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It is well-known that by placing judiciously chosen image point forces and doublets to the 
Stokeslet above a flat wall, the no-slip boundary condition can be conveniently imposed 
on the wall Blake (1971) [8]. However, to further impose periodic boundary conditions 
on directions parallel to the wall usually involves tedious derivations because single or 
double periodicity in Stokes flow may require the periodic unit to have no net force, 
which is not satisfied by the well-known image system. In this work we present a force-
neutral image system. This neutrality allows us to represent the Stokes image system in 
a universal formulation for non-periodic, singly periodic and doubly periodic geometries. 
This formulation enables the black-box style usage of fast kernel summation methods. 
We demonstrate the efficiency and accuracy of this new image method with the periodic 
kernel independent fast multipole method in both non-periodic and periodic geometries. 
We then extend this new image system to other widely used Stokes fundamental solutions, 
including the Laplacian of the Stokeslet and the Rotne–Prager–Yamakawa tensor.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

No-slip boundaries in Stokes flow are central to much flow phenomena. For example, for Brownian suspensions above 
a no-slip wall, the wall not only constrains the motion of particles, but fundamentally changes the self and collective 
Brownian motion of suspensions by inducing anisotropy and screening effects in the mobility of particles [1–3]. Another 
example is that swimming microorganisms may swim upstream near a no-slip boundary in an imposed flow due to either 
hydrodynamic or non-hydrodynamic causes [4–7].

To compute the Stokes flow above a no-slip wall, the image method of Blake [8] is a popular choice. For a Stokeslet above 
a wall Blake showed that the no-slip condition was satisfied by adding an image Stokeslet, a modified source doublet, and a 
modified force doublet to the original Stokeslet. Similar methods have also been developed by Mitchell and Spagnolie [9,10]. 
Recently, Gimbutas et al. [11] developed a simpler image system. This system invokes standard Stokes and Laplace kernel 
evaluations only, which is compatible with the Fast Multipole Method (FMM). However, to further impose periodic boundary 
conditions on the two directions parallel to the no-slip wall is no simple task, because different kernel summations in the 
image system need to be periodized simultaneously and coupled to each other. Nguyen and Leiderman [12] recently derived 
the Ewald summation formulation for the doubly periodic Stokeslet image system, but their method showed a non-optimal 
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O(N2) scaling for N point forces. Their method was recently applied in the study of ciliary beating [13]. To our knowledge, 
the singly periodic Stokeslet image system above a no-slip wall has not yet been derived.

For convenience and efficiency, it is desirable to develop an image system where each kernel sum gt = ∑
s K (xt , ys)q(ys)

can be independently computed and periodized. Here xt and ys are target and source points with indices s and t . K is the 
kernel function. The kernel sum could be simply written as g = K q, where the indices s, t are suppressed. For Stokes and 
Laplace kernel sums, recently developed optimal fast periodic kernel summation methods with flexible periodic boundary 
conditions can be used, including the Spectral Ewald methods [14–16], which scale as O(N log N), and the periodic Kernel 
Independent Fast Multipole Method (KIFMM) method by Yan and Shelley [17], which scales as O(N). However the image 
systems developed by Gimbutas et al. [11] does not work in this framework, because the partially periodic (i.e., simply or 
doubly periodic) summations for the Stokeslet and the Laplace monopole kernel do not allow a net force or a net monopole 
in a periodic box, as otherwise the infinite periodic summations diverge. Unfortunately this requirement is not satisfied by 
the image system of [11].

In this work we propose a new image system for the Stokeslet, which satisfies the neutrality condition by rearranging 
the Stokeslet and Laplace kernel sums in the image system by Gimbutas et al. [11]. Therefore any singly or doubly periodic 
kernel summation method can be used as a black-box routine to periodize this new image system.

In Section 2 we briefly derive the new image system. Numerical results for Stokeslet above a no-slip wall with non-
periodic and doubly periodic boundary conditions are presented in Section 3. In Section 4 we extend the new image to 
the Laplacian of Stokeslet and the widely used Rotne–Prager–Yamakawa tensor [18,19]. We conclude this work with a brief 
discussion about its coupling to fast summation methods, and its extension to other kernels.

2. Formulation

We first consider a point force f = ( f1, f2, f3) located at y = (y1, y2, y3) above an infinite no-slip wall at the plane 
x3 = 0. We define the image force f I = ( f1, f2, − f3) located at y I = (y1, y2, −y3) below the wall. The complete image sys-
tem to satisfy the no-slip condition on the wall is given by Gimbutas et al. [11] following the Papkovich–Neuber technique:

u(x) = J (x, y) f + J (x, y I )
(
− f I

)
− uC (x), (1a)

uC (x) = x3∇xφ(x) − x̂3φ(x), φ(x)
def= G S(x, y I ) f I

3 + G D(x, y I )(y3 f I ), (1b)

where x̂3 is the unit vector in the x3 direction. In this expression three kernels are involved: the Laplace monopole 
kernel G S (x, y) = 1

4π
1

|x−y| , the Laplace dipole kernel G D(x, y) = 1
4π

x−y
|x−y|3 = ∇y G S (x, y), and the Stokeslet J (x, y) =

1
8π

(
I

|x−y| + (x−y)(x−y)

|x−y|3
)

. We set the fluid viscosity to η = 1 in J for simplicity. It is clear that the net force is 

f + (− f I ) = (0, 0, 2 f3) �= 0 in the Stokes kernel sum, and the net monopole is f I
3 = − f3 �= 0 in the Laplace monopole kernel 

sum. This forbids us to apply partially periodic kernel sum methods directly. The requirement of neutrality is straightfor-
ward to understand for Laplace kernels. For Stokeslet this depends on the particular periodic boundary condition. With 
triply periodic periodic boundary condition, the net force within a periodic box does not have to be zero because the net 
force can be balanced by the global pressure gradient [20]. However the net force must be zero with singly and doubly 
periodic boundary conditions, as demonstrated by Lindbo and Tornberg [14].

To remove the net force and net monopole, we convert the third component of Stokes force into a Laplace monopole 
kernel sum following the idea of Tornberg and Greengard [21]. This involves tedious algebraic manipulations and we only 
summarize the results here. The new image system splits the flow velocity into 4 independent parts u(x) = uS + uD + uL1 +
uL2, where each part is computed by one kernel sum. In the following, f xy = ( f1, f2, 0) denotes the x1, x2 components of 
the point force f , parallel to the no-slip wall.

uS = J (x, y) f xy + J (x, y I )
(− f xy

)
, (2a)

uD = (
x3∇x − x̂3

)
φD(x), with φD def= G D(x, y I ) · y3(− f1,− f2, f3)

T (2b)

uL1 = −1

2

(
x3∇x − x̂3

)
φ S(x), with φ S(x)

def= G S(x, y) f3 + G S(x, y I )(− f3), (2c)

uL2 = 1

2
∇xφ

S Z (x), with φ S Z (x)
def=

[
G S(x, y)( f3 y3) + G S(x, y I )(− f3 y3)

]
. (2d)

uS denotes the Stokes kernel sum, φD denotes the Laplace dipole sum, and φ S , φ S Z denote two Laplace monopole sums. 
The values and gradients of φD , φ S and φ S Z are computed at the target point x. It is straightforward to verify that u(x)

is equivalent to the original image system in Eq. (1). In this new image system, the Stokeslet sum and the two Laplace 
monopole sums are obviously neutral. The Laplace dipole sum is intrinsically neutral, because each dipole source is the 
asymptotic limit of zero distance between equal and opposite charges. Therefore, each of the 4 kernel sums can be separately 
periodized, and we claim this new image system is applicable for non-periodic, singly periodic and doubly periodic systems.
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Table 1
Timing (in seconds) results for 973 target and source points with doubly periodic boundary condition. τtree is the time to construct the octree for FMM, 
τN is the time for near-field evaluations and τF is the time for far-field evaluations. Stokes, Dipole, Monopole 1 and Monopole 2 correspond to uS , uD , 
uL1, and uL2 in Eq. (2), respectively. p is the number of equivalent points per cubic box edge in KIFMM, controlling the accuracy and cost of KIFMM.

p Stokes Dipole & Monopole 1 Monopole 2

τtree τN τF τtree τN τF τtree τN τF

6 0.75 1.56 0.026 0.81 1.08 0.021 0.81 1.02 0.022
8 0.70 2.03 0.051 0.75 1.43 0.041 0.69 1.37 0.042
10 0.73 2.64 0.085 0.69 1.78 0.068 0.62 1.55 0.066
12 0.73 3.83 0.14 0.67 2.20 0.099 0.90 2.01 0.098
14 0.74 5.14 0.19 0.63 2.59 0.14 0.91 2.38 0.15
16 0.86 7.95 0.28 0.78 3.19 0.18 0.95 2.82 0.18

Eq. (2) obviously keeps the same computational complexity of the underlying summation methods, which is O(N log N)

for FFT-based methods and O(N) for KIFMM. Eq. (2) is also close-to-optimal because although one more G S kernel sum is 
invoked compared to the image system given by Eq. (1), this G S kernel sum is usually much faster than the sum for the 
Stokeslet J , because the kernel G S is a scalar while the Stokeslet J is a 3 × 3 tensor.

3. Numerical results

In this section we present numerical results using the periodic KIFMM method developed in our previous work [17]. It 
works by splitting the infinite periodic domain into a near field and a far field. The near field is directly summed by KIFMM 
while the far field is added through a precomputed Multipole-To-Local (M2L) operator applied to the near field calculation 
results. A single parameter p controls the accuracy and cost the KIFMM method, by placing p equivalent points per edge, in 
total 6(p − 1)2 + 2 equivalent point sources for each cubic box in the octree in the KIFMM algorithm. Using larger p gives 
better accuracy but has higher computational cost. Approximately, p = 10 gives single precision accuracy and p = 16 gives 
double precision accuracy. The M2L operators for the kernels J , G S , and G D are constructed with the doubly periodic for-
mulation derived by Lindbo and Tornberg [14] and Tornberg [22]. The computer program is based on the high-performance 
package PVFMM developed by Malhotra and Biros [23]. Since the gradient of Laplace dipole potential and Laplace monopole 
potential are required in Eq. (2b), (2c), (2d), we modified the corresponding kernels to generate the potentials simultane-
ously with the gradients in the final Source-To-Target (S2T), Local-To-Target (L2T), and Multipole-To-Target (M2T) stages of 
KIFMM [24].

We further optimized the implementation by combining Eq. (2b), (2c) into one KIFMM because they share the same 
operator 

(
x3∇x − x̂3

)
in the final assembling step. This optimization is achieved by representing the M2M, M2L, and L2L 

operations in the tree with Laplace monopole densities only.

3.1. Timing results

The computation is timed on a 12-core 3.6 GHz Intel Xeon workstation. 973 point forces are placed at a set of random 
source points. Each force component is randomly generated from a uniform distribution in [−0.5, 0.5], and each coordinate 
component of the source points is randomly generated from a lognormal distribution with standard parameters (0.2, 0.5). 
The target points are chosen to be a set of 973 Chebyshev quadrature points. The source and target points are both scaled 
and shifted to fill the half unit cube [0, 1)2 × [0, 0.5). The no-slip boundary condition is imposed on the plane x3 = 0 by 
placing the image points in the other half unit cube [0, 1)2 × (−0.5, 0].

With the image method, to evaluate the velocity at T points due to S point forces, the Stokes FMM evaluates from 2S
source points (including image points) to T target points. The Laplace dipole FMM is from S to T points, and the two 
Laplace FMMs are both from 2S (including image points) to T points. The timing results are shown in Table 1. The Stokes 
FMM evaluates Eq. (2a) and the Monopole 2 FMM evaluates Eq. (2d). The Dipole & Monopole 1 FMM evaluates both Eq. (2b), 
(2c) in a single operation, as explained in the optimization mentioned above.

3.2. Accuracy results

In this section we use the same set of point forces and target points in the unit cube as in the last section, and present 
results for both non-periodic and doubly periodic boundary conditions. To measure the accuracy of satisfying the no-slip 
boundary condition, a mesh of 972 Chebyshev points is placed on the no-slip wall and the maximum component of flow 
velocity max|u| at these points is calculated. To measure the accuracy of the doubly periodic boundary condition, a mesh 
of 972 Chebyshev points is placed on each of the four side boundaries with x3 ∈ [0, 0.5). The relative L2 error for the flow 
velocity at the Chebyshev points on the two side walls x1 = 0, 1, x2 ∈ [0, 1), x3 ∈ [0, 0.5) is used as the measurement of 
periodic boundary condition error in the X direction, denoted by εL2,X . Similarly εL2,Y is also measured. As shown in Fig. 1
the numerical errors in the no-slip and periodic boundary conditions converge exponentially with increasing p, and close 
to machine precision can be achieved.
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Fig. 1. The accuracy test for the same set of source and target points specified in Section 3.1. A: only no-slip condition is imposed on the x3 = 0 plane. 
B: singly periodic boundary condition is imposed in x1 direction. C: doubly periodic boundary condition is imposed in x1, x2 directions. In subplot C, εL2,X

and εL2,Y almost overlap. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4. The extension to other Stokes-related kernels

4.1. The Laplacian of Stokeslet

The Laplacian of the Stokeslet, ∇2
x J , is often invoked to compute the flow induced by a degenerate force doublet. For 

example, the flow induced by a slender fiber with length L can be written as u(x) = ∫ L
s=0

(
1 + 1

2 ε2∇2
x

)
J [x, y(s)] f (s), 

where f is the force density on the fiber, and ε � 1 is the slenderness parameter of the fiber [25,26]. It is straightforward 
to construct the image system for ∇2

x J by directly taking the Laplacian of Eq. (2). However, a simpler image system can 
be derived by realizing that ∇2

x J (x, y) = ∇xG D(x, y). We denote this kernel by Q (x, y) because it is similar to the Green’s 
function of an electrostatic quadrupole:

Q (x, y) = ∇2
x J (x, y) = ∇xG D(x, y) (3)

It is straightforward to verify that ∇2
x Q = 0 and ∇x · Q = 0.

Following the Papkovich–Neuber approach as used by Gimbutas et al. [11], we find a harmonic potential φG D def= x̂3 ·
[ Q (x, y I ) f I ] to construct the solution to Stokes equation to complete the image system. We choose the superscript G D
because Q is the gradient of the Laplace dipole kernel G D . It is straightforward to verify that the following image system 
satisfies the no-slip boundary condition and the Stokes equation:

uG D(x) = x3∇xφ
G D(x) − x̂3 · φG D(x), φG D(x)

def= x̂3

[
Q (x, y I ) f I

]
(4)

u = Q (x, y) f − Q (x, y I ) f I − 2uG D , p = −4
∂φG D(x)

∂x3
(5)

This image system can be calculated with two kernel sums, Q (x, y) f and Q (x, y I ) f I , both involving the Q kernel only. 
Further we do not need to rearrange and neutralize the sums, because Q (x, y) = ∇xG D(x, y) and G D is intrinsically neutral 
since it represents a Laplace dipole as discussed before. The doubly periodic formulation by Bleibel [27] or the general 
formulation for electrostatic systems by Tornberg [22] can be directly used as black-box periodic summation routines for 
the kernel Q .

4.2. The Rotne–Prager–Yamakawa tensor

The Rotne–Prager–Yamakawa (RPY) tensor [18,19] is widely used in simulations of Brownian suspensions and Langevin 
dynamics of biomolecules because it is a reasonably accurate approximation to hydrodynamics in Stokes flow and, more 
importantly, is designed to be always symmetric positive definite. Without the wall, the RPY tensor is constructed from the 
Stokeslet J (x, y) as:

u =
(

1 + 1

6
a2∇2

x

)
u′, u′ =

(
1 + 1

6
b2∇2

y

)
J (x, y) f . (6)

Here u′ is the velocity disturbance induced by the force f on a ‘source’ particle with radius b, and u is the velocity of a 
‘target’ particle with radius a induced by u′ . The Laplacian terms 1

6 a2∇2
x and 1

6 b2∇2
y represent the finite-size effects of the 

target and source particles, respectively. In the absence of the wall, the bi-Laplacian term ∇2
x ∇2

y J (x, y) is zero. However, 
the bi-Laplacian term is not zero in the presence of the wall, and the image system is significantly more complicated than 
Eq. (6), as shown by Swan and Brady [28]. In this section we derive an image system for Eq. (6) based on Eq. (2). This new 
image system is applicable with either periodic or non-periodic geometries.
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Table 2
The kernel sums for the image RPY tensor in a monodisperse system.

Source strength and location Target values

Stokes 1 uS f xy at y, and − f xy at y I uS ,∇2
x uS

Laplace Monopole 1 φ S f3 at y, and − f3 at y I φ S ,∇xφ
S ,∇x∇xφ

S

Laplace Monopole 2 φ S Z f3 y3 at y, and − f3 y3 at y I φ S Z ,∇xφ
S Z ,∇x∇xφ

S Z

Laplace Dipole 1 φD y3(− f1,− f2, f3)T at y I φD ,∇xφ
D ,∇x∇xφ

D

Laplace Dipole 2 φD Z (0,0, f3)T at y, and (0,0, f3)T at y I ∇xφ
D Z

Laplace Quadrupole φQ 2

⎡
⎣ f3 0 0

0 f3 0
f1 f2 0

⎤
⎦ at y φQ , ∇xφ

Q

Starting from Eq. (2), the velocity u of the target particle at x induced by the force f on the source particle located at y
is:

u =
(

1 + 1

6
a2∇2

x

)
u′, u′ =

(
1 + 1

6
b2∇2

y

)(
uS + uD + uL1 + uL2

)
. (7)

This can be simplified by realizing that ∇2
y uL1 = 0, ∇2

x uL2 = 0, and ∇2
x ∇2

y uS = 0:

u = uS + uD + uL1 + uL2 + b2

6
∇2

y

(
uS + uD + uL2

)

+ a2

6
∇2

x

(
uS + uD + uL1

)
+ a2b2

36
∇2

x ∇2
y uD . (8)

The ∇2
x terms can be written as:

∇2
x uS = Q (x, y) f xy + Q (x, y I )(− f xy), (9)

∇2
x uD = x3∇x∇2

x φD + 2
∂

∂x3
∇xφ

D − [0,0,∇2
x φD ] = 2

∂

∂x3
∇xφ

D , (10)

∇2
x uL1 = −1

2
x3∇x∇2

x φ S − ∂

∂x3
∇xφ

S − [0,0,∇2
x φ S ] = − ∂

∂x3
∇xφ

S , (11)

where we have utilized the fact that ∇2
x φD = 0, and ∇2

x φ S = 0.
By symmetry ∇2

y uS = ∇2
x uS . Other ∇2

y and the bi-Laplacian terms can be written as:

∇2
y uL2 = ∇xφ

D Z , φD Z def= G D(x, y) · (0,0, f3)
T + G D(x, y I ) · (0,0, f3)

T , (12)

∇2
y uD = x3∇x∇2

yφ
D − (0,0,∇2

yφ
D), (13)

∇2
x ∇2

y uD = 2
∂

∂x3
∇x∇2

yφ
D , ∇2

yφ
D def= φQ = G Q (x, y) : 2

⎡
⎣ f3 0 0

0 f3 0
f1 f2 0

⎤
⎦ , (14)

where ∇2
yφ

D is represented by the field φQ induced by a Laplace quadrupole with kernel function G Q (x, y) = ∇y G D(x, y). 
Here the symbol ‘ : ’ denotes double-contraction of 3 × 3 tensors. The image system for the RPY tensor in non-periodic and 
periodic geometries can be universally represented as a combination of the terms derived above. We summarize the results 
for monodisperse and polydisperse systems separately in the following, because in monodisperse systems the image system 
can be simplified with a = b.

4.2.1. The kernel sums for monodisperse systems
Using that in monodisperse systems b = a for all particles, the particle radius a is scaled out of the source strengths and 

6 kernel sums are needed as shown in Table 2.
The velocity of the target particle can be written as a combination of the target values:

u =
(

1 + a2

3
∇2

x

)
uS +

(
x3∇x − x̂3 + a2

3

∂

∂x3
∇x

)
φD − 1

2

(
x3∇x − x̂3 + a2

3

∂

∂x3
∇x

)
φ S

+ 1

2
∇xφ

S Z + a2

6
∇xφ

D Z +
(

a2

6
x3∇x − a2

6
x̂3 + a4

18

∂

∂x3
∇x

)
φQ (15)
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Table 3
The kernel sums for the image RPY tensor in a polydisperse system.

Source strength and location Target values

Stokes 1 uS f xy at y, and − f xy at y I uS ,∇2
x uS

Stokes 2 uS
b b2 f xy at y, and −b2 f xy at y I ∇2

x uS
b

Laplace Monopole 1 φ S f3 at y, and − f3 at y I φ S ,∇xφ
S ,∇x∇xφ

S

Laplace Monopole 2 φ S Z f3 y3 at y, and − f3 y3 at y I φ S Z ,∇xφ
S Z ,∇x∇xφ

S Z

Laplace Dipole 1 φD y3(− f1,− f2, f3)T at y I φD ,∇xφ
D ,∇x∇xφ

D

Laplace Dipole 2 φD Z
b b2(0,0, f3)T at y, and b2(0,0, f3)T at y I ∇xφ

D Z
b

Laplace Quadrupole φ
Q
b 2 b2

⎡
⎣ f3 0 0

0 f3 0
f1 f2 0

⎤
⎦ at y φ

Q
b , ∇xφ

Q
b

Fig. 2. The velocity of a target particle induced by a source particle. The particle shown in the figure is the source particle with radius b, and a force F is 
applied on the source particle in x̂1 (A, B) or x̂3 (C, D) directions. The vector field shows the velocity of the target particle with radius a centered at some 
point in space. A and C: a/b = 0, the target particle is infinitely small. B and D: a/b = 0.5, the target particle center is not allowed to enter the dashed 
circle with radius a + b due to non-overlap condition.

4.2.2. The kernel sums for polydisperse systems
In this case we cannot simply scale the kernel sum results with the particle radius as in the previous case because the 

radius b can be different for all source particles. Therefore b must be included in the source strengths and 7 kernel sums 
are needed, as shown in Table 3.

The velocity of the target particle is a combination of the target values:

u =
(

1 + a2

6
∇2

x

)
uS + 1

6
∇2

x uS
b +

(
x3∇x − x̂3 + 2

a2

6

∂

∂x3
∇x

)
φD − 1

2

(
x3∇x − x̂3 + 2

a2

6

∂

∂x3
∇x

)
φ S

+ 1

2
∇xφ

S Z + 1

6
∇xφ

D Z
b +

(
1

6
x3∇x − 1

6
x̂3 + a2

18

∂

∂x3
∇x

)
φ

Q
b (16)

As we discussed in Section 2, the image systems tabulated in Table 2 and 3 are universally applicable for non-periodic, 
singly periodic, and doubly periodic geometries, because the Stokes and Laplace monopole kernel sums are designed to be 
neutral, and the Laplace dipole and quadrupole kernel sums are intrinsically neutral. Also the calculation of gradients and 
Laplacians (∇xuS , etc.) requires little extra cost in addition to the evaluation of field values (uS , etc.) in both FMM and FFT 
type methods. In FMM the gradients and Laplacians are straightforward to calculate in the final L2T, S2T and M2T stages 
because we can directly use the equivalent sources in KIFMM or the multipole basis functions in classic FMM to evaluate 
the gradients and Laplacians. In FFT type methods the gradients and Laplacians can also be conveniently evaluated using 
interpolation schemes in the final stage where the kernel sum values are interpolated from the regular FFT mesh to the 
target points. The detailed cost analysis depends on the specific kernel sum methods used, but in any cases the summation 
scheme shown in Table 2 and 3 does not change the algorithmic complexity of the underlying kernel sum methods. The 
final combination stages of Eq. (15) and (16) have negligible cost, similar to the case of the Stokeslet.

We conclude this section with a demonstration of the image system Eq. (16) in the polydisperse case, in the non-periodic 
geometry above a no-slip wall. The velocity of the target particle with radius a for two cases in Fig. 2: a/b = 0 in subplots 
A & C and a/b = 0.5 in subplots B & D, are shown. The no-slip wall is placed at the x3 = 0 plane. The vector field shows 
the velocity of the target particle, generated by a force F on the source particle b located in (0, 0, 2b). The velocity vectors 
are colored by their magnitude. F = (F , 0, 0) in A and B, and F = (0, 0, F ) in C and D. The dashed circles in B and D have 
radius a + b, showing the region where the center of the target particle cannot enter since we do not allow the source and 
target spheres to overlap. It is clear that the no-slip condition is satisfied.

5. Discussion & conclusion

In this paper we presented a new image system of a Stokeslet above a no-slip wall. This new image system generates 
exactly the same flow field in the non-periodic geometry as the image system derived by Blake [8] and by Gimbutas et al. 
[11]. Moreover, this new image system is straightforward to periodize with the partially periodic kernel summation methods, 
because the image system has been rearranged into neutral systems. In other words, the periodic (or non-periodic) kernel 
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sum methods can be called as black-box routines. We demonstrated the accuracy and efficiency of this new image system in 
Section 3, using the periodic KIFMM by Yan and Shelley [17] as the black-box kernel summation routines. Other summation 
methods can also be straightforwardly used without modifications [14,29–32].

The decomposition into neutral systems presented in Eq. (2) is not unique. Following the idea of Tornberg and Greengard 
[21], the summations involving kernels J and G D can both be represented with several kernel sums involving the Laplace 
monopole kernel G S only. This reformulation allows the usage of classic Laplace FMM and Laplace Ewald methods. The 
Stokeslet image system presented in this work can also be extended to the regularized Stokeslet, by directly integrating 
Eq. (2) over the regularization ‘blob’ functions. Then the regularized image system can be periodized, utilizing the doubly 
periodic schemes by Cortez and Hoffmann [33] for the regularized Stokeslet.

The image systems for other fundamental solutions in Stokes flow have also been studied, including the doublet, stresslet, 
and rotlet kernels [11]. However they do not need to be rearranged into neutral systems because a doublet, a stresslet, or a 
rotlet is intrinsically a neutral force couple in Stokes flow.

In this work we also extended our image system of Stokeslet to its Laplacian and the RPY tensor. In both cases the image 
systems are universally applicable for non-periodic, singly periodic or doubly periodic geometries. The image system for ∇2

x J
can be used in the simulations of rigid or flexible fibers above a wall in Stokes flow. The image RPY tensor maintains the 
Symmetric-Positive-Definiteness of the mobility matrix, and can be widely used in Brownian dynamics simulations where 
the Brownian fluctuations must be generated from a SPD mobility matrix according to the fluctuation-dissipation theorem.
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Appendix A. Implementation

The method mentioned in this paper has been implemented in the software PeriodicFMM, freely available on GitHub: 
https://github .com /wenyan4work /PeriodicFMM. The package is native in C++ with interfaces in C, Fortran, and Python, 
and is fully parallelized with both OpenMP and MPI. The package is based on the author’s fork of PVFMM [17], also available 
on GitHub: https://github .com /wenyan4work /pvfmm.
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