
 

Active matter invasion of a viscous fluid: Unstable sheets and a no-flow theorem
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We investigate the dynamics of a dilute suspension of hydrodynamically interacting motile or immotile
stress-generating swimmers or particles as they invade a surrounding viscous fluid. Colonies of aligned
pusher particles are shown to elongate in the direction of particle orientation and undergo a cascade of
transverse concentration instabilities, governed at small times by an equation that also describes the
Saffman-Taylor instability in a Hele-Shaw cell, or the Rayleigh-Taylor instability in a two-dimensional
flow through a porous medium. Thin sheets of aligned pusher particles are always unstable, while sheets of
aligned puller particles can either be stable (immotile particles), or unstable (motile particles) with a growth
rate that is nonmonotonic in the force dipole strength. We also prove a surprising “no-flow theorem”: a
distribution initially isotropic in orientation loses isotropy immediately but in such a way that results in no
fluid flow everywhere and for all time.
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The last decade has seen an explosion of interest in the
collective dynamics of active particles immersed in fluids,
from swimming microorganisms to magnetically driven and
phoretic colloidal particles [1–13] to kinesin-driven micro-
tubule assemblies [14–21]. A first-principles model of active
suspensions is a mean-field kinetic theory that tracks the
distribution of particle positions and orientations and which
may include hydrodynamic interactions [7,10,22–24] and
short-range physics [24,25]. Constituent particles are clas-
sified as either “pushers” or “pullers” depending on the sign
of the generated stresslet flow, which in turn depends on the
geometry of the body and themechanism of stress generation
[23,26–30]. Other models include Landau-de Gennes
“Q tensor” theories and moment-closure theories [31–36].
Generic features in these systems include long-range coher-
ence, topological defects, and instability [23,36–41].
Much is known about active suspensions that cover the

entire available physical domain. Far less is known about
the invasion of a surrounding particle-free environment,
though this is of considerable importance in the dynamic
self-assembly of swarms [42–44], and in the formation of
biofilms, mycelia, and fruiting bodies [45,46]. Novel means
of bringing bacteria into a confined region using external
flows have allowed for a closer look at rapid expansion,
including acoustic trapping [47,48], UV light exposure [49],

and vortical flows [50,51]. The effects of confinement by
soft boundaries with surface tension has seen theoretical
treatment [52,53], and unstable bands of active particles have
been studied in a dry system [54].
In this Letter, we investigate the dynamics of colonies of

either motile or immotile active particles as they invade a
surrounding viscous fluid. Colonies of aligned pushers are
shown to elongate in the direction of particle orientation
and then undergo a cascade of transverse concentration
instabilities. The initial instability in two-dimensions is
shown to be governed at small times by an equation
that also describes the Saffman-Taylor instability in a
Hele-Shaw cell (flow through a small gap between two
nearby plates), or the Rayleigh-Taylor instability in a two-
dimensional flow through a porous medium. Linear sta-
bility analysis offers approximations that match the results
of full numerical simulations. We close with a proof and
demonstration of a counter-intuitive “no-flow theorem,”
that an isotropically oriented distribution with any initial
concentration profile results in no fluid flow everywhere
and for all time.
Mathematical model.—Following Refs. [23,24], we

describe a dilute suspension of N self-propelled rodlike
particles in a viscous fluid by the particle distribution
function, Ψðx;p; tÞ, where x is the particle position in a
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periodic spatial domainD while p is the particle orientation
vector on the unit ball S (jpj ¼ 1). The number of particles
is conserved, N ¼ R

D

R
S Ψðx;p; tÞdpdx, resulting in a

Smoluchowski equation,

Ψt þ∇ · ð _xΨÞ þ∇p · ð _pΨÞ ¼ 0; ð1Þ

where ∇ ¼ ∇x ¼ ∂=∂x and ∇p ¼ ðI − ppÞ · ∂=∂p.
Neglecting collisions [40], the fluxes _x and _p are given by

_x ¼ V0pþ uðxÞ − dt∇ðlnΨÞ; ð2Þ

_p ¼ ðI − ppÞ · ðp ·∇uÞ − dr∇pðlnΨÞ; ð3Þ

with V0 the swimming speed, dt (dr) the translational
(rotational) diffusivity, uðx; tÞ the fluid velocity, and pp a
dyadic product.
The environment is assumed to be a viscous Newtonian

fluid, driven by stresses generated by the suspended
particles. The flow field u satisfies the Stokes equations,
consisting of momentum and mass conservation,

−∇qþ μ∇2uþ∇ · Σa ¼ 0; ∇ · u ¼ 0; ð4Þ
with q the pressure, μ the dynamic viscosity, and Σa ¼
σhppi the active stress (proportional to the second orienta-
tional moment of Ψ, see below). The coefficient σ is the
force dipole (or stresslet) strength, with σ < 0 for pushers
and σ > 0 for pullers [10], which has been computed for
ellipsoidal Janus particles [27,29] and for more general
particle types [30,55,56], and obtained experimentally for
a few swimming cells [57,58]. Orientational moments will
be denoted by hhðpÞi ¼ R

S hðpÞΨdp. For example, inte-
grating Eq. (1) gives an evolution equation for the particle
concentration, c ¼ h1i, namely,

ct þ∇ · ðcuÞ − dt∇2c ¼ −V0∇ · hpi; ð5Þ
where hpi is the polarity [10].
With l the individual particle length, we scale velocities

by the swimming speedV0 and lengths by themean free path
lc ¼ ðV=VpÞl, where V is the total fluid volume and
Vp ¼ Nl3 is an effective volume of particles, hence lc ¼
VðNl2Þ−1. Time is scaled by lc=V0, force densities are
scaled by μV0=l2

c, and Ψ is normalized by the particle
number density, N=V ¼ ðl2lcÞ−1 ¼ ðl=lcÞl−3. The
dimensionless dipole strength is defined as α ¼ σ=
½μV0l2

c�. With all variables now taken to be dimensionless,
particle conservation is written as κ̃−1

R
D

R
S Ψdpdx ¼ 1,

where κ̃−1 ¼ l3
c=V is proportional to the particle volume

fraction. In the case of immotile particles, a different velocity
scale must be chosen [59].
The far-field velocity due to an individual swimmer

at the origin, oriented in the direction p, is u ¼
αð8πÞ−1pp∶∇GðxÞ where Gij ¼ δij=jxj þ xixj=jxj3 is the

Stokeslet singularity [60]. The active force density is then
given by fa ¼ αðlc=lÞ2∇ · hppi. Following Ref. [23], for
the sake of comparison, we set lc=l ¼ 1. The swimming
speed V0, now taken as dimensionless, is unity for motile
systems and zero otherwise.
Wewill consider the case of confinement tomotion in two-

dimensions in a periodic domain ðx; yÞ ∈ ½0; LÞ × ½0; HÞ,
and invariance in the ẑ direction,writingp ¼ ðcos θ; sin θ; 0Þ
and the distribution as Ψðx; y; θ; tÞ. It is expedient to then
define κ ¼ HL so that κ−1

R
L
0

R
H
0

R
2π
0 Ψdθdydx ¼ 1.

Numerical solution of Eqs. (1)–(4) is carried out using L ¼
H ¼ 50 and a pseudospectral method with 2563 grid points
and dealiasing (using the 3=2 rule) [61]; an integrating factor
method, along with a second-order accurate Adams-
Bashforth scheme, is used for time stepping.
Dynamics of thin active sheets.—To motivate the study

to come we first consider the invasion of a concentrated
cylindrical colony, Gaussian in cross section, of motile
particles initially aligned in the x̂ direction into an empty
viscous fluid, shown in Fig. 1(a). The associated global
flow field is exactly that of a single regularized force dipole,
resulting for pullers in a stable concentration elongation in
a direction orthogonal to the original swimmer orientation
[59,62]. For pushers, the colony-induced velocity field
changes sign and elongation is parallel to the swimming
direction, but if slightly perturbed a transverse concen-
tration instability ensues. Fore-aft symmetry is broken due
to particle motility; the colony splays at the leading tip on
the right, while undergoing a periodic folding at the rear,
reminiscent of the buckling of planar viscous jets, sedi-
menting elastic filaments, and beams extruded into viscous
fluids [63–65].
To better understand this dramatic evolution, we turn

to the behavior of an infinite sheet of particles that are
initially in alignment. Figure 1(b) shows the evolution
of a distribution of immotile (top) and motile (bottom)
pusher particles, initially confined to a thin band, and
with a small transverse concentration perturbation.
Early stages show rapid growth of the wave amplitude.
At the same time, individual particles are rotated so that
they remain nearly tangent to the concentration band
which results in a secondary instability and self-folding.
The same structures are observed again and again on
smaller length scales, though particle motility breaks
left-right symmetry and significantly alters the structure
of subsequent folding events. At longer times, the
system is finally drawn to an unsteady roiling state
(see Ref. [59]), with uniform concentration for immotile
particles [c satisfies a pure advection-diffusion equation
in Eq. (5) in this case] or concentration bands described
by Saintillan and Shelley [23] for motile particles.
To analyze the instability, let hðx; tÞ and ϕðx; tÞ represent

the vertical displacement and polarity of the line distribu-
tion, respectively, with n ¼ hpi=c ¼ ðcosϕ; sinϕ; 0Þ the
normalized polarity. We study the dynamics of this active
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sheet via its far-field self-influence. For small h and ϕ, and
solving Eq. (4) for u [59], we find

ht þ V0hx ¼ vþ V0ϕ; ϕt þ V0ϕx ¼ vx; ð6Þ

v ¼ −
ακ

4L
H½hx�; ð7Þ

where v is the vertical component of velocity evaluated on
the flat surface h ¼ 0, and H½·� is the Hilbert transform,

H½f�ðxÞ ¼ 1

π
P
Z

∞

−∞

fðyÞ
x − y

dy; ð8Þ

where P denotes principal value. The Hilbert transform
is diagonalized in a Fourier basis, with H½eiqx� ¼
−i signðqÞeiqx. The ansatz hhðx; tÞ; ϕðx; tÞi ¼ P

khĥkðtÞ;
ϕ̂kðtÞi expð2πikx=LÞ therefore results in a quadratic eigen-
value problem, and the eigenvalues

λ� ¼ π

4L4
ð−ακjkj − 8ikLV0 � γkÞ; ð9Þ

where γk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ακðακk2 − 16iLV0kjkjÞ

p
. A comparison to

numerics is shown in Fig. 2 for motile pushers with three
negative dipole strengths along with the theory for a wider
range of α and k. The analytical predictions are accurate for
the entire range studied, with discrepancies owing to the
vertical periodic boundary condition and the nonvanishing
thickness of the active sheet in the simulations.
In the immotile case, V0 ¼ 0 (or in the limit as

jαj=V0 → ∞), sheets of pushers are all unstable and sheets

of pullers are all stable, with growth and decay rates both
given by −πακjkj=ð2L2Þ. This behavior owes to the
velocity field created by the active stress, illustrated in
Fig. 2 (see Supplemental Material Movie M2 [59]), which
amplifies or damps the initial perturbation. The linearized
dynamics are now governed solely by the equation

ht ¼
−ακ
4L

H½hx�: ð10Þ

This expression establishes an unexpected connection to
well-studied phenomena in entirely different settings:

FIG. 1. (a) Concentration evolution of a weakly perturbed cylindrical colony (Gaussian in cross section) of aligned motile pullers
(α ¼ 0.5, right) and pushers (α ¼ −0.5, bottom). Stream function contours are included at t ¼ 0 with solid (dashed) lines representing
positive (negative) values if α < 0, and the signs are reversed if α > 0. See Supplemental Material Movie M1 [59]. (b) Evolution of a
thin sheet of immotile (top) and motile (bottom) pusher particles with α ¼ −1, with initial distribution function Ψðx; θ; t ¼ 0Þ ¼
C expf−ðy − hðxÞÞ2=a2 − θ2=b2g and C a normalization constant. The initial perturbation is given by hðxÞ ¼ 0.1 sinð6πx=LÞ and
ða; bÞ ¼ ð2; 0.2Þ. The polarity field hpi (arrows) shows the local particle orientation. Exponential growth in amplitude leads to a
secondary instability and self-folding at t ≈ 2.5, which plays out again at t ≈ 4 with similar features on a smaller scale (dashed boxes).
The small initial spread in orientation and small noise results in eventual loss of symmetry and the system arrives in an unsteady roiling
state (t ¼ 150) with uniform concentration (immotile particles) or concentration bands (motile particles). See Supplemental Material
Movie M2 [59].

FIG. 2. (Top left) A sheet of aligned pushers is unstable to
transverse concentration perturbations due to its self-generated
velocity field. (Bottom left) The positive growth rate for motile
pushers, comparing numerics and theory. (Right) Theoretical
growth rates for motile pushers for a range of dipole strengths and
wave numbers.
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interfacial instabilities in gravity or pressure-driven Hele-
Shaw problems, or two-dimensional flows in porous
media, without surface tension, whose flow is governed
by Darcy’s Law [66,67] (also known as the Muskat
problem [68,69]). As in the present setting, the classical
Rayleigh-Taylor instability is modified to an exponential
growth rate dependence which is linear in jkj [70]. Such
interfacial instabilities are associated with the formation
of singularities in free-surface flows, e.g., the finite-time
“Moore singularity” development on a vortex sheet in
an inviscid fluid with no surface tension described by
the Kelvin-Helmholtz instability [71,72], a higher-order
system that shares linear growth rate dependence on jkj
[73–77]. We thus observe an identical initial growth
behavior, but nonlinear terms for large amplitude waves
result in a unique folding event in t ≈ 2.5 in Fig. 1(b) and
very different long-time behavior.
Meanwhile in the motile case, V0 ¼ 1, sheets of

pushers remain unstable for any dipole strength. Sheets
of pullers, however, excite a positive-real-part eigenvalue
in Eq. (9). Unlike in the case of pushers, the maximal
eigenvalue is not monotonic in the force dipole strength
(Fig. 3). Expanding about small α, the largest eigenvalue
is found when α ¼ 2L=κ, at which point Re½λþ� ¼
πkð2LÞ−1 (since Re½λþ� ∼ πkακð4L2Þ−1). For either motile
or immotile pullers, the velocity field (oppositely signed
to that illustrated in Fig. 2) rapidly damps the initial
displacement, and it now rotates particles towards the
direction perpendicular to the concentration band.
Motility, however, allows the displacement and orienta-
tion fields to synchronize, leading ultimately to the rapid
growth of the concentration band amplitude and a large
departure away from the initial profile, as shown in
Fig. 3.
For the motile suspensions above with nonzero dipole

strength α, there can be competing effects; in particular,
if maxðRe½λ��Þ < 0, all solutions to the linear system
eventually arrive at the stable base state, but if the system

departs from the linearized region of the phase space
fast enough such solutions may not be realized in the fully
nonlinear dynamics. This potential for departure is seen
most clearly if the particles are not stress generating: with
α ¼ 0, the wave amplitude grows linearly in time since
any particles with a nonzero initial orientation angle drift
off without resistance along characteristic curves.
Isotropic suspensions remain velocity free: a “no-flow

theorem”: Assuming the uniqueness of solutions to
Eqs. (1)–(4), active suspensions of motile or immotile
particles modeled by Eqs. (1)–(4), which are initially
isotropic in orientation, Ψðx;p; t ¼ 0Þ ¼ Ψ0ðxÞ, result in
no fluid flow, uðx; tÞ ¼ 0, everywhere and for all time.
Sketch of the proof.—The proof assumes the uniqueness

of solutions to Eqs. (1)–(4), which was shown for two
dimensions by Chen and Liu [78]. Consider first the
solutionΨ� to the Smoluchowski equation without velocity
terms,

Ψ�
t þ V0p ·∇Ψ� − dt∇2

xΨ� − dr∇2
pΨ� ¼ 0; ð11Þ

with an initial condition that is isotropic in orientation.
The velocity field generated by this solution, u½Ψ��, is
given in Fourier space by

ûk½Ψ�� ¼ ð8πjkj2Þ−1ðI − k̂k̂Þ · Σ̂a · k; ð12Þ

Σ̂a · k ¼
Z
D
pðp · kÞΨ̂�

kðp; tÞdp; ð13Þ

where k̂ ¼ k=jkj. Writing k in a spherical (three-
dimensional) or polar (two-dimensional) coordinate system
about p, we find Σ̂a · k ¼ λkðtÞk for some scalar function
λkðtÞ. Hence, ûk½Ψ�� ¼ 0 and then u½Ψ�� ¼ 0. Since
u½Ψ�� ¼ 0, Ψ� also solves Eqs. (1)–(4) with velocity terms
included. By the uniqueness assumption, we finally have
that u ¼ 0 everywhere and for all time for any initially
isotropic distribution. More details are included in the
Supplemental Material [59].
The result is surprising since the system immediately

loses orientational isotropy (see Fig. 4), which would
suggest the quick onset of a nontrivial flow field, but this
is not what we observe. Physically, the active force fa ¼∇ · Σa is nontrivial for any t > 0 but it is curl-free, so by the
Helmholtz decomposition theorem, fa ¼ ∇λðtÞ for some
scalar field λðtÞ, which thus only modifies the pressure.
As time progresses, the force distribution evolves with the
local active particle alignment, illustrated for two initially
uniform colonies in Fig. 4, but the expanding colonies
simply pass through each other as linear waves. This
behavior can be inferred even when including two-particle
correlations [79].
Moreover, any distributions that result in u ¼ 0 for all

time may be superimposed without generating a velocity
field, for instance a random isotropic distribution may be

FIG. 3. (Left) Sheets of motile puller particles are unstable
(here α ¼ 0.1 and dt ¼ dr ¼ 0.001). Arrows show the
polarity field, hpi, at t ¼ 20. See Supplemental Material
Movie M3 [59]. The initial condition is along an unstable
eigenvector, hðx; 0Þ ¼ 0.144 cosð6πx=LÞ − 0.063 sinð6πx=LÞ
and ϕðx; 0Þ ¼ 0.1 cosð6πx=LÞ. (Right) Theoretical growth rates
for motile pullers are nonmonotonic in α.
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perturbed by another distribution which has the property
that ∇ · hppi ¼ ∇χðtÞ for any scalar χðtÞ, and still u ¼ 0
for all time. Physics that introduce nonlinearities in Eq. (1),
such as near-field steric repulsion, are expected to nullify
the theorem.
The stability of the theorem to an initial localized

alignment is not simply determined, as the initially iso-
tropic state is not a stable base state. However, in light of
the stability of the isotropic state of uniform concentration
to large wave number perturbations [23], we expect an
initial damping back towards isotropy. But on an extremely
long timescale in a sufficiently large domain, the low wave
number residue of the initial disruption is expected to lead
to eventual growth along with a nontrivial flow. We have
verified this prediction in at least one setting by numerical
simulation, placing an aligned colony, as in Fig. 1(a), into a
random concentration field that is orientationally isotropic.
Persistent nematic alignment, for instance, due to a boun-
dary, may result in a more immediate transition to a global
mean flow.
Conclusion.—We have investigated colonies of active

particles in the dilute regime invading a quiescent fluid.
Colony-scale elongation depends on the sign of the active
stress and can result in a self-buckling and self-folding
cascade. Exponential growth at small times, with growth
rate linear in jkj, is mathematically equivalent to the
Saffman-Taylor instability in a Hele-Shaw cell or Rayleigh-
Taylor instability in a two-dimensional flow through a
porous medium. The stability of sheets of pullers depends
on particle motility with a growth rate that is nonmonotonic
in the dipole strength. Strikingly, a suspension modeled
by pure far-field hydrodynamic interactions which is
initially isotropic in orientation, even though isotropy is
not preserved, results in no mean-field fluid flow every-
where and for all time.
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