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In this series of lectures, we describe the analytic and computational foun-
dations of fast multipole methods, as well as some of their applications.
They are most easily understood, perhaps, in the case of particle simula-
tions, where they reduce the cost of computing all pairwise interactions in a
system of N particles from O(N2) to O(N) or O(N logN) operations. They
are equally useful, however, in solving certain partial differential equations
by first recasting them as integral equations. We will draw heavily from
the existing literature, especially Greengard [23, 24, 25]; Greengard and
Rokhlin [29, 32]; Greengard and Strain [34].

1 Introduction
1.1 Kernels

Many problems in computational physics require the evaluation of all pair-
wise interactions in large ensembles of particles. The N -body problem of
gravitation (or electrostatics), for example, requires the evaluation of

Φ(xj) =
N∑

i=1
i�=j

mi

rij
. (1.1)

for the gravitational potential and

E(xj) =
N∑

i=1
i�=j

mi
xj − xi

r3
ij

(1.2)

for the gravitational field. Here, xi denotes the location of the ith particle,
mi denotes the mass of the ith particle, and rij denotes the Euclidean
distance between xi and xj . Problems of electrostatics are governed by
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Coulomb’s law, which takes the same form as eqs. (1.1) and (1.2), except
that mass is always of one sign, whereas charge is not.
There is no reason, of course, to evaluate the gravitational field at the

source locations only. Thus, we will also consider computing

Φ(yj) =
N∑

i=1
i�=j

mi

‖xi − yj‖ (1.3)

for some large number of target points yj . We will also consider the fields
due to continuous distributions of mass,

E(x) = −
∫

m(y)
x− y

|x− y|3 dy. (1.4)

A similar integral arises in magnetostatics, expressing the magnetic induc-
tion B due to a steady-state current density J. This is the Biot–Savart law
(Jackson 1975)

B(x) =
1
c

∫
J(y)× x− y

|x− y|3 dy, (1.5)

where c is the speed of light. Acoustic scattering processes give rise to
N -body problems of the form

Φ(xj) =
N∑

i=1
i�=j

Wi
eikrij

rij
, (1.6)

but they are beyond the scope of these lectures.
For an N -body problem in diffusion, consider the heat equation

ut = ∆u

with initial temperature distribution

u(x, 0) = w(x).

At any later time T > 0, the temperature field is well known to be given
by

u(x) =
1√

(4πT )3/2

∫
e−|x−y|2/4T w(y) dy. (1.7)

A discrete analog of this is the N -body problem

u(xj) =
1√

(4πT )3/2

N∑
i=1

wi e
−r2ij/4T . (1.8)
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Each of the preceding examples involves an integral of the form

u(x) =
∫

K(x,y)w(y) dy (1.9)

or a sum of the form

u(x) =
N∑
i=1

wiK(x,yi). (1.10)

Direct evaluation of such sums at N target points obviously requires O(N2)
operations, and algorithms which reduce the cost to O(Nα) with 1 ≤ α < 2,
O(N logN), O(N log2 N), etc. are referred to as fast summation meth-
ods. The most well known of these is certainly the Fast Fourier Transform
(FFT), which computes

uj =
N∑
k=1

e2πijk/Nwk

for j = 1, . . . , N in about 5N logN operations. From our point of view,
the distinguishing features of the FFT are that it is exact, that it is based
on considerations of symmetry (algebra), and that it is brittle. By the last
point, we mean that it requires a uniform spatial grid to be applicable. Fast
multipole methods (FMMs) are different. They are approximate, based on
analytic considerations, and robust (insensitive to source distribution). In
this category we include fast multipole method for the Laplace equation
(Rokhlin [43]; Greengard and Rokhlin [29, 30, 32]; Carrier et al. [17]; Green-
gard [23]), the fast Gauss transform (Greengard and Strain [34]), and the
fast multipole method for the Helmholtz equation (Rokhlin [44, 45]; Coif-
man et al. [18]). Each one relies on a detailed analysis of the pairwise
interaction, and each one permits rigorous a priori error bounds.
There are a number of other, good algorithms for accelerating a variety

of N -body calculations. We do not seek to review them here, and refer
the reader to Alpert and Rokhlin [1]; Anderson [2, 3]; Appel [4]; Barnes
and Hut [5]; Beylkin et al. [11]; Bradie et al. [13]; Brandt [14]; Brandt and
Lubrecht [15]; Canning [16]; Greengard [25]; Hockney and Eastwood [36];
Odlyzko and Schönhage [42]; Van Dommelen and Rundensteiner [47]. Some
of these are very broad in their applicability, while others, like FMMs, are
intended for a specific kernel.

1.2 Degenerate kernels

Consider now a generic summation problem of the form (1.10), where the
kernel K(x,y) can be expressed as a finite series

K(x,y) =
p∑

k=1

φk(x)ψk(y). (1.11)



4 Rick Beatson and Leslie Greengard

Such kernels are called finite rank or degenerate kernels, and N -body prob-
lems governed by them are easily resolved. First, one computes themoments

Ak =
N∑
i=1

wiψk(yi).

Second, one evaluates u(x) at each desired point via the formula

u(x) =
p∑

k=1

Akφk(x).

The amount of work required is of the order O(Np). While the N -body
problems of mathematical physics are not of this type, the degenerate case
serves as a useful model. Note that, independent of the details of the source
distribution, u(x) must always be a linear combination of the functions
φ1(x), . . ., φp(x). In other words, the dimension of the function space where
u(x) lives is much smaller than the N -dimensional space containing the
data {yi, wi} and there is a tremendous amount of compression in the
transformation from the latter to the former. The notion of compression is
fundamental to the fast Gauss transform and to the FMM for the Laplace
equation, although not to the FMM for the Helmholtz equation.

2 Hierarchical and fast multipole methods in one di-
mension

Most tree codes and fast multipole methods are based on a judicious com-
bination of the following key features.

• A specified acceptable accuracy of computation ε.
• A hierarchical subdivision of space into panels, or clusters, of sources.
• A far field expansion of the “kernel” k (x,y) in which the influence
of source and evaluation points separates.

• (Optional) The conversion of far field expansions into local expan-
sions.

The first feature is very simple but absolutely crucial. Once it is admit-
ted that the result of a calculation is needed only to a certain accuracy,
then approximations can be used. This is a key to many fast methods. Ac-
tually, analogous remarks about the need to explicitly admit that a certain
accuracy is sufficient can be made about other fast methods such as the
multigrid method for solving partial differential equations.
Historically, hierarchical and fast multipole schemes were first developed

in two and three dimensions, where they are of great practical importance.
However, for pedagogical reasons, we will deviate from the historical order
of developement and first develop a scheme in a one variable setting. In
this simpler setting the essential ideas of hierarchical and fast multipole
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schemes stand out with great clarity, facilitating an understanding of the
more complicated, and much more practically important, two and three
dimensional schemes which will be discussed later.

2.1 Fast evaluation of multiquadrics

The one dimensional example we shall consider is the fast evaluation of
one dimensional multiquadric radial basis functions. Consider the basic
function

φ(x) =
√

x2 + c2 ,

where 0 < c ≤ h, and a corresponding spline, or multiquadric radial basis
function,

s(·) =
N∑
j=1

djφ(· − xj) .

In this section we will develop a fast method of evaluating s(x) when the
number of different evaluation points x is large.
The first step is to develop a series expansion of φ(x−t) valid for “large”

values of |x|. To this end consider the function

g(u) = (u− t)

√
1 +

c2

(u− t)2
,

where u ∈ C and
√· denotes the principal branch of the complex square

root. g(u) coincides with φ(u − t) for all real u greater than t and with
−φ(u− t) for all real u less than t. Now 1 + {c2/(u− t)2} is both real and
non-positive only for values of u on the line segment from t− ic to t+ ic.
Hence g is analytic in the region |u| > √

t2 + c2 and can be expanded in a
Laurent series about zero valid for |u| > √

t2 + c2. Computing this Laurent
series yields the expansion

φ (x− t) =
√
(x− t)2 + c2

= sign(x)
{
x− t+

1
2
c2x−1

+
1
2
tc2x−2 +

1
8
(4t2c2 − c4)x−3 (2.1)

+
1
8
(4t3c2 − 3tc4)x−4 + · · ·+ qp(c, t)x−p + · · ·

}
of φ (x− t). The corresponding truncated expansions are endowed with the
error bound
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∣∣∣∣φ(x− t)− sign(x)
{

x− t+
1
2
c2x−1 + · · ·+ qp(c, t)x−p

}∣∣∣∣
≤ 2(|t|+ c)

(√
t2 + c2

|x|

)p+1
1

1−
√
t2+c2

|x|
(2.2)

for |x| > √
t2 + c2.

Note that each term qj(c, t)x−j in the series (2.2) separates into the
product of a coefficient depending on the source point alone, namely qj(c, t),
and a homogeneous function depending on the evaluation point alone,
namely x−j . Thus the truncated far field expansions corresponding to dif-
ferent sources t = xj in a panel T may be summed. The form of the series
stays the same. Having several sources rather than only one merely changes
the values of the coefficients of the homogeneous functions

{
x−j}.

To be more precise we associate with a panel T that part of the spline
s due to sources lying in the panel by setting

sT (·) =
∑

j:xj∈T
djφ(· − xj).

Then, presuming for the moment that the panel is centered about the point
x = 0, we approximate sT by a far field expansion also centered at x = 0,

rT (x) = sign(x)
{
a−1x+ a0 + a1x

−1 + · · · apx−p} . (2.3)

This series is obtained from the truncated expansion (2.2) for a single
source at t with unit weight by choosing t = xj , multiplying by dj , and
then summing over all sources xj in the panel.
If the source panel is T = [−h, h), and the geometry of the source and

evaluation regions is as in Fig. 1 below, then in the evaluation region

max
j:xj∈T

√
x2
j + c2

|x| ≤
√
h2 + h2

|x| ≤
√
2
3
=

1
2.12 . . .

.

Hence, using the estimate of equation (2.2)

|sT (x)− rT (x)| ≤ DT 4h
(

1
2.12 . . .

)p+1 1
1− 1

2.12...

(2.4)

for all x in the evaluation region, where DT =
∑

j:xj∈T |dj |.
If the source panel is [t − h, t + h) centered at x = t rather than at

x = 0 then the appropriate form of the far field expansion is also centered
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... ..

Source
panel

Evaluation
region

3h xh0-h-3h

Evaluation
region

Fig. 1. Source and evaluation regions.

at x = t, and making the natural change of variable in (2.3) is

rT (x) = sign(x− t)
{
a−1(x− t) + a0 + a1(x− t)−1 + · · · ap(x− t)−p

}
.
(2.5)

It enjoys the error bound

|sT (x)− rT (x)| ≤ DT 4h
(

1
2.12 . . .

)p+1 1
1− 1

2.12...

(2.6)

whenever |x − t| ≥ 3h, where t is the center of the source panel T and h
is its radius. Thus the far field expansion, rT , converges at a conveniently
fast rate whenever x is separated from the panel T by at least the diameter
of T . Such points x will be said to be well separated from T . A panel
U will be said to be well separated from T if all of its points are well
separated from T . Approximate evaluation of sT (x) via the the far field
approximation rT (x) will be much quicker than direct evaluation whenever
the number of terms in the series is much smaller than the number of
sources in the panel T .
We are now ready to construct a fast evaluation scheme by combining

the far field expansions with a hierarchical subdivision of space. The un-
derlying idea is to summarize/approximate the influence of many sources
by evaluating a few short series, thus reducing the cost in flops of a single
extra evaluation from O(N) to O(logN), or even O(1).
Assume that the problem has been standardized so that all the source

and evaluation points lie in the interval [0, 1]. We subdivide [0, 1] into a
binary tree of panels as illustrated in Fig. 2 below.
At any point x we will approximate s(x) by summing the direct in-

fluence, sT (x), of the near neighbours of the childless panel containing x,
together with the far field approximation rT (x) to the influence of panels,
T , far away from x. Since the underlying motive is to save floating point
operations we always use the largest possible, that is the highest level,
source panel for the far field series. For example, suppose the tree is as in
Fig. 2 and is a uniform binary tree down to level 3. Then to approximately
evaluate s(x) for x in the panel [0, 1

8 ] we use
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s(x) ≈ s[0, 18 )(x) + s[ 18 ,
1
4 )(x)

+ r[ 14 ,
3
8 )(x) + r[ 38 ,

1
2 )(x)

+ r[ 12 ,
3
4 )(x) + r[ 34 ,1](x).

Note in particular the use of the two level 2 approximations r[ 12 , 34 ) and
r[ 34 ,1], rather than the four level 3 approximations r[ 12 , 58 ),. . .,r[ 78 ,1]. The use
of these larger/higher level panels enables us to approximate the influence
of the sources in the interval [12 , 1] with two rather than four series evalu-
ations: that is, it halves the flop count for this part of the evaluation task.
Focusing on the use of r[ 12 , 34 )(x) this is allowable since the panel [

1
2 ,

3
4 ) is

well separated from the panel [0, 1
4 ), the parent of [0,

1
8 ). Furthermore, the

use of r[ 34 ,1](x) is allowable since [
3
4 , 1] is well separated from [0,

1
4 ).

Level 1 [ 0, 1/2 )

[ 0, 1]

[ 1/2, 1 ]

Level 0

[ 0, 1/4 )Level 2 [ 1/4, 1/2 ) [ 1/2, 3/4 ) [ 3/4, 1 ]

[ 0, 1/8 )Level 3 [ 1/8, 1/4 ) [ 1/4, 3/8 ) [ 3/8, 1/2 ) [ 1/2, 5/8 ) [ 5/8, 3/4 ) [ 3/4, 7/8 ) [ 7/8, 1 ]

Fig. 2. Binary tree structure induced by a uniform subdivision of the unit
interval.

Similarly, to approximately evaluate s(x) in the panel [12 ,
5
8 ) we would

use

s(x) ≈ s[ 38 ,
1
2 )(x) + s[ 12 ,

5
8 )(x) + s[ 58 ,

3
4 )(x)

+ r[ 14 ,
3
8 )(x) + r[ 34 ,

7
8 )(x) + r[ 78 ,1](x)

+ r[0, 14 )(x).

In view of the error bound (2.6) the overall error in such a procedure
will be bounded by ε if the error in approximating φ(x − t) at every level
is bounded by ε/||d||1.
This motivates a simple tree code for evaluating a univariate multi-

quadric.

A hierarchical code for evaluating a univariate mutiquadric
radial basis function: setup part.

Input: the desired accuracy ε, 0 < ε < 1
2 , the source locations and weights{xj , dj}Nj=1.

Step 1: Choose p ≈ | log2.12(ε/||d||1)|.
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This choice guarantees that the desired accuracy in approximating s(x)
will be attained.
Step 2:
Choose the number of levels m ≈ log2 N .
If the data is approximately uniformly distributed this choice guarantees
that each childless panel contains a number of sources which is bounded
independently of N .
Step 3:
Work down from the root panel, [0, 1], subdividing each panel at levels
0, . . . ,m − 1 in half, and assigning sources xj to the panels containing
them.
The work here is one comparison for every source for each level from 0
through m − 1 in order to assign the sources associated with each parent
panel to the correct child panel.
Step 4:
Work up the tree from level m to level 2, calculating the far field expansions
associated with each panel.
The work here is calculating the p + 2 coefficients a−1, a0, a1, . . . ap of the
expansion rT (·), for each panel T .

Once the setup phase has been completed we can use the far field ap-
proximations for fast evaluation in the manner of the examples immediately
preceding the description of the setup phase. Given x one proceeds down
the levels from level 2 to level m. At each level one uses the approxima-
tions from far away panels (those from which the panel containing x is
well separated) and ignores source panels whose influence has already been
incorporated at a higher level. No work is undertaken for near neighbours
until the finest level. The method is of a divide and conquer type with near
neighbours at level k− 1 being split to yield smaller near neighbour panels
and some source panels whose far field approximations can be used at level
k. At the finest level the near neighbours are no longer to be split, and
their influence is incorporated directly by adding the “direct” evaluations
sT (x). In this way the largest possible source panels are always used for the
far field approximations, and thus the flop count is minimized. A typical
situation at an intermediate level k is shown in Fig. 3.

A hierarchical code for evaluating a univariate multiquadric
radial basis function: Evaluation part.

The evaluation procedure can be expressed in recursive and non-recurs-
ive forms, both of which generalize easily to nonuniform partitions of the
problem region.

Recursive form of the evaluation part

Given the root node R of the binary tree of panels and the point x at which
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Use far field approximations from these panels

Near neighbours defer work

to a finer level

The influence of this 

panel is approximated 

at a coarser level

The influence of this 

panel is approximated 

at a coarser level

x

Fig. 3. A typical configuration of source panels at level k when evaluating
at x.

s(x) is to be evaluated, a call to routine eval recur specified below with the
root node and x returns an approximation to s(x).
In the pseudo-code to follow a C++ like notation is used. Thus the

two children of a panel T are denoted by T ->child[0] and T ->child[1], and
remarks are indicated by a leading double slash, //.

eval recur(T ,x) {
if (T is far away from x) then
// Approximate evaluation gives sufficient accuracy.
// Perform it and terminate descent of this branch.
return( rT (x) )

else if (T is childless)
// Cannot descend further on this branch.
// Evaluate the influence of T directly.
return ( sT (x) )

else
// Descend the branch to a finer level in the
// tree where approximations may be allowable.
return ( eval recur( T ->child[0], x)

+ eval recur( T ->child[1], x) )
end if

}

We give an equivalent non-recursive expression of the evaluation phase
below. This may be more appealing to some readers, and could give rise to
more efficient implementations in some environments.

Nonrecursive form of the evaluation part

Given the root node R of the binary tree of panels and the point x at which
s(x) is to be evaluated the following pseudo-code returns an approximation
to the value of s(x) in the variable a.
Step1:
Initialize a to zero.
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Step 2:
For k from 2 to m, add to a the far field approximation rT (x) to the
influence of each panel T well separated from x, which is not a subset of a
panel already used at a coarser level (see Fig. 3).
Step 3:
Let Q be the bottom level (level m) panel containing x. Add to a the direct
evaluation sT (x) of the influence of each near neighbour T of Q.

Note that in the case of a uniform subdivision deciding which panel a
point lies in requires only a single multiplication by 1/h. Also, if we work
from levelm backwards up to level 2 then the panel at level k−1 containing
x is the parent of the panel at level k containing x, so that even this single
multiplication is avoidable except at the bottom-most level.
We are now ready to estimate the computational cost of a single extra

evaluation, ignoring the cost of setup. The far field part of the work involves
the evaluation of at most 3 far field expansions of p + 2 terms at each
level from 2 to m. Hence the flop count arising from the evaluation of far
field expansions is O(mp). The direct part of the evaluation is the direct
evaluation of the influence of at most 3 bottom level panels. Since each
bottom level panel contains only O(1) sources the flop count arising from
the direct part of the evaluation is O(1). Hence the incremental cost in
flops of an additional evaluation is

O(mp) ≈ O(| log(ε/‖d‖1)| logN),
which is an order of magnitude faster than the O(N) flop count for a single
direct evaluation of s(x).

2.2 Enhancements

The algorithm outlined above can be improved in several ways.
First, it is clearly inefficient to split uniformly down to level m irre-

spective of the distribution of sources. The panel splitting should be done
in a more adaptive manner. For example subdividing a panel only when it
contains a certain minimum number of sources. Also, once the sources have
been allocated to children there is no reason to keep the child panels of uni-
form size. They can be shrunk to the minimum size necessary to contain all
their sources. In this way the tree would be more refined in regions where
there is a high density of sources, and finish after relatively few levels in a
region where the density of sources is low.
Second, the far field expansions are of the form

rT (x) = sign(x− t)
(
a−1(x− t) + a0 + a1(x− t)−1 + · · ·+ ap(x− t)−p

)
.

Such a function is smooth away from t. Hence it can be well approximated
by a truncated Taylor series in any panel well separated from t. Employing
this idea instead of summing the values of Laurent series one can approx-
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imate them with Taylor polynomials, and sum these polynomials, i.e. add
corresponding coefficients. The result in the end is a polynomial associated
with each panel, T , from level 2 to the bottom level, which approximates
the influence of all sources in panels far away from T . Then approximate
evaluation of s(x) involves the evaluation of one polynomial of order ap-
proximately p, plus the calculation of the direct influence of at most three
panels each containing O(1) sources. Therefore the incremental cost of
a single extra evaluation is reduced from O(| log(ε/‖d‖1)| logN) flops to
O(| log(ε/‖d‖1)|) flops. There is a price to pay of course. This price is the
extra work of converting Laurent expansions into local polynomial expan-
sions, summing such polynomial expansion coefficients, and shifting such
expansions to be centered at the center of the child panel. However, even
for relatively moderate values of N , the fast multipole scheme described in
this paragraph is quicker than the hierarchical scheme previously described.
A variety of hierarchical and fast multipole methods for evaluating radial
basis functions are described in the papers [6, 7, 8, 9].

3 The fast Gauss transform
Given a set of points xi = (xi, yi) and a set of source strengths wi, the
function

U(x) =
N∑
i=1

wie
−|x−xi|2/4T (3.1)

will be referred to as the (discrete) Gauss transform. This is an infinitely
differentiable function and the derivatives decay rapidly in space for any
T > 0. To be a bit more precise, we introduce the Hermite functions hn(x),
defined by

hn(x) = (−1)n dn

dxn
(e−x

2
).

Consider now a two-dimensional problem, where a source xi is located
in a square with center c = (c1, c2) and side length

√
T . Then the heat

kernel
e−|x−xi|2/4T

can be expressed as an Hermite series

e−|x−xi|2/4T =
∞∑

n1,n2=0

Φn1n2(x− c)Ψn1n2(xi − c), (3.2)

where, for x = (x, y),

Ψn1n2(x) =
1

n1!n2!

(
x√
4T

)n1
(

y√
4T

)n2

,
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T

Fig. 4. The fast Gauss transform mesh.

and

Φn1n2(x) = hn1

(
x√
4T

)
hn2

(
y√
4T

)
.

One can also derive a precise estimate of the error in truncating the series
(3.2) after a finite number of terms [34]:∣∣∣∣∣e−|x−xi|2/4T −

p∑
n1,n2=0

Φn1n2(x)Ψn1n2(xi)

∣∣∣∣∣ ≤
(
1
p!

)(
1
8

)p

. (3.3)

Such a rapidly decaying error makes the heat kernel very nearly degenerate.
Suppose, for example, that one is satisfied with four digits of accuracy.
Then p = 4 is sufficient to guarantee it. For eight digits, choose p = 6; for
fourteen digits, choose p = 10; and so on. It turns out that (3.2) together
with its error bound (3.3) is the only analytical tool needed to construct a
fast Gauss transform. It remains only to organize the computation so that
the finite series can be used effectively.
We begin by assuming that all sources and targets lie in a square B0 of

unit area on which we superimpose a uniform mesh which subdivides B0

into finer squares of side length
√
T (Fig. 4). [If T ≥ 1, B0 needs no further

refinement.]

A simple fast Gauss transform

Step 1:
Sort the N sources into the fine squares of the uniform mesh.
Step 2:
Choose p sufficiently large that the error estimate (3.3) is less than the
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desired precision ε.
Step 3:
For each fine square B with center c, compute the moments

An1n2 =
∑
xj∈B

wjΨn1n2(xj), for n1, n2 ≤ p.

Operation count:
Each source contributes to exactly one expansion, so that the amount of
work required to form the moments for all nonempty boxes is proportional
to Np2.
Step 4: (Repeat for each target x)
Find the box B in which point x lies. Since the heat kernel decays expo-
nentially fast in space, we need only consider the influence of certain near
neighbours in our decomposition of B0 (the shaded region in Fig. 4). To be
more precise, ignoring all but the nearest (2n + 1)2 boxes incurs an error
of the order e−n

2/4. For n = 6, this is approximately 10−4. The influence
of the sources contained in each of these nearby boxes can be obtained by
evaluating the expression

p∑
n1,n2=0

Aj
n1n2
Φn1n2(x− cj),

where {Aj
n1n2

} are the precomputed moments for neighbour j and cj is its
center.
Operation count:
The amount of work required is of the order (2n + 1)2p2 for each target,
which is a constant. The total amount of work, therefore, is proportional to
N +M where N is the number of sources and M is the number of targets.

It is worth considering two extreme regimes. For very small times, say
T = 10−10, the effect of each heat source is vanishingly small beyond a dis-
tance of approximately 10−5. Assuming the sources and targets are widely
distributed, the question of rapidly computing sums of the form (3.1) be-
comes substantially one of sorting and finding near neighbours. For large
times, say T = 1, then all sources have nonnegligible interactions, but only
one box is constructed, one set of moments is computed, and one expansion
is evaluated for each target. As time marches forward, there is less and less
information content in the temperature field U(x) as would be expected
from a diffusion process.
For a more complex but more efficient version of the method, we refer

the reader to the original paper by Greengard and Strain [34]. For 100,000
sources and targets, the algorithm is about three orders of magnitude faster
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than direct summation. Finally, note that the algorithm performs worst
when sources are uniformly distributed. That case provides an upper bound
on the number of expansions which need to be evaluated at each target posi-
tion. In other words, the more clustering present in the source distribution,
the better. This behavior is atypical of standard numerical methods based,
for example, on finite difference equation solvers.

4 The FMM in two dimensions
The evaluation of gravitational or Coulombic interactions is somewhat more
complicated than the evaluation of interactions governed by the heat ker-
nel. The force is long-ranged and nonsmooth (at least locally). It requires
a new set of tools for organizing the computation. Appel [4], Barnes and
Hut [5], and others working in the astrophysics community developed what
have come to be known as “tree codes” in order to overcome the computa-
tional obstacle presented by this N -body problem. They are based on the
observation that at some distance from the sources, the gravitational field
is smooth and should be representable in some compressed form.
This lecture begins with the two-dimensional case, since both the ana-

lytic and computational aspects of the problem are easier to understand.
We will use the language of electrostatics, and assume it known that a
two-dimensional point charge located at x0 = (x0, y0) ∈ R2 gives rise to
potential and electrostatic fields at any location x = (x, y) �= x0 of the
form

φx0(x, y) = − log(‖x− x0‖) (4.1)

and

Ex0(x, y) =
(x− x0)
‖x− x0‖2

(4.2)

respectively. Away from source points, the potential φ is harmonic, that is,
it satisfies the Laplace equation

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
= 0 . (4.3)

Since for every harmonic function u, there exists an analytic function
w for which u = Re(w), we will use complex analysis to simplify notation.
Equating (x, y) with the complex point z, we note that

φx0(x) = Re(− log(z − z0)), (4.4)

and will refer to the analytic function log(z) as the potential due to a
charge. We will continue to use analytic expressions for the potentials due to
more complicated charge distributions, even though we are only interested
in their real part. For future reference, we note that we can extract the
electrostatic field from the complex potential.
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Lemma 4.1 If u = Re(w) describes the potential field at (x, y), then the
corresponding force field is given by

∇u = (ux, uy) = (Re(w′),−Im(w′)), (4.5)

where w′ is the derivative of w.

Consider now a point charge of strength q, located at z0. A straightfor-
ward calculation shows that for any z with |z| > |z0|,

φz0(z) = q log(z − z0) = q

(
log(z)−

∞∑
k=1

1
k

(z0

z

)k)
. (4.6)

This provides us with a means of computing the multipole expansion due
to a collection of charges (Rokhlin [43]; Greengard and Rokhlin [29]).

Lemma 4.2 (Multipole expansion) Suppose that m charges of stren-
gths {qi, i = 1, ...,m} are located at points {zi, i = 1, ...,m}, with |zi| < r.
Then for any z with |z| > r, the potential φ(z) induced by the charges is
given by

φ(z) = Q log(z) +
∞∑
k=1

ak
zk

, (4.7)

where

Q =
m∑
i=1

qi and ak =
m∑
i=1

−qiz
k
i

k
. (4.8)

Furthermore, for any p ≥ 1,∣∣∣∣∣φ(z)−Q log(z)−
p∑

k=1

ak
zk

∣∣∣∣∣ ≤ 1
p+ 1

α
∣∣∣ r
z

∣∣∣p+1

≤
(

A

p+ 1

)(
1

c− 1
)(
1
c

)p

, (4.9)

where

c =
∣∣∣z
r

∣∣∣ , A =
m∑
i=1

|qi|, and α =
A

1− | rz |
. (4.10)

Proof The form of the multipole expansion follows immediately from the
lemma above by summing over the m expansions corresponding to the m
sources zi. To see the error bound observe that∣∣∣∣∣φ(z)−Q log(z)−

p∑
k=1

ak
zk

∣∣∣∣∣ ≤
∣∣∣∣∣∣

∞∑
k=p+1

ak
zk

∣∣∣∣∣∣ .
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Substituting expression (4.8) for ak into the above∣∣∣∣∣∣
∞∑

k=p+1

ak
zk

∣∣∣∣∣∣ ≤ A

∞∑
k=p+1

rk

k|z|k ≤ A

p+ 1

∞∑
k=p+1

∣∣∣ r
z

∣∣∣k
=

α

p+ 1

∣∣∣r
z

∣∣∣p+1

=
(

A

p+ 1

) (
1

c− 1
)(
1
c

)p

.

which is the required result. ✷

Note that if c ≥ 2, then∣∣∣∣∣φ(z)−Q log(z)−
p∑

k=1

ak
zk

∣∣∣∣∣ ≤ A

(
1
2

)p

. (4.11)

The reader may recall that in the fast Gauss transform, the error bound
(3.3) was independent of target location. Here, the amount of compression
achieved depends both on the desired precision and the distance of the
target from the sources.
The ability to form multipole expansions and compute error bounds via

(4.9) is all that is required for an O(N logN) fast summation algorithm. It
must be combined, however, with a recursive “divide and conquer” strategy.

4.1 The N logN algorithm

To simplify the number of issues addressed, let us assume for the moment
that the particles are fairly homogeneously distributed in a square. In order
to make systematic use of multipole expansions, we introduce a hierarchy
of boxes which refine the computational domain into smaller and smaller
regions. At refinement level 0, we have the entire computational domain.
Refinement level l+1 is obtained recursively from level l by subdivision of
each box into four equal parts. This yields a natural tree structure, where
the four boxes at level l+ 1 obtained by subdivision of a box at level l are
considered its children.

Definition 4.3 Two boxes are said to be near neighbours if they are
at the same refinement level and share a boundary point. (A box is a near
neighbour of itself.)

Definition 4.4 Two boxes are said to be well separated if they are at
the same refinement level and are not near neighbours.

Definition 4.5 With each box i is associated an interaction list, con-
sisting of the children of the near neighbours of i’s parent which are well
separated from box i (Fig. 4).

The basic idea is to consider clusters of particles at successive levels of
spatial refinement, and to compute interactions between distant clusters
by means of multipole expansions when possible. It is clear that at levels
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X

Fig. 5. The first step of the algorithm. Interactions between particles in
box X and the white boxes can be computed via multipole expansions.
Interactions with near neighbours (grey) are not computed.

0 and 1, there are no pairs of boxes which are well separated. At level
2, on the other hand, sixteen boxes have been created and there are a
number of well separated pairs. Multipole expansions can then be used
to compute interactions between these well separated pairs (Fig. 5) with
rigorous bounds on the error. In fact, the bound (4.11) is valid so that given
a precision ε, we need to use p = log2(1/ε) terms.
It remains to compute the interactions between particles contained in

each box with those contained in the box’s near neighbours, and this is
where recursion enters the picture. After each level 2 box is refined to create
level 3, we seek to determine which other boxes can be interacted with by
means of multipole expansions. But notice that those boxes outside the
region of the parent’s nearest neighbours are already accounted for (at level
2) and that interactions with current near neighbours cannot accurately
be computed by means of an expansion. The remaining boxes correspond
exactly to the interaction list defined above (Fig. 6).
The nature of the recursion is now clear. At every level, the multipole

expansion is formed for each box due to the particles it contains. The
resulting expansion is then evaluated for each particle in the region covered
by its interaction list (Fig. 4).
We halt the recursive process after roughly logN levels of refinement.

The amount of work done at each level is of the order O(N). To see this,
note first that approximately N p operations are needed to create all expan-
sions, since each particle contributes to p expansion coefficients. Secondly,
from the point of view of a single particle, there are at most 27 boxes (the
maximum size of the interaction list) whose expansions are computed, so
that 27N p operations are needed for all evaluations.
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X

Fig. 6. The second step of the algorithm. After refinement, note that the
particles in the box marked X have already interacted with the most
distant particles (light grey). They are now well separated from the
particles in the white boxes, so that these interactions can be computed
via multipole expansions. The near neighbour interactions (dark grey)
are not computed.

x

Fig. 7. Subsequent steps of the algorithm. The interaction list for box X
is indicated in white.

At the finest level, we have created roughly 4log4 N = N boxes and
it remains only to compute interactions between nearest neighbours. By
the assumption of homogeneity, there are O(1) particles per box, so that
this last step requires about 8N operations (Fig. 5). The total cost is
approximately

28Np logN + 8N. (4.12)
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Fig. 8. At the finest level, interactions with near neighbours are computed
directly.
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Fig. 9. An adaptive data structure

4.2 The adaptive algorithm

When the distribution of particles is nonuniform, a somewhat different
strategy must be employed. One option is that during the refinement pro-
cess, each box is examined to determine whether it contains any particles.
If so, it is subdivided further. If not, it is pruned from the tree structure
and ignored at subsequent levels (Fig. 9). The complexity of this adaptive
algorithm is harder to state precisely, since it depends on the total number
of refinement levels which is not determined a priori. For distributions of
practical interest, this turns out to be proportional to logN . Note that if
the interparticle spacing collapses as N−p, where p is independent of N ,
then p · logN levels are needed. It is, therefore, quite reasonable to refer to
the adaptive algorithm as also being of the order N logN .
The algorithm just described is similar to that of Van Dommelen and
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Rundensteiner [47].

4.3 The FMM

In order to develop an O(N) method, we need several further analytic
results concerning multipole expansions. Lemma 4.6 provides a formula for
shifting the center of a multipole expansion, Lemma 4.7 describes how to
convert such an expansion into a local (Taylor) expansion in a circular
region of analyticity, and Lemma 4.8 furnishes a mechanism for shifting
the center of a Taylor expansion within a region of analyticity. We state
the second result without complete proof. A complete proof can be found
in Greengard and Rokhlin [29] and Greengard [23].

Lemma 4.6 (Translation of a multipole expansion) Suppose that

φ(z) = a0 log(z − z0) +
∞∑
k=1

ak
(z − z0)k

(4.13)

is a multipole expansion of the potential due to a set of m charges of
strengths q1, q2, . . . , qm, all of which are located inside the circle D of radius
R with center at z0. Then for z outside the circle D1 of radius (R + |z0|)
and center at the origin,

φ(z) = a0 log(z) +
∞∑
l=1

bl
zl
, (4.14)

where

bl = −a0z
l
0

l
+

l∑
k=1

akz
l−k
0

(
l − 1
k − 1

)
, (4.15)

with
(
l
k

)
the binomial coefficients. Furthermore, for any p ≥ 1,∣∣∣∣∣φ(z)− a0 log(z)−

p∑
l=1

bl
zl

∣∣∣∣∣ ≤
 A

1−
∣∣∣ |z0|+Rz

∣∣∣
 ∣∣∣∣ |z0|+R

z

∣∣∣∣p+1

(4.16)

with A defined in (4.10).

Proof The form of the translated multipole expansion follows from the
two equations

log(z − z0) = log
(
z

(
1− z0

z

))
= log(z)−

∞∑
�=1

1
1

(z0

z

)�
,

and

(z − z0)−k =
∞∑
�=k

(
1− 1
k − 1

)
z�−k0

z�
,
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both valid for |z| > |z0|, by substituting, summing, and truncating. The
error bound follows from the uniqueness of the multipole expansion, which
implies that the expansion about the origin obtained indirectly above must
be identical with the one obtained directly. Therefore its truncations enjoy
the error bound of the direct expansion, namely (4.9). ✷

Lemma 4.7 (Conversion of a multipole expansion into a local
expansion) Suppose that m charges of strengths q1, q2, ..., qm are located
inside the circle D1 with radius R and center at z0, and that |z0| > (c+1)R
with c > 1. Then the corresponding multipole expansion (4.13) converges
inside the circle D2 of radius R centered about the origin. Inside D2, the
potential due to the charges is described by a power series:

φ(z) =
∞∑
l=0

bl · zl, (4.17)

where

b0 = a0 log(−z0) +
∞∑
k=1

ak
zk0
(−1)k, (4.18)

and

bl = − a0

l · zl0
+
1
zl0

∞∑
k=1

ak
zk0

(
l + k − 1
k − 1

)
(−1)k , for l ≥ 1. (4.19)

Furthermore, an error bound for the truncated series is given by∣∣∣∣∣φ(z)−
p∑
l=0

bl · zl
∣∣∣∣∣ < A(4e(p+ c)(c+ 1) + c2)

c(c− 1)
(
1
c

)p+1

, (4.20)

where A is defined in (4.10) and e is the base of natural logarithms.

The form of the local series follows from substituting the expressions

log(z − z0) = log
(
−z0

(
1− z

z0

))
= log(−z0)−

∞∑
�=1

1
1

(
z

z0

)�

,

and

(z − z0)−k =
(
1

−z0

)k
(
1

1− z
z0

)k

=
(
1

−z0

)k ∞∑
�=0

(
1+ k − 1
k − 1

) (
z

z0

)�

,
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both valid for |z| ≤ R, into the multipole expansion (4.13). The proof of
the error bound may be found in Greengard and Rokhlin [29] or Greengard
[23].

Lemma 4.8 (Translation of a local expansion) Translation of a com-
plex polynomial centered about z0

p∑
k=0

ak(z − z0)k, (4.21)

into a complex polynomial centered about 0
n∑

k=0

bkz
k, (4.22)

can be achieved by the complete Horner scheme
for j from 0 to p− 1 do

for k from p− j − 1 to p− 1 do
ak := ak − z0 ak+1

end
end

which given the vector of coefficients a overwrites it with b.
Proof This scheme is essentially nested multiplication and can be derived
from the relation(

amzj + am−1z
j−1 + · · ·+ am−j

)
(z − z0) + am−j−1

= amzj+1 + ãm−1z
j + · · ·+ ãm−j−1,

which corresponds to an intermediate stage in converting expression (4.21)
into expression (4.22) by performing nested multiplication. ✷

Observation 1: Suppose that we have created the multipole expansion
for each of the four children of some box in the mesh hierarchy. We would
like to form a single expansion for the parent box without re-examining
each particle. Lemma 4.6 provides just such a mechanism at the cost of 4p2

operations, since each shift requires p2 work.

Observation 2: Suppose that we have a local expansion for a box b which
describes the field induced by all particles outside b’s nearest neighbours.
We would like to transmit this information to b’s children. Lemma 4.8
provides just such a mechanism at the cost of 4p2 operations, since each
shift requires p2 work.

Note now that the N logN scheme was of that complexity because all
particles were “accessed” at every level of refinement. The analytic ma-
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nipulations just described allow us to avoid this, and their incorporation
into the N logN scheme results in the FMM. Here, we simply indicate the
modifications which lead to its implementation.

Initialization

Choose a number of levels so that there are, on average, s particles per box
at the finest level. (The number of boxes is then approximately N/s.)

Upward Pass

In the N logN scheme, we proceeded from the coarsest to the finest level,
forming multipole expansions for every box. In the FMM, we begin at the
finest level, and create multipole expansions from the source positions and
strengths. The expansions for all boxes at all higher levels are then formed
by the merging procedure delineated in Observation 1.

Downward Pass

In the N logN scheme, whenever a box b was under consideration, we used
its multipole expansion to compute interactions with all particles contained
in the boxes of b’s interaction list. In the FMM, we convert the multipole
expansion into a local expansion about the centers of all boxes in b’s inter-
action list, using Lemma 4.7.

After these calculations are completed, we are left with a local expan-
sion in each box at each level. Beginning at the coarsest level, these local
expansions are shifted to the children’s level and added to the children’s
local expansions, as described in Observation 2. After this recursive pro-
cess reaches the finest refinement level, a local expansion will have been
created for each box which describes the field due to all particles outside
the box’s near neighbours. It is only this expansion which is evaluated. The
near neighbour interactions, as before, are computed directly.

The total operation count is approximately

N p+ 29
(
N

s

)
p2 +N p+ 9N s.

The terms correspond to formation of the multipole expansions, shifting
the expansions, evaluation of the local expansions and computation of the
near neighbour interactions.
Choosing s = p, this yields

40N p,
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which compares favorably with the estimate (4.12) even for modest N . This
is not the end of the story, however. The richer analytic structure of the
FMM permits a large number of modifications and optimizations which
are not available to other hierarchical schemes. These have to do with the
use of symmetry relations to reduce the number of shifts (Greengard and
Rokhlin [30]; Wang and LeSar [49]) as well as schemes which reduce the
cost of translation itself (Greengard and Rokhlin [31]; Hrycak and Rokhlin
[37]; Elliott and Board [21]). We will discuss these variants in greater detail
when we come to the three-dimensional algorithm.
As for the adaptive FMM, a rudimentary complexity analysis is given

by Carrier et al. [17]. A more complete analysis is given by Nabors et al.
[41].
Typical timings for high precision FMM calculations are shown in the

following table, taken from Hrycak and Rokhlin [37].

N THR TCGR Tdir EHR ECGR Edir

400 0.5 1.4 1.0 3.5 10−13 3.5 10−13 3.0 10−13

1600 2.3 5.2 17.1 1.1 10−12 1.1 10−12 1.1 10−12

6400 8.7 25.8 285.2 4.9 10−13 4.9 10−13 2.7 10−12

25600 34.7 110.6 (4400) 2.5 10−12 2.5 10−12 —–

Here THR denotes the timing for the Hrycak and Rokhlin method, TCGR
denotes the timing for the Carrier et al. method and Tdir the timing for
direct evaluation; the E’s are the corresponding errors.

5 The FMM in three dimensions
In three dimensions, as in two dimensions, functions which satisfy the
Laplace equation

∇2Φ =
∂2Φ
∂x2
+

∂2Φ
∂y2
+

∂2Φ
∂z2
= 0 (5.1)

are referred to as harmonic functions. The theory of such functions is gen-
erally called potential theory, and is beautifully described in the classic text
by Kellogg [39]. A shorter description is available in the text by Wallace
[48] and the first part of this lecture is abstracted from Greengard [23].
Assume now that the task at hand is to compute the Coulomb interac-

tions in a large particle system. If a point charge of strength q is located
at P0 = (x0, y0, z0), then the potential and electrostatic field due to this
charge at a distinct point P = (x, y, z) are given by

Φ =
1
r̃

(5.2)

and
3E = −∇Φ = (x− x0

r̃3
,
y − y0

r̃3
,
z − z0

r̃3
) , (5.3)
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respectively, where r̃ denotes the distance between points P0 and P .
We would like to derive a series expansion for the potential at P in terms

of its distance r from the origin. For this, let the spherical coordinates of
P be (r, θ, φ) and of P0 be (ρ, α, β). Letting γ be the angle between the
vectors P and P0, we have from the law of cosines

r̃2 = r2 + ρ2 − 2rρ cos γ, (5.4)

with
cos γ = cos θ cosα+ sin θ sinα cos(φ− β). (5.5)

Thus,
1
r̃
=

1

r
√
1− 2ρr cos γ + ρ2

r2

=
1

r
√
1− 2uµ+ µ2

, (5.6)

having set
µ =

ρ

r
and u = cos γ . (5.7)

For µ < 1, we may expand the inverse square root in powers of µ, resulting
in a series of the form

1√
1− 2uµ+ µ2

=
∞∑
n=0

Pn(u)µn (5.8)

where
P0(u) = 1, P1(u) = u, P2(u) =

3
2
(u2 − 1

3
), · · · (5.9)

and, in general, Pn(u) is the Legendre polynomial of degree n. Our expres-
sion for the field now takes the form

1
r̃
=

∞∑
n=0

ρn

rn+1
Pn(u). (5.10)

The formula (5.10), unfortunately, does not meet our needs. The pa-
rameter u depends on both the source and the target locations. We cannot
use it to expand the field due to a large number of sources. A more general
representation will require the introduction of spherical harmonics.
For this, we first write the Laplace equation in spherical coordinates:

1
r2

∂

∂r

(
r2 ∂Φ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Φ
∂θ

)
+

1
r2 sin2 θ

∂2Φ
∂φ2

= 0. (5.11)

The standard solution of this equation by separation of variables results
in an expression for the field as a series, the terms of which are known as
spherical harmonics:
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Φ =
∞∑
n=0

n∑
m=−n

(
Lmn rn +

Mm
n

rn+1

)
Y m
n (θ, φ). (5.12)

The terms Y m
n (θ, φ)r

n are referred to as spherical harmonics of degree
n, the terms Y m

n (θ, φ)/r
n+1 are called spherical harmonics of degree −n−

1, and the coefficients Lmn and Mm
n are known as the moments of the

expansion.

The spherical harmonics can be expressed in terms of partial derivatives
of 1/r, but we will simply define them via the relation

Y m
n (θ, φ) =

√
(n− |m|)!
(n+ |m|)! · P

|m|
n (cos θ)e

imφ, (5.13)

omitting a normalization factor of
√
(2n+ 1)/4π.

The special functions Pm
n are called associated Legendre functions and

can be defined by the Rodrigues’ formula

Pm
n (x) = (−1)m(1− x2)m/2

dm

dxm
Pn(x).

5.1 The multipole expansion

We will need a well known result from the theory of spherical harmonics.

Theorem 5.1 (Addition theorem for Legendre polynomials) Let
P and Q be points with spherical coordinates (r, θ, φ) and (ρ, α, β), respec-
tively, and let γ be the angle subtended between them. Then

Pn(cos γ) =
n∑

m=−n
Y −m
n (α, β) · Y m

n (θ, φ) . (5.14)

Theorem 5.2 (Multipole expansion) Suppose that k charges of
strengths {qi, i = 1, ..., k} are located at the points {Qi = (ρi, αi, βi), i =
1, ..., k}, with |ρi| < a. Then for any P = (r, θ, φ) ∈ R3 with r > a, the
potential φ(P ) is given by

φ(P ) =
∞∑
n=0

n∑
m=−n

Mm
n

rn+1
· Y m

n (θ, φ) , (5.15)

where

Mm
n =

k∑
i=1

qi · ρni · Y −m
n (αi, βi). (5.16)
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Furthermore, for any p ≥ 1,∣∣∣∣∣φ(P )−
p∑

n=0

n∑
m=−n

Mm
n

rn+1
· Y m

n (θ, φ)

∣∣∣∣∣ ≤ A

r − a

(a

r

)p+1

, (5.17)

where

A =
k∑
i=1

|qi| . (5.18)

5.2 The N logN scheme

As in the two-dimensional case, Theorem 5.2 is all that is required to con-
struct an N logN scheme of arbitrary precision. Since we discussed that
case in some detail in a previous lecture, we simply indicate the principal
differences.

• The particles are contained within a cube which is subdivided in a re-
cursive manner. In the nonadaptive case, each box has eight children,
27 nearest neighbours and an interaction list of dimension 189.

• A multipole expansion is made up of p2 terms rather than p terms.
Furthermore, a simple geometric calculation shows that for a target
in a well-separated cube, the rate of decay of the error with p looks
like (

√
3/3)p rather than (1/2)p or (

√
2/3)p.

Thus, the cost of the N logN scheme is approximately

189N p2 log8 N + 27N, (5.19)

where p = log√3(1/ε).

5.3 The O(N) scheme

In order to accelerate the preceding scheme, we need some additional ana-
lytic machinery to shift multipole expansions and obtain local representa-
tions.

Theorem 5.3 (Translation of a multipole expansion) Suppose that
l charges of strengths q1, q2, · · · , ql are located inside the sphere D of radius
a with center at Q = (ρ, α, β), and that for points P = (r, θ, φ) outside D,
the potential due to these charges is given by the multipole expansion

Φ(P ) =
∞∑
n=0

n∑
m=−n

Om
n

r′ n+1
· Y m

n (θ
′, φ′) , (5.20)

where P − Q = (r′, θ′, φ′). Then for any point P = (r, θ, φ) outside the
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sphere D1 of radius (a+ ρ),

Φ(P ) =
∞∑
j=0

j∑
k=−j

Mk
j

rj+1
· Y k

j (θ, φ) , (5.21)

where

Mk
j =

j∑
n=0

n∑
m=−n

Ok−m
j−n · i|k|−|m|−|k−m| ·Am

n ·Ak−m
j−n · ρn · Y −m

n (α, β)

Ak
j

,

(5.22)
with Am

n defined by

Am
n =

(−1)n√
(n−m)!(n+m)!

. (5.23)

Furthermore, for any p ≥ 1,∣∣∣∣∣∣Φ(P )−
p∑

j=0

j∑
k=−j

Mk
j

rj+1
· Y k

j (θ, φ)

∣∣∣∣∣∣ ≤
( ∑l

i=1 |qi|
r − (a+ ρ)

)(
a+ ρ

r

)p+1

. (5.24)

Theorem 5.4 (Conversion of a multipole expansion into a local
expansion) Suppose that l charges of strengths q1, q2, · · · , ql are located
inside the sphere DQ of radius a with center at Q = (ρ, α, β), and that
ρ > (c+1)a with c > 1. Then the corresponding multipole expansion (5.20)
converges inside the sphere D0 of radius a centered at the origin. Inside
D0, the potential due to the charges q1, q2, · · · , ql is described by a local
expansion:

Φ(P ) =
∞∑
j=0

j∑
k=−j

Lkj · Y k
j (θ, φ) · rj , (5.25)

where

Lkj =
∞∑
n=0

n∑
m=−n

Om
n · i|k−m|−|k|−|m| ·Am

n ·Ak
j · Y m−k

j+n (α, β)

(−1)nAm−k
j+n · ρj+n+1

, (5.26)

with As
r defined by (5.23). Furthermore, for any p ≥ 1,∣∣∣∣∣∣Φ(P )−

p∑
j=0

j∑
k=−j

Lkj · Y k
j (θ, φ) · rj+1

∣∣∣∣∣∣ ≤
(∑l

i=1 |qi|
ca− a

)(
1
c

)p+1

. (5.27)

Theorem 5.5 (Translation of a local expansion) Let Q = (ρ, α, β)
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Level M  boxes Level M+1
Children

Fig. 10. In the FMM, a box transmits its far field expansion to the boxes
in its interaction list. Those boxes then pass the information down to
their children.

be the origin of a local expansion

Φ(P ) =
p∑

n=0

n∑
m=−n

Om
n · Y m

n (θ
′, φ′) · r′ n , (5.28)

where P = (r, θ, φ) and P −Q = (r′, θ′, φ′). Then

Φ(P ) =
p∑

j=0

j∑
k=−j

Lkj · Y k
j (θ, φ) · rj , (5.29)

where

Lkj =
p∑

n=j

n∑
m=−n

Om
n · i|m|−|m−k|−|k| ·Am−k

n−j ·Ak
j · Y m−k

n−j (α, β) · ρn−j
(−1)n+j ·Am

n

,

(5.30)
with As

r defined by eqn. (5.23).

We can now construct the FMM by analogy with the two-dimensional case.

Upward Pass

• Form multipole expansions at finest level (from source positions and
strengths).

• Form multipole expansions at coarser levels by merging, according to
Theorem 5.3.

Downward Pass

• Account for interactions at each level by Theorem 5.4.
• Transmit information to finer levels by Theorem 5.5.

The total operation count is
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189
(
N

s

)
p4 + 2Np2 + 27Ns.

Choosing s = 2p2, the operation count becomes approximately

150N p2. (5.31)

This would appear to beat the estimate (5.19) for any N , but there is a
catch. The number of terms p needed for a fixed precision in the N logN
scheme is smaller than the number of terms needed in the FMM described
above. To see why, consider two interacting cubes A and B of unit volume,
with sources in A and targets in B. The worst-case multipole error decays
like (

√
3/3)p, since

√
3/2 is the radius of the smallest sphere enclosing cube

A and 3/2 is the shortest distance to a target in B. The conversion of a
multipole expansion in A to a local expansion in B, however, satisfies an
error bound which depends on the sphere enclosing B as well as the sphere
enclosing A and has a worst case error estimate of the order (3/4)p.
In the original FMM (Greengard and Rokhlin [30]; Greengard [23]),

it was suggested that one redefine the nearest neighbour list to include
“second nearest neighbours.” The error can then be shown to decay ap-
proximately like (0.4)p. However, the number of near neighbours increases
to 125 and the size of the interaction list increases to 875. In the latest gen-
eration of FMMs (Hrycak and Rokhlin [37]; Greengard and Rokhlin [33]),
it turns out that one can recover the same accuracy as the N logN schemes
without this modification. The relevant ideas will be sketched below.
Returning now to the formula (5.31), it is clear that the major obsta-

cle to achieving reasonable efficiency at high precision is the cost of the
multipole to local translations (189p4 operations per box).
There are a number of schemes for reducing that cost. The first we

describe is based on rotating the coordinate system (Fig. 11). By inspection
of Theorem 5.4, it is easily shown that translation in the z direction only
requires p3 operations. A fast translation scheme could then be obtained
as follows.

(1) Rotate the coordinate system (p3 operations) so that the vector con-
necting the source box and the target box lies along the z axis.

(2) Shift the expansion along the z axis (p3 operations).
(3) Rotate back to the original coordinate system (p3 operations).

The total operation count becomes

189
(
N

s

)
3p3 + 2Np2 + 27Ns.
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x x yy

z z

y

x

y

x

z z

Fig. 11. Fast translation via rotation.

Choosing s = 3p3/2, the operation count becomes approximately

270N p3/2 + 2N p2. (5.32)

Over the last few years, a number of diagonal translation schemes were
developed, requiring O(p2) work (Greengard and Rokhlin [31]; Berman
[10]; Elliott and Board [21]). Unfortunately, these schemes are all subject
to certain numerical instabilities. They can be overcome, but at additional
cost.

5.4 Exponential expansions

The latest generation of FMMs is based on combining multipole expansions
with plane wave expansions. The two-dimensional theory is described in
Hrycak and Rokhlin [37] and we will just sketch the three-dimensional
version here (Greengard and Rokhlin [33]). The starting point is the integral
representation

1
r
=
1
2π

∫ ∞

0

e−λz
∫ 2π

0

eiλ(x cosα+y sinα)dα dλ.

To get a discrete representation, one must use some quadrature formula.
The inner integral, with respect to α, is easily handled by the trapezoidal
rule (which achieves spectral accuracy for periodic functions), but the outer
integral requires more care. Laguerre quadrature is an appropriate choice
here, but even better performance can be obtained using generalized Gaus-
sian quadrature rules (Yarvin [50]). The central idea, however, is that the
multipole expansion can be converted to an expansion in exponentials.

p∑
n=0

n∑
m=−n

Mm
n Y m

n (θ, φ)
rn+1

≈
Pl∑
j=1

Kj∑
k=1

e−λj(z−ix cos θk−iy sin θk)S(j, k).
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Fig. 12. Multipole translation can be replaced by exponential translation.

Unlike multipole expansions, however, these plane wave expansions are di-
rection dependent. The one written above is for the +z direction, and a
different one is needed for emanation through each of the six faces of the
cube.
The reason for preferring exponentials is that translation corresponds

to multiplication and requires only p2 work. Conversion from the multipole
representation to the six outgoing exponentials requires 3p3 work. Thus,
we can replace 189p4 or 189p3 operations per box with 3p3 + 189p2 (Fig.
12).
The total operation count is now

189
N

s
p2 + 2N p2 + 27N s+ 3

N

s
p3.

Setting s = 2p, the total operation count is about

200N p+ 3.5N p2.

The new FMM has only been tested on relatively uniform distributions
using a nonadaptive implementation. For three digit accuracy, p = 8 and
on a Sun SPARCStation 2, we have

N Levels TRot TFourier TExp Tdir
1000 3 13 12 8 14
8000 4 160 140 67 900
64000 5 1700 1400 610 (58000)

TRot is the time for the FMM using rotations, TFourier is the time required
for the diagonal translation scheme based on the convolution structure, and
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TExp is the time required for the plane wave scheme sketched above.
At ten digits of accuracy, p = 30 and

N Levels TRot TFourier TExp Tdir
5000 3 1030 — 230 350
40000 4 12300 — 1930 (22,400)

6 Conclusions
FMMs are efficient schemes for computing N -body interactions. Applica-
tions to boundary value problems for the Laplace and biharmonic equations
can be found, for example, in Greenbaum et al. [22]; Greengard et al. [26];
Greengard and Moura [28]; Nabors and White [40]; Rokhlin [43]. Appli-
cations to the Poisson equation can be found in Greengard and Lee [27];
Russo and Strain [46]. For applications to molecular dynamics, see Board
et al. [12]; Ding et al. [20].
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