)

β2
µ
∂A

∂β

¶
V

=
β
R
dXHe−βHR
dXe−βH

+ lnQN ,

Furthermore,

S (p∗ (X)) = −kB
Z

e−βH

QN
ln

µ
e−βH

QN

¶
dX

= − kB
QN

Z
e−βH [(−βH)− lnQN ] dX

= kBβ

R
dXHe−βH

QN
+ kB lnQN

therefore,

S = kBβ
2

µ
∂A

∂β

¶
V

Thus, from Eq. (7) we have
A = U − TS

In statistical physics, the pressure is defined by

P ≡ −
µ
∂A

∂V

¶
T

=
∂

∂V
(kBT lnQN (V, T ))

which gives the equation of state.

The first law of thermodynamics, which is

dU = TdS − PdV

which can be shown as follows:

∵ A = U − TS

∴ dA = dU − SdT − TdS (8)

Moreover

dA =
∂A

∂V
dV +

∂A

∂T
dT

= −PdV − SdT (9)

where use is made of

S = kBβ
2

µ
∂A

∂β

¶
V

= −
µ
∂A

∂T

¶
V
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Comparing Eq. (8) and (9) yields

dU = TdS − PdV.

Homework: Use canonical ensemble to derive the equation of state for the
ideal gas and evaluate the entropy.
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