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In simple fluids, such as water, invariance under parity and time-reversal symmetry imposes that
the rotation of constituent “atoms” are determined by the flow and that viscous stresses damp
motion. Activation of the rotational degrees of freedom of a fluid by spinning its atomic building
blocks breaks these constraints and has thus been the subject of fundamental theoretical interest
across classical and quantum fluids [1–12]. However, the creation of a model liquid which isolates
chiral hydrodynamic phenomena has remained experimentally elusive. Here we report the creation
of a cohesive two-dimensional chiral liquid consisting of millions of spinning colloidal magnets and
study its flows. We find that dissipative viscous edge pumping is a key and general mechanism of
chiral hydrodynamics, driving uni-directional surface waves and instabilities, with no counterpart in
conventional fluids. Spectral measurements of the chiral surface dynamics reveal the presence of Hall
viscosity, an experimentally long sought property of chiral fluids [8, 13–15]. Precise measurements
and comparison with theory demonstrate excellent agreement with a minimal but complete chiral
hydrodynamic model, paving the way for the exploration of chiral hydrodynamics in experiment.

Hydrodynamic theories describe the flow of systems
as diverse as water, quantum electronic states [16], and
galaxies [17] over decades in scale [18]. Since hydrody-
namic equations are built on symmetry principles and
conservation laws alone, systems with similar symmetries
have similar descriptions and flow in the same way.

For example, symmetry under parity and time rever-
sal – conditions met by all conventional fluids at ther-
mal equilibrium – constrains both the stress and viscos-
ity tensors to be symmetric. These constraints are in
principle alleviated in collections of interacting units that
are driven to rotate [3, 8, 9, 15, 19–23]. This seemingly
innocent twist on an otherwise structureless fluid rep-
resents, however, an elemental change with rich hydro-
dynamic consequences common to quantum Hall fluids,
vortex fluids, and chiral condensed matter. Collections of
spinning particles offer a natural opportunity to engineer
and study the properties of such chiral fluids; experimen-
tal examples include rotating bacteria [24], colloidal and
millimeter-scale magnets [25–31], ferrofluids in rotating
magnetic fields [11, 12], and shaken chiral grains [19, 32].
Such systems have been shown to have non-trivial dy-
namics. For example, ferrofluids driven by AC fields can
flow against external pressure [33] and small numbers of
spinning particles self-assemble into dynamic crystalline
clusters [7, 25–28, 30, 31].
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I. A COLLOIDAL CHIRAL FLUID

We report the creation of a millimeter-scale cohesive
chiral fluid (Fig. 1a) by spinning millions of colloidal mag-
nets with a magnetic field (Figs. 1b, 1c), and we track its
flows over hours (see Supplementary Movies 1, 2). The
macroscopic flow of our chiral fluid is reminiscent of free
surface flows of Newtonian fluids: nearby droplets merge
(Fig. 1d and Supplementary Movie 3), fluid spreads on a
surface under the influence of gravity (Fig. 1e and Sup-
plementary Movie 4), voids collapse (Fig. 1f and Sup-
plementary Movie 5), and thin streams go unstable, as
revealed by flowing fluid past a solid object (Fig. 1g and
Supplementary Movie 6). We demonstrate that these
seemingly familiar features are accompanied by unique
free surface flows. We then exploit the odd interfacial
dynamics of this prototypical chiral liquid to infer its
material constants, which remain out of reach of conven-
tional rheology.

In contrast to Newtonian fluids, the surface of our fluid
supports a spontaneous unidirectional edge flow in its
rest state, as well as unusual morphological dynamics
such as the rotation of asymmetric droplets illustrated in
Supplementary Movie 3.

II. CHIRAL SURFACE WAVES AND ‘EDGE
PUMPING’

To investigate these lively surface flows, we first look
at surface excitations in a simple slab geometry, as shown
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FIG. 1. A chiral fluid of spinning colloidal magnets. a, Optical micrograph of the colloidal magnets in bulk, after a few
minutes of spinning. b, Schematic of one colloidal particle. The ∼1.6 µm hematite colloidal cubes have a permanent magnetic
moment (µ, black arrow). They are suspended in water, sedimented onto a glass slide, and spun by a rotating magnetic field
(B, white arrow tracing the white circle). c, Optical micrograph of the bulk colloidal magnets at increased magnification.
d-g, The particles attract and form a cohesive material with an apparent surface tension that, over timescales from minutes to
hours, behaves like a fluid: d, clusters coalesce and e spread like liquid droplets when sedimented against a hard wall; f void
bubbles collapse; and g when driven past an obstacle, the fluid flows around it, thinning and eventually revealing an instability
to droplet formation. All images were taken through crossed polarizers.

in Fig. 2a and Supplementary Movie 7. We measure the
spectrum of surface fluctuations, |h(k, ω)|2, by tracing
the height profile, h(x, t), of the surface and Fourier-
transforming it in space and time. We observe the spec-
trum to be peaked along a curve ω(k), revealing the ex-
istence of dispersive waves (see Fig. 2b). The curve has
only one branch with odd parity, meaning that the waves
are unidirectional. This behavior contrasts that of con-
ventional surface waves that propagate in all directions.

These surface waves beg a hydrodynamic description.
Chiral-fluid hydrodynamics follows from conservation of
momentum and angular momentum, and thus includes
both the spinning rate of individual fluid particles as
well as the momentum and angular momentum of their
flow [3, 19, 34–36]. Because our colloids are birefringent,
we are able to measure their individual spinning rate by
imaging through crossed polarizers. We find that all par-
ticles rotate at the same rate, Ω, which is set by the
rotating magnetic field (see Fig. 3a and Supplementary
Movie 8). From this it follows that the particles’ rota-
tional inertia is negligible; the torque exerted on each
particle by the magnetic field instantly adjusts to bal-
ance the frictional torques exerted by the neighboring
particles and the solid substrate. This fast response en-
ables the decoupling of the angular momentum equation
from the momentum equation. Nonetheless a strong sig-
nature of the microscopic angular momentum manifests
as an ‘odd’ stress. A minimal hydrodynamic theory then
balances the force generated by viscous and odd hydrody-

namic stresses, ∂jσij , against friction with the substrate,
Γuvi, and surface tension γ at the fluid interface. In this
theory, which has been used to capture the bulk flows of
chiral granular fluids, the hydrodynamic stress tensor is
given by:

σij = −pδij + η (∂ivj + ∂jvi) + ηRεij (2Ω− ω) . (1)

σij includes the pressure p and ordinary viscous stress
also present in Newtonian fluids with a shear viscosity η.
The additional term containing the Levi-Civita symbol
εij and the rotational viscosity ηR, captures the rota-
tional friction between neighboring particles [3, 19, 34,
35]. Such an odd stress builds up as the local spin-
ning rate Ω deviates from half the local fluid vorticity
ω = ẑ · (∇×v). In torque-free fluids, angular momentum
conservation constrains these two quantities to be equal:
odd stresses are unique to chiral fluids.

We note that there is no direct appearance of the mag-
netic field or its stresses in this hydrodynamic description
unlike in conventional ferrofluids. In this respect, our col-
loidal chiral fluid can be seen as a special type of driven
ferrofluid in which the only role of magnetic forces is to
induce chirality.

To make a quantitative comparison between our model
and the flows we observe, we require a measurement of
the hydrodynamic and friction coefficients η, ηR, and Γu.
Fortunately, the prominent effect of odd stress at the free
surface of our chiral fluid can be effectively exploited to
infer its bulk rheology. The homogeneous spinning mo-
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FIG. 2. Surface waves in a chiral spinner fluid. a, Surface waves are excited by perturbing a strip of the spinner fluid.
To characterize them, we track the height profile of the strip in time, h(x, t). b, The resulting power spectrum from these
waves 〈|h(k, ω)|〉 is plotted versus the normalized wave vector kδ and frequency ω/(uedge/δ). The spectrum is peaked on a
curve corresponding to the dispersion relation of the waves. Shown with the red dashed line is the theoretical prediction for
the dispersion relation, obtained with the hydrodynamic parameters that we measure in Fig. 3; its long-wavelength asymptotic
form is given in Eq. (3). c, The power spectrum ω(k) for surface waves on a perturbed circular droplet of spinner fluid (left
panel, see Supplementary Information) can be collapsed (right panel) by rescaling the angular wavenumber k by the droplet
radius R. d, Sketch of the mechanism for wave propagation. The propagation of waves can be understood by considering
the mass flux, plotted in e. The chiral fluid is displaced from the high curvature to the low curvature regions. This process
explicitly breaks the left-right symmetry, thereby propagating surface waves along only one direction. e, Correction to the net
mass flux along the interface due to a sinusoidal height perturbation, Jx − Jo

x , where Jo
x is the mass flux in a flat strip and

Jx is the mass flux in the presence of a perturbation. f, Predicted vorticity field from the chiral-hydrodynamic model (see
Supplementary Information).

tion of the colloidal particles gives rise to a net tangen-
tial edge flow even in the absence of pressure gradients.
These tread-milling dynamics, characteristic of all chiral
fluids [4, 19, 21, 24, 30], are illustrated in circular droplets
in Figs. 3b-e and Supplementary Movie 9. The tangen-
tial flow that is localized at the free surface is readily
explained by expressing the hydrodynamic equation in
terms of vorticity for an incompressible chiral fluid:(

∇2 − δ−2
)
ω = 0 (2)

where δ =
√

(η + ηR)/Γu. This Helmholtz equation in-
dicates that the vorticity generated at the surface de-
cays exponentially into the fluid, with a characteristic
penetration depth δ (see Figs. 3c, d, g). In this model,
the absence of substrate friction causes the penetration
depth to diverge, resulting in rigid-body rotation of the
entire fluid, as observed in ferrofluid droplets [37]. The
magnitude of the vorticity at the free surface, ωedge =
2Ω ηR/(η + ηR), is set by the stress-free boundary con-
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dition for a flat strip and expresses the competition be-
tween the odd and viscous stresses (see Supplementary
Information). We point out that ωedge is directly pro-
portional to ηR, which demonstrates the importance of
odd stress for the dynamics. Comparison between exper-
iment and prediction (Fig. 3d) yields the values of η and
ηR in terms of Γu. The latter is then measured by tilt-
ing the substrate and measuring the sedimentation rate
of droplets (see Fig. 3f, and Supplementary Information).
Ultimately, we find η = 4.9±0.2×10−8 Pa m s, ηR = 9.1±
0.1× 10−10 Pa m s, and Γu = 2.49± 0.03× 103 Pa s/m.

Equipped with the hydrodynamic coefficients we can
now investigate the origin of the surface waves within our
model. The mass flux in the tangential surface flow pro-
vides significant insight. This flow, sketched in Fig. 2d
and plotted in Figs. 2e-f, is determined by the balance
of the tangential odd stress at the boundary, the shear
stress, and the substrate friction. In the presence of a
perturbation that varies the curvature of the interface,
resistance to flow due to the shear stress will be modu-
lated. For a sinusoidal perturbation, there is enhanced
flow in positively curved regions (top of the wave) and de-
creased flow in negatively curved regions (bottom of the
wave). This ‘edge-pumping’ moves material away from
curved regions towards the flat wave front, giving rise to
uni-directional wave motion.

A linear stability analysis of the hydrodynamic equa-
tions (see Supplementary Information for a detailed cal-
culation) confirms this scenario and yields a prediction
for the dispersion relation, dissipation rate, and flow
fields of surface waves, which we plot in Fig. 2b (red
dashed curves). With no fitting parameters, our model
shows excellent agreement with the experimentally mea-
sured dispersion relation. For surface waves h ∼ ei(kx+ωt)
of long wavelength k � 1/δ, the asymptotic dispersion
relation is:

ω(k) = 2ωedge
ηR

η + ηR
(kδ)3 = 2uedge

η

Γu
k3. (3)

where uedge = 2 ηR
η+ηR

Ωδ.

The wave dynamics are thus crucially sensitive to
boundary layer flows. A natural avenue for investigation,
then, is to seek to increase the thickness of the boundary
in order to increase its relative role. We now show how a
slight increase of the penetration depth of the boundary
layer amplifies chiral effects and reveals a long sought-
after source of stress, commonly referred to as Hall vis-
cosity.

III. CHIRAL WAVE DAMPING AND
MEASUREMENT OF HALL VISCOSITY

We reduce the surface friction by allowing our chiral
liquid to sediment upon an air-water interface (Fig. 4b),
as opposed to a glass surface (Fig. 4a). Due to the diffi-
culty in maintaining a slab geometry in this regime, we
examine surface fluctuations on circular droplets.

cb
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f g

FIG. 3. Characterization of a droplet of chiral spinner
fluid. a, When viewed through crossed polarizers, the parti-
cles blink as they spin. This allows us to confirm that they
all spin at the same frequency, set by the rotating magnetic
field. b, By measuring the velocity of each particle within
a cluster, we find a flow profile that is concentrated at the
edge within a penetration layer δ shown in c, d, and g. c, A
zoomed-in view of the flow streamlines, obtained by averaging
several instantaneous velocity profiles such as the one shown
in b. d, By measuring the flow profile, the edge current uedge

and penetration depth δ are extracted. e, g, By measuring
the flow profile u(r) at a range of frequencies, we extract the
shear viscosity, η, and rotational viscosity, ηR, in terms of
the substrate friction, Γu. f, Finally, by tilting a sample and
measuring the sedimentation velocity of a droplet, we extract
the substrate friction.
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As can be seen in Fig. 4a-b and Supplementary Movie
10, the edge flow penetrates deeper into the chiral fluid as
friction is reduced. The dispersion relations for high and
low friction droplets display the same trend, although
the range of accessible wave vectors normalized by the
penetration length (kδ) is larger in the low friction case.
An extension of our theory to circular geometries (see
Supplementary Information) again accurately captures
the dispersion relations for high friction (Fig. 4a) and
low friction (Fig. 4b).

The remarkable agreement between experiment and
theory is however challenged when investigating the
damping dynamics of the chiral waves. Experimentally,
the damping rate α of chiral waves of wave vector k is
given by fitting a Lorentzian to the width of the power
spectrum (see Supplementary Information); the resulting
damping rates are shown in Fig. 4c-d. Our hydrodynamic
theory predicts this damping rate to be proportional to
surface tension. This is natural since surface tension flat-
tens interfacial deformation: in the absence of inertia,
the relaxation does not overshoot and capillary waves
are overdamped. In the long wavelength limit (kδ � 1),
the damping rate α ∼ (γ/Γu)|k|3 stems from the compe-
tition between surface tension and substrate friction. As
seen in Fig. 4c, in the high friction case we again find ex-
cellent agreement between theory and experiment, which
provides a direct measurement of surface tension. The
value we find, γ = 2.3± 0.2× 10−13 N, is consistent with
an estimate based on magnetic interactions between ro-
tating dipoles (see Supplementary Information).

In the case of low surface friction, however, we ob-
serve a distinct new feature in the dissipation rate: a
leveling off of the dissipation rate at short wavelengths
which cannot be accounted for by the hydrodynamic the-
ory discussed thus far, suggesting the presence of an ad-
ditional mechanism for surface wave dissipation in our
chiral fluid. Seeking a hydrodynamic description, we re-
call that isotropic chiral fluids can in principle possess
an additional stress in their constitutive relation, known
interchangeably as “anomalous viscosity”, “odd viscos-
ity” or “Hall viscosity” [8, 13, 38]. This non-dissipative,
transverse stress is linked by Onsager relations to the
breaking of time-reversal symmetry.

Theoretically, odd viscosity has indeed been shown to
arise in the hydrodynamics of plasmas and systems of
spinning molecules, ‘gears’, as well as quantum Hall fluids
and vortex fluids [9, 15, 39–41]. We therefore conjecture
our chiral fluid to support an additional Hall stress σo

ij =
ηo (∂iεjkvk + εik∂kvj). In incompressible fluids such as
the one considered here, the effect of odd viscosity can
solely be seen at the edge. This is because in the bulk
flow Hall stress is merely absorbed into the fluid pressure.
The signature of odd viscosity in our chiral fluid is thus
an additional boundary stress. The component normal
to the interface σnn is given by

σnn = ηo

(
∂svn +

vs
R(s)

)
, (4)

where vn (resp. vs) is the velocity normal (resp. tangen-
tial) to the surface (see Fig. 4e), and R(s) is the local
radius of curvature.

In our system, where odd stress powers a boundary-
layer edge flow, we thus expect odd viscosity to flatten
surface deformation in a manner akin to surface ten-
sion, σo ∼ ηovs/R. The excellent agreement between
our measurements and predictions from a full hydro-
dynamic theory confirms this simplified picture and es-
tablishes the presence of Hall viscosity in our colloidal
chiral fluid (see Fig. 4d, f-g). From the fit we obtain
ηo = 1.4± 0.1× 10−8 Pa m s.

The clearly visible decrease in slope in the damping
relation is the most visible signature of Hall viscosity in
our data and can be understood on dimensional grounds.
In the long wavelength limit, the wave relaxation time
is controlled by the competition of either surface ten-
sion or Hall stress with substrate friction. Dimensionally
this implies a scaling α ∼ |k|3 since the ratios γ/Γu and
ηovs/Γu have dimension of volume per unit time. In con-
trast, in the short wavelength limit, surface friction plays
no role and damping stems from the competition of sur-
face tension or Hall stress and bulk viscosities alone. In
this case dimensional analysis requires linear scaling with
wavenumber in the case of surface tension, and wave-
number independence in the case of Hall stress (see Sup-
plementary Information). This change in wavenumber
dependence brings about a visible rollover to a decreased
slope in the wave damping rate.

We note that for small ranges of kδ ∼ [−1, 1], charac-
teristic of spectral measurements in the presence of high
surface friction, the leveling off cannot be seen and the
relative roles of Hall viscosity and surface tension become
hard to separate. This is the case for the damping shown
in Fig. 4c which can be fit well by both a non-zero and
zero value of Hall viscosity (see Supplementary Informa-
tion).

Having established the presence of Hall viscosity by ex-
amining wave damping, it follows to ask whether it has
an effect on wave propagation. The first term in Eq. (4)
suggests that Hall viscosity and surface tension could act
together to support wave propagation. Surface tension
acts on a sinusoidal surface deformation by pulling down
peaks and pushing up troughs, generating an in-phase
normal velocity component. The normal Hall stress ∂svn
would then act out of phase on the inflection points of the
sinusoidal perturbation to propagate it in a chiral fash-
ion. Our full theory confirms that this additional wave-
pumping mechanism indeed exists and generates waves
even in the absence of edge currents. However, for our
hydrodynamic parameters, their effect on the dispersion
is minimal.

IV. AN ODD INSTABILITY

In much of the phenomenology we have discussed, sur-
face dynamics are essentially boundary layer dynamics.
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FIG. 4. Wave dissipation and measurement of Hall viscosity. a, In the circular geometry, surface waves yield power
spectra 〈|R(k, ω)|〉, plotted here versus the normalized wave vector kδ and frequency ωδ/uedge (c.f. Fig. 2c for a collection of
spectra). b, Power spectrum at a low friction air-water interface, for which the edge current is delocalized into the bulk when
compared to a high friction interface as in a (see insets). c, The dissipation rate of waves on the surface of a circular droplet
can be used to extract the surface tension, and the shape of α(k) can be captured by a theory with no odd viscosity (ηo = 0).
d, Lowering substrate friction causes the dissipation to level-off for large kδ, which can only be captured by a theory including
ηo. e, The tangential and normal components of velocity at the boundary give rise to a normal Hall stress (Eq. (4)). f, The
dissipation for a chiral fluid with ηo in the absence of surface tension, γ, vs. the same for a fluid with γ in the absence of
ηo. For small kδ, the two curves are indistinguishable. For large kδ, the ηo-dissipated fluid shows no k-dependence, while the
γ-dissipated fluid shows linear k-dependence. Shown also for reference is the attenuation for a fluid with finite values of both
γ and ηo g, With ηo-induced attenuation, α(k) varies with frequency with all other parameters held constant, a trend that is
not observed for γ-dissipated fluids.

Another natural question, then, is what happens when
two boundary layers meet? Draining fluid past a curved
obstacle brings about the progressive thinning of a curved
strip of chiral fluid, as shown in Fig. 1g and Supplemen-
tary Movie 6. The flow is smooth until the strip thickness
becomes comparable to the penetration depth δ; at that
point the flow goes unstable, resulting in the formation
of circular droplets. We study this novel pearling mech-
anism in experiment by creating a sequence of strips of
decreasing thickness, as shown in Fig. 5a and Supplemen-
tary Movie 11. We find that over a period of 10 minutes
the strips of chiral fluid are stable for thicknesses above
∼ 32µm and unstable below.

Although visually reminiscent of the Rayleigh-Plateau
instability of a thin fluid cylinder jet [42], this instability
is fundamentally different. In our two-dimensional sys-
tem, surface tension is a purely stabilizing force, as seen
in the wave analysis discussed above. Instead, the insta-
bility originates from the chiral surface dynamics of our

fluid. A visual signature of this origin is the consistent
offset in the phase between top and bottom perturbations
at the moment the instability occurs in all strips: Fig. 5b
shows one such example.

A linear stability analysis of a thin strip of chiral fluid
quantitatively predicts the existence of unstable modes
which consist of wave-like perturbations on the top and
bottom surfaces that have a relative phase offset, as
sketched in Fig. 5d. These are accompanied by a stable
mode with an opposite relative phase. The associated
stability diagram is shown in Fig. 5e, together with our
experimental observations. As the Hall stress has little
effect on the stability of modes for small δ (see Supple-
mentary Information), here we set ηo = 0.

An intuitive picture for the mechanism driving the in-
stability is illustrated in Fig. 5d. The geometry of a thin
slab with out-of-phase perturbations on the top and bot-
tom surfaces can be approximated by a collection of elon-
gated droplets of chiral fluid all canted in the same di-
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FIG. 5. A hydrodynamic instability. a, Strips of chiral fluid with different thicknesses. Above 32µm, the strips are stable,
as observed over the course of ≥ 10 minutes. Below 32µm the strips break into droplets within 1 minute. b, Chiral fluid strip
approaching instability. Continuous white lines represent the sum of the most prominent Fourier modes of the strip outline.
Relative phase difference between interfaces is emphasized by the two white dots and vertical dashed line. c, Overlay of strip
outlines at four breakup points; each color corresponds to a different instability occurrence. x-axis is rescaled by the most
prominent wavelength, λ. y-axis is rescaled by the thickness at the narrowest point, Tneck. The relative phase between the top
and bottom interface is consistent with theory. d, Schematic of the instability mechanism. Thin strips of chiral fluids are like
a collection of elongated droplets rotating in the direction of the edge current. This leads to the breakup (top) or stabilization
(bottom) of the strip. e, Stability diagram, calculated with linear stability analysis using our experimentally extracted values
for the hydrodynamic coefficients, with ηo = 0 (see Supplementary Information for details). The thinner the strip, the larger
the range of unstable wavelengths. A surface fluctuation at an unstable wavelength will grow exponentially: orange denotes a
positive growth rate and blue denotes a negative growth rate, namely damping. Contour lines mark growth rates corresponding
to 10 minutes (continuous) and 1 day (dashed). Black points represent experimental data from unstable strips; wavelengths
were measured by Fourier-transforming the strip outline. Error bars in thickness correspond to the standard deviation in the
measurement at various points. Error bars in wavelength correspond to the half-width of the Fourier peaks. Horizontal lines
on y-axis mark the recorded strip thicknesses: orange and blue lines correspond to unstable and stable strips, respectively.

rection. Droplets of this kind rotate in the direction of
the edge current, in this case clockwise (see Fig. 1d and
Supplementary Movie 3). Depending on the phase dif-
ference between the two interfaces, the rotation of these
effective droplets will either increase the amplitude of the
perturbation, resulting in the breakup of the strip (top);
or decrease the amplitude of the perturbation and restore
the flat interface (bottom). The consistent observation of
this phase relation between the top and bottom pertur-
bations across many experiments of strips going unstable
(Fig. 5c) further corroborates our theoretical picture of
the instability.

We have broken parity symmetry at the microscopic
level in a colloidal chiral fluid, resulting in the emer-

gence of an odd stress that in turn generates lively surface
flows. Likewise, we have broken time reversal symmetry,
giving rise to Hall viscosity, a dissipationless transport
property which has thus far remained experimentally elu-
sive. The combination of these features drives rich inter-
facial dynamics with no analogues in conventional flu-
ids. These dynamics include the uni-directional propa-
gation and anomalous attenuation of surface waves and
an asymmetric pearling instability. In principle, these
chiral phenomena can be tuned, for instance by altering
the colloidal particles’ shape and their effective interac-
tions. Beyond enabling the study of universal aspects of
a new class of hydrodynamics, colloidal chiral fluids pro-
vide a platform for engineering active materials with so
far untapped, ‘odd’ behaviors [8, 13, 15].
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