
J. Chem. Phys. 150, 064109 (2019); https://doi.org/10.1063/1.5080433 150, 064109

© 2019 Author(s).

Computing collision stress in assemblies
of active spherocylinders: Applications of a
fast and generic geometric method
Cite as: J. Chem. Phys. 150, 064109 (2019); https://doi.org/10.1063/1.5080433
Submitted: 08 November 2018 . Accepted: 28 January 2019 . Published Online: 13 February 2019

Wen Yan , Huan Zhang , and Michael J. Shelley 

ARTICLES YOU MAY BE INTERESTED IN

Which interactions dominate in active colloids?
The Journal of Chemical Physics 150, 061102 (2019); https://doi.org/10.1063/1.5082284

Measuring heat flux beyond Fourier’s law
The Journal of Chemical Physics 150, 064103 (2019); https://doi.org/10.1063/1.5079993

Invariance of experimental observables with respect to coarse-graining in standard and
many-body dissipative particle dynamics
The Journal of Chemical Physics 150, 064101 (2019); https://doi.org/10.1063/1.5046851

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/1769075124/x01/AIP/HA_WhereisAIP_JCP_PDF_2019/AIP-3274_AIPP_1640x440_V2.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.5080433
https://doi.org/10.1063/1.5080433
https://aip.scitation.org/author/Yan%2C+Wen
http://orcid.org/0000-0002-9189-0840
https://aip.scitation.org/author/Zhang%2C+Huan
http://orcid.org/0000-0001-5558-2747
https://aip.scitation.org/author/Shelley%2C+Michael+J
http://orcid.org/0000-0002-4835-0339
https://doi.org/10.1063/1.5080433
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5080433
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5080433&domain=aip.scitation.org&date_stamp=2019-02-13
https://aip.scitation.org/doi/10.1063/1.5082284
https://doi.org/10.1063/1.5082284
https://aip.scitation.org/doi/10.1063/1.5079993
https://doi.org/10.1063/1.5079993
https://aip.scitation.org/doi/10.1063/1.5046851
https://aip.scitation.org/doi/10.1063/1.5046851
https://doi.org/10.1063/1.5046851


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Computing collision stress in assemblies
of active spherocylinders: Applications
of a fast and generic geometric method

Cite as: J. Chem. Phys. 150, 064109 (2019); doi: 10.1063/1.5080433
Submitted: 8 November 2018 • Accepted: 28 January 2019 •
Published Online: 13 February 2019

Wen Yan,1,2,a) Huan Zhang,2,3 and Michael J. Shelley1,2

AFFILIATIONS
1Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, USA
2Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
3Zhiyuan College and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

Note: This article is part of the Special Topic “Chemical Physics of Active Matter” in J. Chem. Phys.
a)wyan@flatironinstitute.org and wenyan4work@gmail.com

ABSTRACT
In this work, we provide a solution to the problem of computing collision stress in particle-tracking simulations. First, a formu-
lation for the collision stress between particles is derived as an extension of the virial stress formula to general-shaped particles
with uniform or non-uniform mass density. Second, we describe a collision-resolution algorithm based on geometric constraint
minimization which eliminates the stiff pairwise potentials in traditional methods. The method is validated with a comparison
to the equation of state of Brownian spherocylinders. Then we demonstrate the application of this method in several emerging
problems of soft active matter.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080433

I. INTRODUCTION

Computing bulk collision stress is one of the key statis-
tical tasks in simulations of many particle systems for both
underdamped and overdamped, ranging from the molecular to
the granular-flow scale. Collision stress is important because
it contributes significantly to the Equation of State (EOS)
and rheological properties of such systems. Notable examples
include phase transitions in liquid crystals1 and Active Brow-
nian Particles (ABPs),2 and the jamming and glassy states of
spherical colloids.3

In simulations involving point particles, the collision
stress can be computed with the usual virial formula 〈xFC〉,
where the moment x is the vector connecting each pair of
point particles and FC is the collision force between each
pair. Collision stress in spherical particles of uniform den-
sity can be computed in the same way. A large volume of
work can be found in the literature discussing all aspects of
how to compute collision stress for various systems, but two

problems remain. First, there remains some disagreement
about how to compute the stress generated from one pair
of colliding aspherical particles or spherical particles with
nonuniform density. Some earlier work uses the same virial
formula as in the point particle case, where the moment vector
x is the vector connecting the center-of-mass of two par-
ticles.4 In some work for slender rods, the moment vector
x is taken to be the minimal distance between two center-
lines of the colliding pair of rods.5 In work for granular flow
involving spherical particles, the virial contribution is inte-
grated over the two particles’ volumes, instead of picking
only one point on each particle.6,7 To the best of our knowl-
edge, such different approaches have not been systematically
examined.

Another crucial problem is how to detect and resolve
the collisions. Traditionally, collisions are resolved by includ-
ing a pairwise repulsive force, usually governed by Lennard-
Jones (LJ) or Weeks-Chandler-Andersen (WCA) potential, and
particle trajectories are integrated over time. There are two
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key problems in this traditional approach. First, the pair-
wise repulsive potentials cause stiffness in the time-integrator
and require very small time-step sizes. Second, such pair-
wise potentials always extend repulsive forces over a finite
range, and therefore the collisions are resolved as if the par-
ticles were soft and deformable. For example, in work on
Brownian rods,8 the authors reported an “effective” diame-
ter that is equal to around 90% of the imposed rod diameter
because the repulsive forces cannot be infinitely stiff. Other
collision-resolving methods have been developed upon the
idea of geometric constraints. In these methods, the colli-
sion forces are not computed using an intermediate repulsive
potential. Instead, the forces are solved for by imposing the
geometric constraint that at the end of the current time-
step, the particles cannot overlap. The method by Maury9
is one notable example in this style, but his formulation
does not preserve the pairwise collision network and there-
fore the necessary information to compute collision stress
is lost. Another method by Tasora, Negrut, and Anitescu10
follows similar ideas, but constructs the geometrical con-
straint problem in a way that the pairwise collision net-
work and Newton’s third law are all preserved. This method
has been successfully applied in underdamped granular flow
problems.

In this work, we present a complete and efficient solu-
tion to resolve collisions and to compute collision stress.
We first resolve the discrepancies in the pairwise contribu-
tion to collision stress in Sec. II. The formula is derived as
an extension to the virial stress formula in the most gen-
eral settings, considering the momentum transfer through-
out the entire volume of the particles. We then describe
a collision resolution method for overdamped systems in
Sec. III, together with a fast and parallel solver, as a gen-
eralization of the method by Tasora and Anitescu.11 In par-
ticular, we allow the mobility matrix M to be computed by
any method or approximations which keeps M symmetric-
positive-definite (SPD). Our method is validated in Sec. IV by
simulating Brownian spherocylinders and comparing the mea-
sured EOS with the classic work by Bolhuis and Frenkel.1 In
Sec. V, we demonstrate the application of our solution by
measuring the collision stress in soft active matter systems,
including self-propelled rods (SPRs) and growing-dividing
cells.

II. PAIRWISE COLLISION STRESS
In this section, we consider the collision stress gener-

ated by one pair of particles in the most general setting, for
both underdamped and overdamped systems. We make only
the following assumptions of the collision between two rigid
bodies:

• The collision force is between one point on particle 1
and one point on particle 2.

• The collision process is almost instantaneous.
• Newton’s third law is satisfied.
In particular, no assumptions are made for the shape,

friction, and density of the two particles. We shall also
see that the existence of other forces like gravity does not

FIG. 1. Collision geometry of two arbitrary-shaped rigid bodies. rM is the center of
mass, and ρ(x) is the mass density of the particle in the particle frame. xC is the
point where the transfer of momentum J happens. ∆U and ∆Ω are the changes
in the center of the mass velocity and the angular velocity, respectively, due to the
action of J.

change the formulae. Also, the two points where the collision
force is transmitted do not have to be on the two particles’
surfaces.

We consider the collision geometry shown in Fig. 1. O is
the origin of lab frame, and rM is the center of mass in the lab
frame. x is the location of a mass point relative to the center
of mass, and xC is the location of collision in that frame. J is
the impulse due to this collision event. For a small duration of
collision, J = FCδt.

A. Governing equations
Due to symmetry, it is sufficient to consider the motion

of only one body of the collision pair. Let the change in
velocity and angular velocity due to collision be ∆U and ∆Ω,
respectively. With Newton’s laws, we have two equations for
translational motion∫

V
ρ(U +Ω × x)dV + J =

∫
V
ρ[(U + ∆U) + (Ω + ∆Ω) × x]dV (1)

and rotational motion∫
V

(rM + x) × ρ(U +Ω × x)dV + (rM + xC) × J

=

∫
V

(rM + x) × ρ[(U + ∆U) + (Ω + ∆Ω) × x]dV. (2)

We have the definition of mass M and the moment of
inertia tensor GM ∫

V
ρdV = M, (3)∫

V
ρ
(
x2I − xx

)
dV = GM. (4)

By definition GM is always symmetric positive definite.
Because x is the location in the particle frame relative to the
center of mass, we have ∫

V
ρxdV = 0. (5)

We further define the tensors N and Q to simplify the tensor
notations in the derivation, using
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N =
∫
V
ρxxdV, (6)

Q = G−1
M . (7)

Physically, the stress generated by this pair of particles
colliding is related to the momentum transfer during the colli-
sion, which, quantitatively, is the integral of the “point-wise
virial contribution xfδt” over the entire volume of the rigid
body, denoted by the tensor s, for both objects in the colli-
sion pair. In other words, the task is to determine s defined
as

s =
∫
V
ρ(rM + x)(∆U + ∆Ω × x)dV, (8)

given the collision force and geometry. Once s is known for
both particles 1 and 2, the collision stress generated by this
pair is simply

σ12 =
1
δt

(
s1 + s2

)
. (9)

B. General results
Equations (1) and (2) can be simplified as

J = M∆U, (10)

xC × J = GM · ∆Ω, (11)

where we used the definition of the center of mass. Then s can
be simplified

s = rMJ +
∫
V
ρx(∆U + ∆Ω × x)dV. (12)

The first term rMJ simply corresponds to the virial stress.
Since U is the center-of-mass velocity independent of x,
the integral ∫ Vρx∆U in the second term vanishes by the
definition of the center of mass. We define the integral as
sG, i.e.,

sG =
∫
V
ρx[∆Ω × x]dV or

=

∫
V
ρx[Q · (xC × J) × x]dV, (13)

where the superscript G stands for the geometric part of s.
Hence,

s = rMJ + sG. (14)

In tensor notation, sG is

sGij = Nilεjkl∆Ωk = εjklNil[Q · (xC × J)]k. (15)

Here, ε jkl is the Levi-Civita permutation symbol.
Up to this point, the derivation is for one rigid body in the

collision pair. Due to symmetry and Newton’s third law, the
collision stress generated by this pair of particles, 1 and 2, is
simply

σ12
ij =

(
r2
M,i − r

1
M,i

)
FCj + εjklN2

il

[
Q2
·
(
x2
C × FC

)]
k

+ εjklN1
il

[
Q1
·
(
x1
C × FC

)]
k
. (16)

Here, FC points from particle 1 to particle 2.
Again, the first term in Eq. (16) is simply the virial stress,

computed with the center of mass of the two particles. The
extra terms are contributions due to the particles’ shape and
mass distribution. For objects with homogeneous density ρ,
the formula [Eq. (16)] is purely geometric because the den-
sity ρ in Nil and Q = G−1

M cancel. Also, since the equations
of motion [Eqs. (1) and (2)] are linear, the stress generated
by multiple collisions between two particles, or several parti-
cles colliding with one particle, can all be simply summed over
each FC.

In the above derivation, we made no assumption about
how FC is computed. In general, FC can be computed in many
different ways, depending on the physical setting and the col-
lision resolution algorithms. For example, for simple smooth
spheres, FC can be computed with WCA potentials. While for
more realistic granular flow models,6 FC can be computed
with considerations for having coefficient of restitution and
friction. The derivation of Eq. (16) is straightforward, but sur-
prisingly not appreciated in the literature, except for a few
special cases in which we will show that Eq. (16) reproduces
those results.

C. Mechanical pressure of σ12
ij

The mechanical pressure is defined as the isotropic diag-
onal part of the stress. For σ12

ij given by Eq. (16), we can show
that

δijσ
12
ij = δij

(
r2
M,i − r

1
M,i

)
FC,j. (17)

In other words, the extra geometric part of σ12
ij changes only

the deviatoric part of the collision stress. This is because
δijε jklNilΩk = ε jklNjlΩk = 0, for any Ωk, due to the symmetry
of Njl and antisymmetry of ε jkl.

Therefore, the mechanical collision pressure follows the
usual virial formula

Π
12 =

1
3

(
r2
M,i − r

1
M,i

)
FC,i. (18)

D. Homogeneous frictionless spheres
In the case of homogeneous frictionless spheres, we

always have FC ‖ (r1
M − r

2
M) ‖x1

C ‖x
2
C. Also rM coincides with the

geometric sphere center due to homogeneity. Therefore, the
geometric contribution to stress is zero, and we have the usual
virial formula

σ12
ij =

(
r2
M,i − r

1
M,i

)
F1
C,j, (19)

as has been widely used in many studies on the rheology of
spherical suspensions.3,12

E. Homogeneous frictional spheres
In the case of homogeneous frictional spheres, the colli-

sion force FC is applied at the point of contact between the
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two spheres. In the special case of two equal spheres, we have
x1
C = −x

2
C, and Eq. (16) reduces to

σ12
ij =

(
r2
M,i − r

1
M,i

)
F1
C,j. (20)

However, unlike the frictionless case, FC is not necessarily par-
allel to r2

M − r
1
M. Equation (20) reproduces the formula used by

Campbell.7

F. Homogeneous frictionless long and thin rod
In the case of homogeneous frictionless long and thin rod,

the shape and orientation of each body is solely determined by
an orientation norm vector n. Taking the rod simply as a line
segment, any point x on the rod can be specified by

x = xn, x ∈ [−L/2,L/2]. (21)

In this case, head-to-head collision is negligible because of the
assumption of being long and thin. Then in the absence of fric-
tion, we always have J ⊥ n. Therefore, ∆Ω = (xC × J)/γ, with
γ = ρ ∫

L/2
−L/2 x

2dx, and we have

sG =
ρ

γ
xCnJ

∫ L/2

−L/2
x2dx = xCJ. (22)

Furthermore, Eq. (16) reduces to

σ12
ij =

(
r2
M,i + x2

C,i − r
1
M,i − x

1
C,i

)
F1
C,j, (23)

which reproduces the formula used in the work by Snook
et al.5.

III. COLLISION RESOLUTION IN DYNAMIC
SIMULATIONS

The other ingredient in our calculation of the collision
stress is how to stably and efficiently compute the collision
force FC needed for Eq. (16). For underdamped systems with
inertia, significant progress has been made by Tasora, Negrut,
and Anitescu.10 In this work, we extend this approach to over-
damped systems because most active matter systems we are
interested in are in this regime. Accordingly, we also focus on
the completely inelastic collision case, where colliding bod-
ies can remain in contact after collisions. Here, we ignore
friction.

A. The mobility problem
We start from the mobility problem because having the

mobility matrix being symmetric-positive-definite (SPD)13 is
one of the keys to the success of our method. Due to the lin-
earity of Stokes equation, the dynamics of nb rigid bodies is
specified compactly by a linear equation

U =MF, (24)

where U = (U1,Ω1,U2,Ω2, . . .) consists of translational and
rotational velocities of each rigid body, and F = (F1,T1,
F2,T2, . . .) consists of the forces and torques on each rigid
body. They are both column vectors with 6nb entries. M is the
mobility matrix, which contains all the solution information

given by the Stokes equation and the no-slip boundary con-
dition. Physically, the positive-definiteness can be explained
by a simple observation that any non-zero force F applied
to the rigid bodies dissipates energy into the viscous fluid,
that is,

F · U = FTMF > 0. (25)

It is important that all the derivations in this work make
no assumption about the shape of the rigid bodies or of the
numerical method used to solve the mobility problem. Also,
our approach does not require that the matrix M be explic-
itly constructed. As long as U can be computed with given
force F for a given geometry, the method derived in this
work can be applied. At the most crude level of description,
the many-body coupling can be completely ignored and M
becomes block-diagonal, describing isolated Brownian parti-
cles. With many-body coupling, the Rotne-Prager-Yamakawa
tensor is a fairly inexpensive SPD approximation to M and
can be used here straightforwardly. Stokesian Dynamics14
can also be used in this method as a full hydrodynamics
solver. The recent progress in boundary integral methods
provides the most accurate solvers to the mobility prob-
lem, for which spheres15,16 and rigid slender bodies17,18 are
examples.

B. Complementarity formulation
for contact dynamics

The evolution of the geometric configuration q of a col-
lection of rigid bodies is uniquely defined by the translational
and rotational velocities Uk and Ωk for each particle k. Their
velocities can be partitioned as the “known” velocities and the
“collision” velocities

Uk = Uk,known + Uk,C, (26)

Ωk = Ωk,known +Ωk,C, (27)

where “known” stands for the known velocities before resolv-
ing the collisions. For example, for Brownian colloids, Uk ,known
and Ωk ,known are Brownian displacements which can be com-
puted without resolving the consequent collisions. Also for
swimming bacteria, Uk ,known andΩk ,known arise from the swim-
ming motion.

The collision motion UC =MFC is governed by the mobil-
ity problem [Eq. (24)]. The collision velocities UC are governed
by the mobility problem UC =MCFC, i.e., Eq. (24). The equa-
tions of motion for the rigid bodies can be written as the
evolution of configuration q with velocity U

q̇ = U, (28)

U = Uknown + MFC. (29)

In this formulation, both FC and UC are the unknowns to be
solved for, with the geometric constraint that q satisfies the
non-overlap condition at all time t.

The geometric non-overlap condition can be defined as
having a positive minimal separation, that is,Φ` (q) > 0 between
each close pair ` of rigid bodies, as a function of geometry
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configuration q. For each contact pair indexed `, the positiv-
ity of minimal separation distance Φ` and the collision force
magnitude γ` are mutually exclusive situations:

• No contact: Φ` > 0 and γ` = 0.
• Contact: Φ` = 0 and γ` > 0.

Mathematically, this is called a complementarity condition and
is usually denoted by the following special notation combining
all `:

0 ≤ Φ ⊥ γ ≥ 0, (30)
where Φ = (Φ0, Φ1, . . .) denotes the collection of minimal dis-
tances, and γ = (γ0, γ1, . . .) denotes the collection of all contact
force magnitudes, for all possible contacts in the system. The
dimension of both Φ and γ is nC, the total number of possible
collisions in the system. nC is identified by tracking the sep-
aration distance between pairs of rigid bodies that are close
to collision. That is, once a pair of particles’ separation Φ` is
larger than a positive distance δ, this pair is then excluded
from the collision resolution algorithm because they are far
apart and cannot collide. This threshold distance δ is cho-
sen empirically according to the system dynamics and is not
necessarily a constant for all pairs over time. For example, we
usually pick δ = 0.5(Ri + Rj) for a pair of spheres with radius Ri
and Rj.

Now, for nb rigid bodies appearing in the mobility prob-
lem, let D` ∈ R6nb be a sparse column vector containing geo-
metric information mapping the magnitudes γ` to the collision
force (and torque) vector on each rigid body. D` defined in
this way gives the force and torque on the two rigid bodies
in this collision pair `, as a linear function to the collision
force magnitude γ` . Therefore, D` has 12 non-zero entries
for aspherical shapes, corresponding to 3 translational and 3
rotational degrees of freedom for each rigid body in the con-
tact pair. For two spheres in contact without friction, D` has
only 6 non-zero entries because the normal collision forces
induce no torques in this case. Then we can define a matrix
D ∈ R6nb×nC as the assembly of all D` column vectors, mapping
γ to the collision forces FC

FC = Dγ, (31)

D = [D0 D1 . . . DnC ] ∈ R6nb×nC . (32)

The details about the entries of D can be found in the work by
Tasora, Negrut, and Anitescu.10

Then, the equations of motion result in the differential
variational inequality

q̇ = U(q), (33)

U(q) = Uknown(q) + M(q)D(q)γ, (34)

0 ≤ Φ(q) ⊥ γ ≥ 0. (35)

Here, Uknown(q), M(q), and D(q) are all directly solvable with
given geometry q, without information about the collision
force magnitudes γ. This equation set is then solvable and
integrable in time once a relation between the configuration
q and the collision force γ is supplied, that is, a timestepping
scheme.

With temporal discretization, the complementarity con-
dition is satisfied at each time step instead of over all time t.

The convergence theory for the trajectories of the rigid bodies
has been analyzed in the work by Anitescu, Potra, and Stew-
art.19 Here, we move forward to discuss the formulation and
solution algorithm, without repeating the discussion of con-
vergence to the continuous differential variational inequality.
Higher order schemes such as the Runge-Kutta and Adams-
Bashforth families can all be used, but for simplicity of deriva-
tion, we employ a first-order Euler scheme. Given position qk
and velocity U k

known at a given time step tk and step size ∆t,
velocity U k and contact forces γk are solved via the nonlinear
complementarity problem (NCP)

qk+1 = qk + ∆t
(
U k

known + M(q)kDkγk
)
, (36)

0 ≤ Φ(qk+1) ⊥ γk ≥ 0. (37)

The velocity U k is then used to evolve the position in time.
This is an NCP because the minimum gapΦ is in general a

nonlinear function of q. NCPs can often be solved iteratively
by a series of linear complementarity problems (LCPs) with
superlinear or quadratic convergence rate.20 Here, we follow
a simpler route rather than solving the NCP exactly. The time
step size δt must be reasonably small to integrate U k

known accu-
rately, and so Φ(qk+1) ≥ 0 can be linearized (and scaled with
1/∆t) to yield

1
∆t
Φ(qk) +

(
∇qΦ

)k [
U k

known + MkDkγk
]
≥ 0, (38)

where the matrix
(
∇qΦ

)k
is simply the coefficients of the

Taylor expansion of Φ over q at time step tk.
For rigid objects, it is straightforward to show that

∇qΦ = DT. This is the same relation utilized in the work
by Tasora, Negrut, and Anitescu.10 The LCP problem can be
written in the standard form

0 ≤ Akγk + bk ⊥ γk ≥ 0, (39)

where

A = DTMD, (40)

b =
1
∆t
Φ(q) + DTUknown. (41)

The term DTUknown computes the (linearized) changes in the
minimal separation Φ before the contact constraints are con-
sidered. We also note that each application of A corresponds
to the solution of a mobility problem for the contact force
FC = Dγ. For large enough numbers of particles, it may
thus be preferable to use matrix-free methods instead of
constructing A explicitly.

The procedures of this collision resolution method based
on LCP are as follows:
1. Compute U k

known at time step tk.
2. Compute the sparse matrix D k with given geometric

configuration qk and the threshold δ for possible con-
tacts.

3. Solve for γk with Eq. (39). U k
C and F k

C are solved simulta-
neously.

4. Evolve to qk+1 with U k
known + U k

C.
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C. LCP solvers
In this section, we briefly discuss the solution methods to

Eq. (39). The superscripts k denoting the time step are dropped
to simplify the notation, since the LCP solution algorithms
discussed here are generic methods not limited to collision
resolution problems.

The matrix A defined in the LCP formulation [Eq. (39)] is
symmetric-positive-semi-definite (SPSD) because the mobil-
ity matrix M is symmetric-positive-definite (SPD). There-
fore, the LCP problem can be conveniently converted to a
Constrained Quadratic Programming (CQP)21

γ = arg min
γ≥0

f(γ) =
1
2
γTAγ + bTγ. (42)

From the physics perspective, the minimization of f(γ) can
be understood qualitatively as the minimization of the total
virtual work done by the collision forces (and torques). This
CQP formulation allows a wide range of algorithms. It can be
solved with first order methods based on Projected Gradient
Descent (PGD), where the projection is used to impose the
constraint γ ≥ 0 during the gradient-descent minimization
process. It can also be solved with second order Newton-
type methods, for example, the minimum-map Newton
method.21

It is beyond the scope of this work to discuss these meth-
ods in detail. Here, we solve the LCP problem with first order
methods because we found that PGD methods are much more
efficient since the gradient g = ∇f = Aγ + b is inexpensive
to compute for every gradient descent step. In particular,
we found that Barzilai-Borwein Projected Gradient Descent
(BBPGD) is much more efficient than the previously reported
Accelerated Projected Gradient Descent (APGD)22 because
BBPGD does not rely on the estimation by back-tracking of
the Lipschitz parameter of the function f. The BBPGD algo-
rithm has been analyzed mathematically for generic CQP by
Dai and Fletcher.23 The procedures of BBPGD can be found in
Appendix B.

The convergence of CQP solvers can be checked at each
step by computing the L2-norm φ(γ, g(γ)) of the minimum-
map function H

φ(γ, g(γ)) = H(γ, g(γ))2 < εtol, (43)

H(γ, g(γ)) = min(γ,Aγ + b), (44)

because the solution to the CQP is reached when φ = 0. In this
work, ε tol = 10−5 is used unless otherwise noted. This crite-
ria function φ is also efficient to compute because Aγ + b is
already computed as the gradient of the quadratic function at
each gradient descent step.

D. Performance
The collision resolution algorithm based on the LCP

[Eq. (39)] allows the time step size ∆t to be increased by
10–100 times in comparison to the traditional method with
LJ or WCA potentials because the stiffness induced by the
potentials is eliminated. For each time step, the explicit con-
struction of Eq. (39) has approximately the same cost as com-
puting the pairwise repulsive force. After the construction,

Aγ + b must be computed once during each BBPGD mini-
mization step. The total number of iterations increases slowly
with the number of actual collisions, i.e., the number of pos-
itive entries in the solution γ. Empirically, 5–10 iterations is
enough for dilute systems. Since Aγ + b can be computed
with standard sparse matrix-vector multiplication operations
(spmv) efficiently, the solution of Eq. (39) is usually not a
significant extra cost unless the system is densely packed
and close to the random-close-packing (RCP) limit, where
O(1000) iterations is necessary. Therefore, overall this LCP-
based method significantly increases both the stability and
efficiency of resolving collisions compared to repulsive poten-
tial methods. We also implemented this algorithm with full
MPI (Message Passing Interface) and OpenMP parallelism, and
the program scales efficiently to O(107) particles on O(100)
cores.

IV. VALIDATION
To validate our derivation for the collision stress and

resolution algorithm, particles with aspherical shapes should
be used because otherwise the geometric part in Eq. (16)
varnishes. Unfortunately, such widely accepted and available
benchmark data are only available for a few systems, par-
tially because the difficulty of handling collisions between
aspherical particles and computing the stress.

In this section, we extract the Equation-of-State (EOS)
of monodisperse Brownian spherocylinders of length L and
diameter D (Fig. 2) and compare the results with the bench-
mark data reported by Bolhuis and Frenkel.1 In this purely
Brownian system, the many-body hydrodynamics coupling in
the mobility matrix is ignored, i.e., M becomes block diag-
onal, with each block being the translational and rotational
mobility matrix Mtt and Mrr for each spherocylinder. The
coupling between rotational and translational motion is also
ignored

Mtt =
1
ζ‖
nnT +

1
ζ⊥

(
I − nnT

)
, (45)

Mrr =
1
ζr
I. (46)

Here, n is the orientation norm vector of the spherocylin-
der. The drag coefficients are approximated by slender body
theory of straight rigid fibers17

1/ζ‖ = 2b/(8πLµ), (47)

1/ζ⊥ = (b + 2)/(8πLµ), (48)

1/ζr = 3(b + 2)/(2πL3µ), (49)

b = −(1 + 2 log[D/(2L)]). (50)

FIG. 2. The geometry of a spherocylinder of length L, width D, and orientation n.
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Similar but different drag coefficients are often used in previ-
ous studies.8,24

The Brownian velocities UB and ΩB for each sphero-
cylinder are computed by the Random-Finite-Difference (RFD)
algorithm25 treating Mtt and Mrr independently because the
many-body coupling has been ignored. Then the “known”
velocity Uknown in Eq. (29) is just the Brownian velocity U B

= (UB
1 ,ΩB

1 ,UB
2 ,ΩB

2 , . . .). The necessary geometric quantities in
Eq. (16) and the sparse matrix D in the LCP collision resolu-
tion algorithm are computed with the method described in
Appendixes A and C. The BBPGD algorithm is then used to
solve the CQP (equivalent to the LCP) for UC and FC. The sys-
tem stress is then computed with FC according to Eq. (16) for
each pair in the collision.

Periodic boundary conditions are imposed in each direc-
tion of the rectangular simulation box of size Lx × Ly × Lz,
containing N spherocylinders. n = N/(LxLyLz) is the number
density. The system total stress and pressure are computed
with a simple average of all collision pairs’ contributions

Σ = nkBTI +
1
N

∑
σcol, (51)

Π =
1
3

TrΣ, Π
col =

1
3N

∑
Trσcol. (52)

The kinetic part nkBTI is imposed with given kBT through the
Brownian motion moves in overdamped simulations.

A. The isotropic phase
We first present results in the isotropic phase, as shown

in Fig. 3. The simulations start from a random placement and
orientation of N = 2000 spherocylinders of varying aspect
ratio L/D in a cubic periodic box and are equilibrated with
a fixed box size until the measured stress reaches a steady
state. This process usually takes about 105 time steps. Then the

FIG. 3. The pressure of Brownian spherocylinders in the isotropic phase. The open
circles with error bars connected by dashed lines are measured from simulations.
The error bars show the standard deviation of pressure within the time-average
window. The solid lines are data extracted from the work by Bolhuis and Frenkel.1

The black line shows the Carnahan-Starling equation for hard spheres (L/D = 0)
as a reference.

system pressure Π is averaged over another 2000 time steps.
The method described in this work accurately reproduces the
standard data reported by Bolhuis and Frenkel.1

B. The isotropic-nematic phase transition
Beyond the isotropic phase, the simulations are much

more demanding because the system relaxation time becomes
significantly longer. In this regime, if a simulation is simply
started from a random configuration, it remains “jammed” in
this structure for a long time, even when the system den-
sity is in the nematic phase regime. Limited by computing
resources, we conduct dense simulations starting from N ran-
domly located, but all aligned configuration of spherocylin-
ders. The fixed simulation box is fixed with Lx > Ly = Lz, and
the spherocylinders are aligned in the x direction. N = 2000
is fixed but the box sizes are varied around 72D × 15D × 15D
for different volume fractions. Simulations with N = 6000
spherocylinders in a cubic periodic box are also performed,
and the results reported here are not impacted by the box
shape.

We focus on the isotropic-nematic transition for L/D = 5,
where a nematic phase can stably exist, because it is not too
close to the isotropic-nematic-smectic triple point at around
L/D ≈ 3.7 estimated by Bolhuis and Frenkel.1 The pressure
and its standard deviation are also calculated with equilibrated
systems in the same way as described above. The results for
the measured pressure agrees well with the results by Bolhuis
and Frenkel,1 as shown in Fig. 4.

Figure 4 shows a jump in pressure at φ ≈ 0.4. More
information about this isotropic-nematic transition can be
extracted by measuring the orientation order parameter

FIG. 4. The pressure of Brownian spherocylinders close to the isotropic-nematic
phase transition. The green symbols are simulations starting from a randomly
oriented configuration in a cubic box, and the red symbols are simulations start-
ing from a random center location but aligned orientation in a rectangular box.
The error bars show the range of standard deviation of pressure within the time-
average window. The solid line representing the isotropic phase and the dashed
line representing the nematic phase are both data extracted from the work by
Bolhuis and Frenkel.1
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FIG. 5. The jump in orientation order parameter S and the collision stress
anisotropy during the isotropic-nematic phase transition for L/D = 5. The black
symbols connected by a solid line show the order parameter S, and the red open
circles show the anisotropy. All data are extracted from the same set of simulations
starting from a random but aligned state, as in Fig. 4.

S =
〈
P2(n · n̄)

〉
, where P2 is the order-2 Legendre polyno-

mial and n̄ is the average orientation of spherocylinders at a
specific time in the simulation. Furthermore, the anisotropy
of the system pressure can be quantitatively investigated by
computing the ratio of the maximum to the minimum of the
eigenvalues σcol

max/σ
col
min of the collision stress tensor σcol. As

shown in Fig. 5, the anisotropy ratio σcol
max/σ

col
min closely fol-

lows the jump in S, which shows that the isotropic-nematic
phase transition for L/D = 5 happens at φ ≈ 0.42. Last, but
not least, the computed stress tensor σ12 is exactly sym-
metric without Brownian noise for each pair of spherocylin-
ders at each time step, as required by the general principal
of continuum mechanics. This would not be satisfied if the
geometric part in Eq. (16) is not included in the stress
calculation.

V. APPLICATION
In this section, we demonstrate a few applications of the

computational framework described in this work to the area of
soft active matter, namely, self-propelled rods and growing-
dividing cells.

A. Self-propelled rods
The Active Brownian Particle (ABP) model has attracted

much attention because despite being a minimal model it can
be used to explain many important features of soft active mat-
ter systems. However, the similar Self-Propelled Rod (SPR)
model has not been investigated in such detail in the liter-
ature. Almost all related work focuses on 2D systems,26–32
mostly because the collisions are difficult to handle in 3D.
In particular, an EOS has not been quantitatively measured.
In this work, we report briefly on the enhancement of colli-
sion pressure for dilute Brownian SPR systems. The Brownian

SPR model we consider here is exactly the same as the Brow-
nian spherocylinders considered in Sec. IV except that each
spherocylinder has a propulsion speed U0 along its orientation
norm vector n.

The virial expansion of the EOS can be written as33

Π

nkBT
= 1 + B2n + B3n2 + · · · , (53)

or,

1 +
Πcol

nkBT
= 1 + B2

φ

v0
+
B3

B2
2

(
B2

φ

v0

)2

+ · · · , (54)

where v0 = π
(

1
4LD

2 + 1
6D

3
)

is the volume of a single rod (sphe-
rocylinder). In the limit of φ → 0, the higher order terms
varnish and the EOS can be approximately written as

Πcol

nkBT
≈ B2

φ

v0
. (55)

When U0 = 0, B2 = π
(

2
3D

3 + LD2 + L2D/4
)

is analytically
known.34,35 Therefore, we measure the enhancement of colli-
sion pressure Πcol due to self-propulsion with simulations at a
given L/D and φ, with varying U0. We simulate N = 4 × 105 SPRs
in a fixed cubic periodic box to overcome the strong effect of
Brownian noise in such dilute systems and guarantee that the
persistence length U0/DR is much smaller than the box size.
We take φ = 0.0052 for L/D = 5, φ = 0.0065 for L/D = 10, and
φ = 0.0065 for L/D = 20. Such dilute systems remain isotropic
with varying U0. We plot the measured Πcol/(B2n) as a func-
tion of dimensionless velocity U0/(LDR), where DR = kBT/ζ r is
computed as in Sec. IV when φ → 0.

The results of this measurement are shown in Fig. 6.
The collision pressure increases almost linearly as the
propulsion speed U0. Some work36 proposed an “effective

length” LU =

√
L(L + U0/DR) to approximate the effect of

propulsion. Substituting LU into the analytic expression for
B2 = π

(
2
3D

3 + LD2 + L2D/4
)

does generate a linear scaling as

FIG. 6. The enhancement of collision pressure due to self-propelled velocity U0
in the dilute limit. Here, φ = 0.0052 for L/D = 5, φ = 0.0065 for L/D = 10, and
φ = 0.0065 for L/D = 20. The results and error bars are averaged for 2000 time
steps over equilibrated systems.
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U0 when L/D→ ∞, but we found that quantitatively this sim-
ple scaling law fails in predicting both the value and the trends
of the data shown in Fig. 6.

Ideally, Πcol/(B2n) → 1 at U0 = 0, which is approximately
the case of L/D = 5. For L/D = 10 and 20, there is about
10% error because the contributions from B3 and B4 remain
important. Using a more dilute system could help resolve this
issue, but a larger number of SPRs are necessary to over-
come the Brownian noise, which is currently beyond our
computing power. However, this slight mismatch does not
change our conclusion of the linear scaling between Πcol

and U0.

B. Growing and dividing cells
The collision stress [Eq. (16)] and the LCP method

[Eq. (39)] are derived for rigid bodies in Secs. II and III.
However, this assumption only means that they are rigid
in response to collision forces. Besides this, they can freely
deform and Eqs. (16) and (39) are still applicable. Grow-
ing and dividing cells are one of the examples with which
we can demonstrate the applications where the objects are
changing their shapes, even discontinuously. In the follow-
ing, we present some interesting stress measurement for
systems of a minimal model of growing and dividing cells.
The model is unrealistic because the growing and divid-
ing process is assumed to be synchronized for all cells
and the time between divisions is very short. We use this
model only to demonstrate the capability of the computa-
tional method. More realistic biological parameters can be
straightforwardly added to this minimal model in our future
study.

We model biological cells as spherocylinders where the
diameter D remains constant but the length L grows lin-
early in time. All cells start to grow from a specified original
length L0 at t = 0. Once the length reaches the specified divi-
sion length LD, each cell splits into two shorter cells with
equal length L0. This division is assumed to occur instanta-
neously. As shown in Fig. 7, we choose LD = 2L0 + D. The
new cells continue this growing-dividing cycle. The number of

FIG. 7. The division of cells modelled as splitting of spherocylinders. The
cell with length LD divides into two cells with equal length L0. The total cell
volume slightly decreases in this division process due to the shape change
in the center. The orientation norm vector n remains unchanged after the
division.

cells in the simulation box therefore exponentially grows over
time. The division time τdiv denotes the time one cell grows
from L0 to LD, i.e., the time between two consecutive division
events.

We use dimensional units D = 1 µm, L0 = 2.5 µm, LD = 6 µm,
and viscosity µ = 0.001 Pa s, close to the viscosity
of water at room temperature. The Brownian motion is
also computed as in Sec. IV, where at room temperature
kBT = 0.004 11 pN µm. All cells are assumed to divide at the
same time. They are also assumed to swim in the direction n
with velocity U0 = U0n as the SPR model. All simulations start
from 100 cells randomly and homogeneously distributed in a
periodic cubic 100 × 100 × 100 µm3 box.

In this problem, there are a variety of time scales, includ-
ing the Brownian time scale D−1

R , the swimming time scale
L0/U0, the cell division time scale τdiv, and the system relax-
ation time scale where the cell number density relaxes to
a homogeneous distribution after each division. A thorough
investigation is beyond the scope of the current work, and we
only report the results for a fast growing case where τdiv is
longer than D−1

R but is much shorter than the density relax-
ation time scale. We choose the rotational diffusion time D−1

R
for cells with length L0 as the unit of time. D−1

R = 1.89 s and we
pick τdiv = 3.5 s.

The results are reported in dimensionless numbers in
Fig. 8, where a moving average window of 100 time steps
is applied to the measured Πcol to filter the Brownian fluc-
tuations. The measured collision pressure shows a peak, at
almost the same height, at every division event before the
volume fraction φ reaches 10%. This is because in dilute
systems most collisions are contributed by those “new-
born” pairs of cells with length L0. This contribution is
proportional to the total number of cells in the system,

FIG. 8. The increase in collision pressure Πcol for dividing cells with different
self-propelled velocities U0. The time step δt = 5.3 × 10−5D−1

R . A mov-
ing average window of 100 time steps is applied to the measured Πcol to fil-
ter the Brownian fluctuations. The purple line shows the exponential growth
of the volume fraction φ over time. The tiny dips in φ at each collision
event correspond to the slight decrease in the total cell volume as shown
in Fig. 7.
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FIG. 9. The snapshot of dividing cells for
(a) U0 = 0 and (b) U0 = 1.51L0DR at
time tDR = 13.2. The purple dots mark
the heads of the moving cells.

and therefore, when Πcol is scaled by nkBT, the total num-
ber is scaled out and the peaks are of almost the same
height.

Another notable feature is that the system with faster
swimming velocity U0 has lower collision pressure. This is

because the density relaxation time scale decreases with
increasing U0. As shown in Figs. 9(a) and 10(a), when
U0 = 0 the cells form local clusters because the division time
τdiv is not sufficiently long for them to diffuse translation-
ally. Such high density clusters increase the system collision

FIG. 10. The snapshot of dividing cells
for (a) U0 = 0 and (b) U0 = 1.51L0DR at
time tDR = 18.6. The purple dots mark
the heads of the moving cells. The red
box marks the region shown in (c) and
(d).
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pressure significantly. While in Figs. 9(b) and 10(b) when U0
= 2 µm s−1 = 1.51L0DR, the system number density remains
approximately homogeneous because of the swimming
motion.

VI. CONCLUSION
In this work, we described a complete solution for com-

puting the collision stress for moving rigid particle assem-
blies. We first developed the general expression [Eq. (16)]
to compute the collision stress for each colliding pair of
particles, based on the idea of volumetric integration of
momentum transfer in that collision event. Equation (16) is
then demonstrated in Sec. II to reproduce known expres-
sions in various simplified cases. This task can be com-
pleted by the LCP based collision resolution algorithm
described in Sec. III. The idea is to utilize the geometric
non-overlapping constraints and to remove the stiff pairwise
repulsive potentials. Our method is validated in Sec. IV by
measuring the system EOS for Brownian spherocylinders and
finding accurate agreement with the work by Bolhuis and
Frenkel.1 We further demonstrated briefly the applications
of this method in Sec. V for (i) self-propelled rods and (ii)
growing-dividing cells. This new method allows us to mea-
sure mechanical properties in such soft active matter systems
straightforwardly.

The method described in this work can be applied to
various systems, as long as (i) the collision geometry for
a pair of particles can be computed and (ii) the mobility
matrix can be computed. We designed the method such
that the mobility matrix M appears only as an abstract
matrix-vector multiplication operator. In this way, M can
be computed with any method without the necessity to
explicitly construct the matrix, as long as the method
keeps M symmetric positive definite. In this paper, we
focused on the case where the many-body coupling in M
is ignored, i.e., M is block-diagonal. The same algorithm
[Eq. (39)] also works for the cases with full hydrodynam-
ics. For example, Rotne-Prager-Yamakawa tensor,37 Stoke-
sian Dynamics,14 and Boundary Integral method16 can all
be used depending on the required accuracy for hydrody-
namics for rigid particle suspensions. We leave the analysis
about the cases with full hydrodynamics to other forthcoming
studies.

Last, but not least, Eq. (16) is applicable not only to the
collision stress. It is applicable to all cases where some form
of momentum transfer happens from a point on one object
to a point on another object. Furthermore, the impulse J
does not have to be along the direction between the two
points of momentum transfer. As long as the force FC and the
geometry during the event can be computed, the stress fol-
lows Eq. (16). For example, in a microtubule network driven
by motor proteins,38 the stress between microtubules gen-
erated by motor proteins can be computed with Eq. (16) by
replacing the force FC with the protein pushing or pulling
force. This paves the way to more fundamental understand-
ing of the mechanical properties of such biological active
networks.
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APPENDIX A: GEOMETRY OF SPHEROCYLINDERS
Spherocylinders are cylinders of length L and diameter D,

capped with two hemispheres. We define β = L/D = L/(2R).
In the coordinate system where the spherocylinder is aligned
with the z axis, the integral N and moment of inertia tensor GM
are diagonalized

N = ρ


N⊥ 0 0
0 N⊥ 0
0 0 N‖


, (A1)

GM = ρ



GM,⊥ 0 0
0 GM,⊥ 0
0 0 GM,‖


, (A2)

where

N⊥ =
1

30
(15β + 8)πR5, (A3)

N‖ =
1

15

(
10β3 + 20β2 + 15β + 4

)
πR5, (A4)

GM,⊥ =
1

30

(
20β3 + 40β2 + 45β + 16

)
πR5, (A5)

GM,‖ =
1

15
(15β + 8)πR5. (A6)

APPENDIX B: BBPGD
This method is summarized in Algorithm 1.
In this algorithm, αBB1

k (next to the last line) is not the only
choice. αBB2

k = sTk−1yk−1/y
T
k−1yk−1 can also be used. We find that

there is no significant difference in performance of different
choices of αBB1

k or αBB2
k in solving our problems, and αBB1

k is
used for all results reported in this work.

Algorithm 1. The Barzilai-Borwein projected gradient descent method.

Solve Eq. (42) with initial guess γ0, residual tolerance ε tol,
and kmax.
g0 = Aγ0 + b.
if φ

(
γ0, g0

)
< ε then

Solution is γ0.
end if
Simple gradient-descent step size α0 = gT0g0/g

T
0Ag0.

for k = 1: kmax do
The descent step: γk = γk−1 − αk−1gk−1.
The projection step: γk = Πγ≥0[γk].
Compute the gradient gk = Aγk + b.
if ϕ(γk, gk) ≤ ε tol then
Stop iteration, solution is γk.
end if
sk−1 = γk −γk−1, yk−1 = gk −gk−1.
αBB1
k = sTk−1sk−1/sTk−1yk−1.

end for
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APPENDIX C: COLLISION BETWEEN
SPHEROCYLINDERS

This appendix describes how to find the minimum sepa-
ration between a pair of spherocylinders. Geometrically, this
task can be reduced to find the minimum distance between
two line segments P0, P1, Q0, Q1 in 3D space, where P0, P1 (also
Q0, Q1) are the two end points of the cylindrical section of one
spherocylinder, as shown in Fig. 11.

We parameterized the two spherocylinders with scalars
0 < s, t < 1: P(s) = (1 − s)P0 + sP1 and Q(t) = (1 − t)Q0 + tQ1. Then
the square distance between two points on the segments is
the quadratic function

R(s, t) = |P(s) −Q(t) |2 (C1)

= as2 − 2bst + ct2 + 2ds − 2et + f (C2)

= pTMp + 2KTp + f, (C3)

where

pT =
[
st

]
, (C4)

M =
[
a −b
−b c

]
, (C5)

KT =
[
d−e

]
, (C6)

a = (P1 − P0) · (P1 − P0), (C7)

b = (P1 − P0) · (Q1 −Q0), (C8)

c = (Q1 −Q0) · (Q1 −Q0), (C9)

d = (P1 − P0) · (P0 −Q0), (C10)

e = (Q1 −Q0) · (P0 −Q0), (C11)

f = (P0 −Q0) · (P0 −Q0). (C12)

R(s, t) is a quadratic function to minimize on unit square (s, t)
∈ [0, 1]2. Observe that

detM = ac − b2 = |(P1 − P0) × (Q1 −Q0) |2 ≥ 0. (C13)

The minimization of R(s, t) is straightforward, unless the two
line segments are close to parallel, i.e., det M→ 0. In this spe-
cial case, numerical instabilities may occur due to the singu-
larity of M. To handle all cases robustly, we follow the method
described in the computational geometry library Geometric
Tools,39 where a constrained conjugate gradient approach is

FIG. 11. Collision geometry of two spherocylinders.

FIG. 12. The relation between xN and xC.

used. In our tests, this method computes the solution sN, tN
both efficiently and robustly.

After we find sN and tN on each spherocylinder, we could
easily compute the locations of minimal distance P(sN) and
Q(tN). The intersection points of vector P(sN) −Q(tN) and sur-
faces of spherocylinders are the collision points. However, for
the sake of convenience, it is not necessary to find the exact
collision points on surfaces. When computing the stress ten-
sor using Eq. (16), only the torque relative to the center of mass
xC × FC is necessary. Geometrically, it is straightforward to
realize that xC × FC = xN × FC, as shown in Fig. 12. Therefore,
there is no need to compute xC.

REFERENCES
1P. Bolhuis and D. Frenkel, J. Chem. Phys. 106, 666 (1997).
2S. C. Takatori, W. Yan, and J. F. Brady, Phys. Rev. Lett. 113, 028103
(2014).
3M. Wang and J. F. Brady, Phys. Rev. Lett. 115, 158301 (2015).
4D. W. Rebertus and K. M. Sando, J. Chem. Phys. 67, 2585 (1977).
5B. Snook, L. M. Davidson, J. E. Butler, O. Pouliquen, and E. Guazzelli, J. Fluid
Mech. 758, 486 (2014).
6C. S. Campbell and A. Gong, J. Fluid Mech. 164, 107 (1986).
7C. S. Campbell, J. Fluid Mech. 203, 449 (1989).
8Y.-G. Tao, W. K. den Otter, J. T. Padding, J. K. G. Dhont, and W. J. Briels, J.
Chem. Phys. 122, 244903 (2005).
9B. Maury, Numer. Math. 102, 649 (2006).
10A. Tasora, D. Negrut, and M. Anitescu, Proc. Inst. Mech. Eng., Part K: J.
Multi-Body Dyn. 222, 315 (2008).
11A. Tasora and M. Anitescu, Comput. Methods Appl. Mech. Eng. 200, 439
(2011).
12D. R. Foss and J. F. Brady, J. Rheol. 44, 629 (2000).
13S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected
Applications (Courier Corporation, 2005).
14M. Wang and J. F. Brady, J. Comput. Phys. 306, 443 (2016).
15E. Corona, L. Greengard, M. Rachh, and S. Veerapaneni, J. Comput. Phys.
332, 504 (2017).
16E. Corona and S. Veerapaneni, J. Comput. Phys. 362, 327 (2018).
17A.-K. Tornberg and K. Gustavsson, J. Comput. Phys. 215, 172 (2006).
18K. Gustavsson and A.-K. Tornberg, Phys. Fluids 21, 123301 (2009) (1994-
present).
19M. Anitescu, F. A. Potra, and D. E. Stewart, Comput. Methods Appl. Mech.
Eng. 177, 183 (1999).
20S. Fang, IEEE Trans. Autom. Control 29, 930 (1984).
21S. Niebe and K. Erleben, Numerical Methods for Linear Complementarity
Problems in Physics-Based Animation (Morgan & Claypool Publishers, San
Rafael, California, 2015), oCLC: 904469157.
22H. Mazhar, T. Heyn, D. Negrut, and A. Tasora, ACM Trans. Graph. 34(32), 1
(2015).

J. Chem. Phys. 150, 064109 (2019); doi: 10.1063/1.5080433 150, 064109-12

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.473404
https://doi.org/10.1103/physrevlett.113.028103
https://doi.org/10.1103/physrevlett.115.158301
https://doi.org/10.1063/1.435226
https://doi.org/10.1017/jfm.2014.541
https://doi.org/10.1017/jfm.2014.541
https://doi.org/10.1017/s0022112086002495
https://doi.org/10.1017/s0022112089001540
https://doi.org/10.1063/1.1940031
https://doi.org/10.1063/1.1940031
https://doi.org/10.1007/s00211-005-0666-6
https://doi.org/10.1243/14644193jmbd154
https://doi.org/10.1243/14644193jmbd154
https://doi.org/10.1016/j.cma.2010.06.030
https://doi.org/10.1122/1.551104
https://doi.org/10.1016/j.jcp.2015.11.042
https://doi.org/10.1016/j.jcp.2016.12.018
https://doi.org/10.1016/j.jcp.2018.02.017
https://doi.org/10.1016/j.jcp.2005.10.028
https://doi.org/10.1063/1.3273091
https://doi.org/10.1016/s0045-7825(98)00380-6
https://doi.org/10.1016/s0045-7825(98)00380-6
https://doi.org/10.1109/tac.1984.1103393
https://doi.org/10.1145/2735627


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

23Y.-H. Dai and R. Fletcher, Numer. Math. 100, 21 (2005).
24H. Löwen, Phys. Rev. E 50, 1232 (1994).
25S. Delong, F. B. Usabiaga, and A. Donev, J. Chem. Phys. 143, 144107
(2015).
26A. Baskaran and M. C. Marchetti, Phys. Rev. Lett. 101, 268101 (2008).
27F. Ginelli, F. Peruani, M. Bär, and H. Chaté, Phys. Rev. Lett. 104, 184502
(2010).
28S. Orozco-Fuentes and D. Boyer, Phys. Rev. E 88, 012715 (2013).
29H.-S. Kuan, R. Blackwell, L. E. Hough, M. A. Glaser, and M. D. Betterton,
Phys. Rev. E 92, 060501 (2015).
30S. Weitz, A. Deutsch, and F. Peruani, Phys. Rev. E 92, 012322 (2015).
31F. Peruani, Eur. Phys. J. Spec. Top. 225, 2301 (2016).

32R. Großmann, F. Peruani, and M. Bär, Phys. Rev. E 94, 050602 (2016).
33G. J. Vroege and H. N. W. Lekkerkerker, Rep. Prog. Phys. 55, 1241
(1992).
34L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949).
35H. Graf and H. Löwen, J. Phys.: Condens. Matter 11, 1435 (1999).
36P. Kraikivski, R. Lipowsky, and J. Kierfeld, Phys. Rev. Lett. 96, 258103
(2006).
37J. Rotne and S. Prager, J. Chem. Phys. 50, 4831 (1969).
38P. J. Foster, W. Yan, S. Fürthauer, M. J. Shelley, and D. J. Needleman, New
J. Phys. 19, 125011 (2017).
39D. Eberly, “Robust computation of distance between line segments,”
https://www.geometrictools.com/.

J. Chem. Phys. 150, 064109 (2019); doi: 10.1063/1.5080433 150, 064109-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1007/s00211-004-0569-y
https://doi.org/10.1103/physreve.50.1232
https://doi.org/10.1063/1.4932062
https://doi.org/10.1103/physrevlett.101.268101
https://doi.org/10.1103/physrevlett.104.184502
https://doi.org/10.1103/PhysRevE.88.012715
https://doi.org/10.1103/physreve.92.060501
https://doi.org/10.1103/physreve.92.012322
https://doi.org/10.1140/epjst/e2016-60062-0
https://doi.org/10.1103/physreve.94.050602
https://doi.org/10.1088/0034-4885/55/8/003
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1088/0953-8984/11/6/008
https://doi.org/10.1103/physrevlett.96.258103
https://doi.org/10.1063/1.1670977
https://doi.org/10.1088/1367-2630/aa9320
https://doi.org/10.1088/1367-2630/aa9320
https://www.geometrictools.com/

