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Many species of fish and birds travel in groups, yet the role
of fluid-mediated interactions in schools and flocks is not fully
understood. Previous fluid-dynamical models of these collective
behaviors assume that all individuals flap identically, whereas
animal groups involve variations across members as well as
active modifications of wing or fin motions. To study the roles
of flapping kinematics and flow interactions, we design a min-
imal robotic “school” of two hydrofoils swimming in tandem.
The flapping kinematics of each foil are independently prescribed
and systematically varied, while the forward swimming motions
are free and result from the fluid forces. Surprisingly, a pair of
uncoordinated foils with dissimilar kinematics can swim together
cohesively—without separating or colliding—due to the interac-
tion of the follower with the wake left by the leader. For equal
flapping frequencies, the follower experiences stable positions in
the leader’s wake, with locations that can be controlled by flap-
ping amplitude and phase. Further, a follower with lower flapping
speed can defy expectation and keep up with the leader, whereas
a faster-flapping follower can be buffered from collision and oscil-
late in the leader’s wake. We formulate a reduced-order model
which produces remarkable agreement with all experimentally
observed modes by relating the follower’s thrust to its flapping
speed relative to the wake flow. These results show how flap-
ping kinematics can be used to control locomotion within wakes,
and that flow interactions provide a mechanism which promotes
group cohesion.

collective locomotion | hydrodynamic interaction | flapping flight |
fish schooling | bird flocking

When objects or organisms move within a fluid, they can
interact via the flows they generate, as in the aerodynamic

slipstreaming of cyclists or drafting of race cars. At large scales
and high speeds (high Reynolds numbers), fluid inertia causes
the motion of a body to leave behind a wake flow that develops
in time as the wake exchanges momentum with the surround-
ing fluid and other bodies (1). The inertial fluid maintains a
“memory” of past motions that is reflected in the interactions
among bodies (2). The biological world provides many exam-
ples in which such interactions are seemingly exploited, such as
tandem-wing flight of dragonflies (3, 4), collective wing fanning
for beehive ventilation (5), and group locomotion of fish schools
and bird flocks (6, 7).

It is a long-held hypothesis that swimming and flying animals
come together to benefit from flow interactions. Seminal works
include the calculations of Lissaman and Shollenberger (8) that
show birds flying abreast or in a V-formation benefit from the
upwash generated by the wingtip vortices of their neighbors, as
well as the calculations of Weihs (9) that predict fish swimming
in schools can find regions of reduced oncoming flow within the
vortex arrays left by upstream neighbors. Sir James Lighthill (10)
further suggested that the order in a school may come about pas-
sively from flow-mediated interactions among members. Yet the
relatively few quantitative studies on animal groups leave the role
of flows as an open question, and the prevailing models remain
largely untested by physical experiments.

A proven strategy for studying the fluid dynamics of animal
swimming or flight is to use actively flapping hydrofoils or airfoils
as analogues of fins or wings (11–18). In particular, the forward
flight of birds and steady swimming of fish have been stud-
ied experimentally and theoretically using actuated foils either
fixed within an external flow or self-propelling through a fluid
(13–18). Because this approach allows for precise control and
measurement of motions, forces, and flows, it has helped reveal
the fundamental mechanisms underlying flapping locomotion for
foils operating in biologically relevant regimes of physical param-
eters. The primary signature of thrust production for fish and
birds is a wake consisting of a staggered array of counterrotating
vortices with a backward-directed jet-like average flow (19–22),
a flow structure which has been reproduced and further studied
using flapping foils (13, 23–26).

Recently, researchers have extended this strategy of using sys-
tems of flapping foils to study biologically inspired flow interac-
tions (2, 18, 27–29). Progress has been made by studies focusing
on the two-body problem using free-swimming foils in tandem
that passively interact through the surrounding fluid (27, 28).
When driven with identical flapping kinematics, the follower is
seen to take up one of several discrete, stable positions within the
wake of the leader, and the two travel together at the same speed.
These results raise interesting questions about how passive flow
interactions can help organize animal groups.

However, these recent results on flow-induced ordering would
seem to be undermined if one relaxes the assumption that all
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Fig. 1. (A) Two tandem hydrofoils are flapped independently by separate motors mounted above a water tank (motors and tank not shown; full photo
in SI Appendix, Fig. S1). Each axle is flapped up and down, but is free to rotate, causing the foils to swim independently in a large, horizontal circle. (B)
A dimensionless gap distance is measured in terms of the leader’s wavelength, S≡ g/λ1. (C–E) For a given amplitude and frequency, the leader swims at
constant speed (averaged over one flap) while the follower has multiple distinct states, including (C) multiple stable positions for f2/f1 = 1, A2/A1 = 1,
and φ= 0, (D) stable cycles for f2/f1 < 1 and A2f2/A1f1 > 1, and (E) unstable positions for f2/f1 > 1 and A2f2/A1f1 < 1. Each plot shows separate lines for
experimental trials with different initial conditions.

locomotors have identical flapping motions. Animal groups, after
all, are composed of independent individuals whose kinemat-
ics vary. In fact, it has been observed that fish in the back
of a school tend to swim with lower tail-beat frequency (30)
and birds flying in formation do not synchronize the motion of
their wings (31). Here we ask whether coherent collective loco-
motion may arise from the interactions among uncoordinated
individuals. Understanding the effects of changing an individ-
ual’s flapping kinematics is fundamental to understanding group
dynamics, because real fish and birds use active feedback to
control their speed and position through changes in their flap-
ping kinematics. We study this problem in the simple setting
of two tandem foils driven with dissimilar flapping kinemat-
ics and whose motions and spacing are dynamically determined
through flow interactions. We identify surprisingly broad ranges
in the parameter space of kinematics for which the pair “schools”
together, including modes in which an underdriven follower
may “freeload” and keep up with the leader by exploiting its
flows.

Experimental Methods and Observed States
Our experiment consists of two hydrofoils supported on two con-
centric vertical axles and immersed in a water tank, as shown in
Fig. 1A and detailed in SI Appendix. Vertical oscillations, or flap-
ping motions, are imparted to the foils using two independent
motors that connect to the axles via rotary bearings, permitting
free revolution of each foil about its axle (2, 13, 27). Horizon-
tal locomotion arises from the fluid forces acting on the foils
and takes the form of rotational orbits about the tank. Impor-
tantly, this system permits distinct flapping motions for the leader
#1 and follower #2 foils, y1 = (1/2)A1 sin(2πf1t) and y2 =
(1/2)A2 sin(2πf2t −φ), and we explore ranges for the peak-
to-peak amplitudes A1,2 = 0 to 4 cm, frequencies f1,2 = 0 to 4
Hz, and initial phases φ∈ [0, 2π). Fixed geometric parameters
include chord length c = 4 cm, span length 15 cm, and radial
distance from rotation axis to foil midspan 32 cm. An opti-

cal encoder on each axle records the rotational motion, from
which the translational speeds U1,2 = 18 to 28 cm/s (at midspan)
and leader–follower gap distance g are computed. The resulting
Reynolds numbers Re = cU /ν≈ 103 to 104 and Strouhal num-
bers St =Af /U = 0.21 to 0.23 are relevant to fish swimming and
bird flight (14, 24), where ν is the kinematic viscosity of the fluid.
The dimensionless kinematic parameters to be varied are the
follower phase lag φ and the amplitude A2/A1 and frequency
f2/f1 ratios.

When the foils are actuated and released, we observe that
the leader achieves a period-averaged swimming speed U1 that
is nearly constant (within 4%). The leader’s speed depends
on its own kinematics but not on the motions of the fol-
lower. Thus, the dynamical states of the pair are character-
ized by the follower’s motion relative to the leader, which
may be quantified by the dimensionless separation S ≡ g/λ1,
where λ1 =U1/f1 is the wavelength of the leader’s swimming
trajectory (Fig. 1B). In Fig. 1 C–E, we survey some of the
observed states that are achieved by varying the foil kinemat-
ics (see also Movies S1–S3). For example, when φ= 0, A2/A1 =
1, and f2/f1 = 1, the flapping motions are identical and the
follower takes up one of several discrete stable positions behind
the leader, and the two form a school that travels together.
This mode corresponds well with previous studies (27, 28), and
the preferred positions have nearly integer values of S . When
the follower is overdriven, i.e., A2f2/A1f1 > 1, and f2/f1 < 1, the
initial phase φ is unimportant, since the phase changes con-
tinuously, and the follower alternates between fast and slow
swimming, yielding what seem to be stable cycles of S . When
the follower is underdriven, i.e., A2f2/A1f1 < 1, and f2/f1 > 1,
we observe unstable positions for the follower, which either
collides into or separates away from the leader, depending
on the initial value of S and the initial difference in swim-
ming speeds. The details of the modes, such as the threshold
value of S for collision or separation, depend on the kinematic
parameters.
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Fig. 2. Stable positions for the follower for varying phase difference
φ at equal amplitude and frequency in experiment (circles) and model
(brown lines). Increasing φ moves the stable positions downstream at a
rate of roughly one wavelength per phase lag revolution, shown by the
dashed lines S =φ/2π+Z. If the follower is forced from one of the sta-
ble positions, it can fall into an adjacent stable position roughly one
wavelength away.

Varying Flapping Kinematics. We next investigate the origin of the
different follower modes by systematically sweeping through the
kinematic parameters. If A2/A1 = 1 and f2/f1 = 1 and only the
phase lag φ is varied, we observe that the follower assumes one of
several discrete positions behind the leader, and the pair travels
together. Systematically varying φ and measuring all such stable
positions yields the data points of Fig. 2. For the axis φ= 0, we
recover the results of previous studies that the follower sits near
integer values of S (27, 28). Increasing φ yields positions that
are displaced downstream at approximately a rate of one wave-
length per phase lag revolution, ∂S/∂(φ/2π)≈ 1. These stable
positions are found only for S . 4, beyond which the foils do not
maintain discrete separations, suggesting that the hydrodynamic
interactions weaken with distance.

If f2/f1 = 1 is fixed and both φ and the amplitude ratio A2/A1

are varied, we discover a broad range in these parameters for
which the follower stably positions behind the leader. In Fig. 3,
we display all such states as circles and indicate their resulting
separation distances S . In the stable region, the line A2/A1 = 1
repeats the results of Fig. 2, where increasing φ yields positions
of larger S . When A2/A1 6= 1, increasing φ has this same effect,
but the stable states are observed for a shorter range of S . Fixing
φ and increasing A2/A1 beyond unity yields smaller S and thus a
more compact pair that travels together, while decreasing A2/A1

below unity leads to a more dilated pair. These results show that,
with the appropriate phase, the follower may keep up even when
driven with as small as one-third of the amplitude of the leader.
In other words, this freeloading follower swims at about 3 times
the speed it would in isolation for the same flapping kinematics.

Above the stable region of Fig. 3, no stable positioning is
observed, but rather an overdriven follower (i.e., A2/A1 > 1
when f2/f1 = 1) with an initial separation in the red region moves
toward the leader, and S decreases. Such a follower may become
caught in a stable position closer to the leader where the hydro-
dynamic interaction is stronger, or its inertia may carry it through
these stable positions and cause a rear-end collision. Below the
stable region, an underdriven follower (A2/A1 < 1) with an ini-
tial separation in the blue region moves away from the leader,
and S increases. The separation then grows continuously, since
the underdriven follower has a lower isolated swimming speed
than the leader.

Finally, we remove our constraint on f2/f1, allowing the foils
to have different flapping amplitudes and frequencies. We arrive

at new, dynamic behaviors of the pair that are categorized in
Fig. 4 across the kinematic parameter space of f2/f1 and A2/A1.
In this case, the curve given by A1f1 =A2f2 is an important
boundary representing equal flapping speeds for the two foils
and thus approximately equal swimming speeds, were they in
isolation. The region above this curve represents conditions for
an overdriven follower, and one expects collisions, but this is
not always so. Likewise, the region below this curve corresponds
to an underdriven follower, and one expects separation of the
pair, but this is not always so. One violation of this expecta-
tion is the case of f2/f1 = 1, where we recover the stable position
states for a range of A2/A1 near unity (Fig. 3). Two new behav-
iors are also observed. For f2/f1 < 1 but A2f2/A1f1 > 1 (green
region), we achieve the stable-cycle mode introduced in Fig. 1D:
The follower, despite being overdriven, does not collide with
(or catch up to) the leader. For f2/f1 > 1 but A2f2/A1f1 < 1
(purple region), we achieve the unstable-position mode intro-
duced in Fig. 1E, and the underdriven follower may collide with
(or catch) the leader if the initial gap and speed difference is
sufficiently small.

Follower-Wake Interaction Model. To interpret these findings, we
formulate a minimal, reduced-order model that incorporates the
interaction of the follower with the wake of the leader. Solutions
to this model are displayed in Figs. 2–4 and show excellent agree-
ment with our experiments. The model assumes that the thrust
on each foil scales with the square of that foil’s flapping speed
relative to the ambient fluid, and the drag depends on the square
of that foil’s swimming speed (24, 32, 33). For the leader, which
swims into quiescent fluid and thus moves as an isolated foil, the
thrust is proportional to ẏ1

2∝ (A1f1)2 and drag to U 2
1 , and the

terminal swimming speed arises from a balance of these forces.
Importantly, the thrust on the follower depends not only on its
flapping speed ẏ2∝A2f2 but also on the vertical speed v of the
leader’s wake flow at the follower’s location. We construct this
wake by assuming that the leader leaves behind a wake flow that
is equal to its flapping speed v = ẏ1 as it swims through a specific

Fig. 3. Stable positions for the follower for varying amplitude ratio A2/A1

and phase difference φ at equal frequency in experiment (circles) and model
(background color). At fixed φ, increasing A2/A1 compresses the pair, while
decreasing A2/A1 leads to an increase in S, up to some threshold.
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Fig. 4. Parameter space for two independently swimming hydrofoils. The
dynamical state of the follower is categorized by color (Fig. 1 C–E) from
experiment (circles) and model (background colors). The states with stable
positions at f2/f1 = 1 (Fig. 3) divide regions where the follower has cyclic
trajectories, f2/f1 < 1, and unstable trajectories, f2/f1 > 1.

position in the fluid. Thereafter, v decays exponentially with time
constant τ , which (crudely) accounts for the dissipation of the
coherent wake structure. Thus, the wake speed oscillates and
decays with downstream distance, and it is this wave with which
the follower interacts.

Based on this model, the follower dynamics are described by a
delay differential equation that includes a period-averaged thrust
that is proportional to

(ẏ2 −v)2∝ (A2f2)2 + (A1f1e
−∆t/τ )2

− 2A1f1A2f2e
−∆t/τ cos [(2πf2t −φ)− 2πf1(t −∆t)].

Here ∆t , which itself may vary in time, is the elapsed time since
the leader passed through the follower’s current position. This
quantity captures the memory or history dependence of the inter-
actions. The first term in the above expression is the bare thrust
that the follower would have in isolation, and the second and
third terms result from wake interactions.

The model provides hydrodynamic interpretations of the
modes observed in our experiment. First, consider the case of
identical, synchronized swimmers (φ= 0, A2/A1 = 1, and f2/f1 =
1), for which the follower is observed to take up one of several
locations downstream of the leader (data points from Fig. 2). The
model (brown curve) identifies similar locations as stable equilib-
rium positions. Namely, the follower experiences higher thrust in
portions of its stroke when it flaps counter to the wake flow but
lower thrust in other portions as it flaps with the flow, and the
identified stable positions are those for which the net or stroke-
averaged thrust is unchanged relative to isolated swimming. The
stability of these states is explained by considering positional
perturbations. For example, at the middle of the upstroke, the
follower has a stronger upward flow just ahead, and a forward
perturbation is thus countered by lower thrust. Elaborations of
this argument show that restoring forces come about from wake-
induced modifications of thrust, and the multiplicity of stable
states is related to the spatial periodicity of the wake flow.

For asynchronous swimmers (φ 6= 0), the same follower-wake
stabilization is achieved at an appropriately shifted position. The

extent to which the follower flaps with or against the wake flow
is determined by the phase difference between the follower’s
wavy trajectory and the wave-like wake of the leader. Using the
model’s assumptions about the wake structure, we can quantify
the phase difference between the wake flow and the follower’s
flapping as φS/2π=φ/2π−S . A fixed value of φS ensures that
the thrust the follower experiences within the wake flow is main-
tained. Thus, φ and S must increase together for the pair to swim
at the same speed, explaining the trends of Fig. 2.

If the follower’s amplitude is changed such that A2/A1 6= 1, a
new position is taken up and stabilized by the same mechanism.
As shown in the stable (tan colored) region of Fig. 3, increas-
ing A2 for fixed φ leads to smaller S . This is explained by the
increase in the “bare” thrust associated with faster flapping but
a compensating decrease in thrust associated with moving closer
to the leader, where the follower’s upstroke occurs in a stronger
upward flow. For larger S , the decay of the wake flow leads to a
diminished range of A2/A1 that can be stabilized.

The stable cycles (green region) and unstable positions (pur-
ple) of Fig. 4 for f2/f1 6= 1 are more complex. Some intuition
can be gained by considering the mismatched frequencies as a
continuous drift of temporal phase φ∝ (f1− f2)t and by view-
ing the wake interactions as tending to drive the follower toward
a preferred value of φS/2π=φ/2π−S . Drifting of φ must be
accompanied by changing S , explaining why only dynamic modes
appear under these conditions. Further interpretations of all
states can be found in SI Appendix.

Discussion
Our results reveal the locomotion dynamics of actively flapping
and passively interacting foils. Within the two-body problem, our
experiments and model show that purely hydrodynamic inter-
actions lead to surprisingly “life-like” collective dynamics. One
example is the stable-position mode, in which a follower falls
into specific positions behind the leader due to wake interactions,
and the pair travels together. This well-ordered “schooling”
occurs even for asynchronous individuals with dissimilar flap-
ping phases, and also for individuals with dissimilar amplitudes
and thus different isolated swimming speeds. Flow interactions
provide a robust mechanism for maintaining group cohesion by
allowing weakly flapping, or “lazy,” followers to keep up with a
leader, and also preventing rear-end collisions of faster-flapping
followers. Cohesion is also preserved for dissimilar flapping fre-
quencies in the stable-cycle mode, in which a faster-flapping
follower undergoes bouts of gaining on a leader only to then be
carried downstream by the wake. More generally, our study fur-
nishes complete maps of the degree of kinematic dissimilarity
that leads to cohesive modes versus collision of members or their
separation and fracturing of the group.

An alternative interpretation of our results is that they reveal
how active changes in flapping kinematics can be used to con-
trol locomotion within a group and within the associated wake
flows. Our work shows that these hydrodynamic interactions can
be potentially advantageous. For example, to keep pace with a
faster-flapping leader, a lazy follower can flap with significantly
lower amplitude and exploit the stable-position mode. To reach
any desired position behind a leader, a follower should simply
modify its flapping phase. To successfully pursue and catch up
to a fast-flapping leader, a follower should use high-frequency,
low-amplitude motions to exploit the unstable-position mode.
To successfully evade a faster-flapping follower, a leader should
use high-frequency, low-amplitude motions to exploit the stable-
cycle mode. Generally, our maps outline the kinematic strategies
available to interacting locomotors.

Our study reveals a broad range of parameters for which flap-
ping foils school together even with uncoordinated kinematics
and a lack of active feedback. The observed modes stem from
the coherent interactions between an oscillating body with the
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wave-like flow generated by an upstream neighbor, a feature
that has been observed in experiments on fish swimming in
vortex-laden flows (34, 35) and in recent studies of the motions
of birds in formation flight (31). Our results provide a baseline of
passive dynamics to compare with the active dynamics of real ani-
mal groups, wherein each member can also use active feedback.
Prior experiments on fish swimming in a wake flow show evi-
dence that their active behavior is indeed related to their passive
dynamics (35).

Our results on lazy followers build on a growing body of lit-
erature that shows undulatory swimmers can take advantage of
the flows present in wakes. One line of research has investigated
swimmers in the drag wake produced by a stationary obstacle,
where the fluid in the wake moves at a lower speed than the
oncoming flow, and, close behind the obstacle, the flow even
reverses direction. Experiments have shown that fish swimming
in such a wake have decreased muscle activity (34), and related
models indicate an increase in swimming efficiency (36). Exper-
iments and simulations have also shown that even completely
inactive “swimmers” (i.e., passive and undriven) may be pulled
upstream due to interactions with a drag wake (35, 37). More
relevant to group locomotion is the case of swimming within a
thrust wake, like that generated by an upstream swimmer. Simu-
lations have shown that a completely inactive body can also be
pulled upstream in a thrust wake (38), and models have also
shown increased efficiency for active swimming in thrust wakes
(36). This is perhaps more surprising than the results in drag
wakes, because a swimmer within a thrust wake experiences an
oncoming flow that is faster than it would encounter outside
the wake. Our experiments reveal that a weakly flapping fol-
lower can swim at much faster speeds when swimming in the
thrust wake created by an upstream neighbor, and that this ben-
efit arises spontaneously due to passive repositioning within the
wake flow. Further, our model attributes this increased speed to
the increased thrust produced when the follower flaps against
transverse flows, a feature that is present in both thrust and drag
wakes.

Our results also show how collective locomotion depends on
the combined effects of flapping kinematics and wake-flow inter-
actions, which is relevant to schools of fish whose members have
different tail-beat frequencies (30) as well as the formation flight
of birds with asynchronous flapping (31). Our model verifies
that an individual’s dynamics depend on the phase difference
between its flapping motion and the wake flow it encounters,
a quantity that is also important in the tandem-wing flight of
dragonflies (3, 4) and the flow enhancement generated by tan-
dem bees flapping their wings for hive ventilation (5). Problems
concerning flow-mediated interactions in general may benefit
from the framework of our model and its simple assumption that
forces are modified according to relative flows.

Materials and Methods
Experimental Apparatus. The experimental apparatus is constructed to
heave two hydrofoils up and down while allowing them to swim freely and
independently in circular paths in a horizontal plane (SI Appendix, Fig. S1).
The foils are NACA0017, made with 3D-printed polylactic acid (PLA), with
chord c = 4 cm, span s = 15 cm, and distance from rotation axis to foil
midspan R = 31.7 cm; they swim in a cylindrical water tank of diameter
92 cm and water depth 58 cm and have a midflap height at 17 cm below
a solid, acrylic top.

The foils are kept independent by having two concentric vertical axles;
the outer axle is hollow with the inner axle passing through. Each axle

is oscillated vertically by a separate motor and held by rotational bear-
ings allowing them to rotate with negligible resistance. For large values
of R/c, the rotational motion approximates free translational motion (here
R/c = 7.9). The vertical flapping of the foils is driven via Scotch yokes which
convert the rotations of the two stepper motors to sinusoidal vertical oscil-
lations of the axles. The flapping amplitude is set by an adjustable-offset
eccentric shaft attached to the motor shaft, while the frequency and phase
of the motors are controlled by an Arduino computer. The displacement in
the swimming direction of each foil is measured by rotary optical encoders
mounted on each axle, and the data are logged to a computer for later anal-
ysis. Because both g and λ1 increase linearly with distance from the axis of
rotation, the dimensionless separation S depends only weakly on the radial
distance at which it is measured.

Opposite each foil is a counterweight and a drag load, which consists
of a cylinder, mesh, and a frame (see SI Appendix, Fig. S1C). The coun-
terweight serves to improve the performance of the axle bearings, while
the purpose of the drag load is to reduce the free swimming speed of
each foil to increase the Strouhal number into the range known for maxi-
mum efficiency and most commonly seen in biological locomotion (24) (here
St = Af/U = 0.21 to 0.23).

Follower-Wake Interaction Model. The follower dynamics described by SI
Appendix, Eq. S7 are numerically integrated in Mathematica using an Euler
method with a time step ≤ 1/250 of a flapping period. The initial swim-
ming speed of each foil is set to the steady swimming speed of the leader
and the initial separation is systematically varied. A conditional statement
excludes the wake interaction before the follower overtakes the leader’s
starting position, and another statement catches collisions and terminates
the integration. If run sufficiently long, the system exhibits states that may
be classified according to the leader–follower gap distance g = x1− x2 at
long times. Constant g> 0 implies stable positioning of the follower, time-
varying but bounded g> 0 implies stable cycling, g = 0 at some time implies
collision, and ġ> 0 implies separation. If the terminal conditions g = 0 or
ġ> 0 are achieved with different initial conditions, then the state is termed
unstable positioning.

For the reported model results, we have used parameter values estimated
from the experiments and summarized in SI Appendix, Table S1. The fluid
density ρ, wing chord length c, and span length s are measured directly.
Mapping our rotational experiments to a translational model requires con-
version of torques to effective forces and moment of inertia to an effective
mass. This mapping necessitates the choice of a radial distance at which
forces can be viewed as acting, and we opt for the distance from the cen-
tral axle to the midspan of the wings, R = 31.7 cm. This choice matches the
center-of-thrust location expected for a uniform thrust distribution along
the span. The effective mass is then given by m = I/R2, where the moment
of inertia I is calculated using the measured masses and geometry of the
wing, support arm, central axle, etc., as well as the parallel axis theorem.
A calculation of the added mass of the surrounding fluid shows that it is
significantly less than the effective solid mass, and so we neglect this effect.

For the thrust coefficient CT = 4〈FT〉/ρcs(πAf)2, previous measurements
(24, 33) indicate CT ≈ 0.8 to 1.1, after conversion to our nondimensional-
ization in terms of the flapping speed. The specific value of CT = 0.96 is
selected by comparing model results to the experimental data of Figs. 3
and 4, and varying this value yields the same states but with somewhat
different boundaries. The drag coefficient CD is then estimated by not-
ing the nearly constant St = 0.23 for isolated foils observed in experiments
and using the relation CD =π2CT St2/2. The wake decay time constant τ is
estimated based on comparison with the experimental data of Fig. 3. The
specific value of τ = 0.5 s is similar to that inferred in our previous studies
on similar experimental systems (2, 27).

Further details of the experimental apparatus and follower-wake interac-
tion model, as well as further interpretation of the results and movies, can
be found in SI Appendix.
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