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The atmospheric ablation of meteoroids is a striking example
of the reshaping of a solid object due to its motion through a
fluid. Motivated by meteorite samples collected on Earth that
suggest fixed orientation during flight—most notably the coni-
cal shape of so-called oriented meteorites—we hypothesize that
such forms result from an aerodynamic stabilization of posture
that may be achieved only by specific shapes. Here, we inves-
tigate this issue of flight stability in the parallel context of
fluid mechanical erosion of clay bodies in flowing water, which
yields shapes resembling oriented meteorites. We conduct labora-
tory experiments on conical objects freely moving through water
and fixed within imposed flows to determine the dependence
of orientational stability on shape. During free motion, slender
cones undergo postural instabilities, such as inversion and tum-
bling, and broad or dull forms exhibit oscillatory modes, such
as rocking and fluttering. Only intermediate shapes, including
the stereotypical form carved by erosion, achieve stable orienta-
tion and straight flight with apex leading. We corroborate these
findings with systematic measurements of torque and stability
potentials across cones of varying apex angle, which furnish
a complete map of equilibrium postures and their stability. By
showing that the particular conical form carved in unidirectional
flows is also posturally stable as a free body in flight, these
results suggest a self-consistent picture for the origin of oriented
meteorites.
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Many important problems in the natural and engineering
sciences involve the mutual influence and coupled dynam-

ics of fluids flows with moving objects or movable boundaries
(1, 2). A classic example of such fluid–structure interactions is
aero- or hydroelasticity, in which a flexible object both affects
and responds to an imposed flow, such as in the flapping of a
flag (3–5). Other situations involve moving boundaries within
flows, where the interfacial dynamics may be driven by pro-
cesses such as melting, freezing, dissolving, or erosion (6–10).
Particularly challenging is the reshaping of a body due its free
motion through the fluid, in which case multiple couplings are
at work simultaneously. An everyday example is the fluttering
and tumbling of falling paper, where motion under gravity and
flow-induced bending deformations arise interactively (11, 12).
Other examples include the reshaping and ballooning of rain-
drops (13, 14), freezing or sublimation of atmospheric ice (15,
16), and the dissolution of particulates in sedimenting or stirred
suspensions (17, 18).

A particularly splendid example is a meteor or “shooting star”
(19, 20), which involves the hypersonic flight motions of a mete-
oroid that are coupled to its reshaping due to aerodynamic
heating, vaporization, melting, and removal of surface material
(21–24). When this process of ablation incompletely consumes
a meteoroid, the resulting meteorite collected on Earth, its
shape, and fusion crust of resolidified material give clues to its
flight history (25–28). While most meteorites seem arbitrarily
shaped and isotropically ablated, some show features that indi-
cate a directionality of the flows responsible for sculpting the

surface, suggesting fixed posture during flight rather than tum-
bling (25–27). Surface features include parallel flow lines left by
rivulets of molten material (29) as well as aligned regmaglypts
or elongate “thumbprint” indentations (30). The portion of such
samples has been reported to be about 25% (27). The most
striking exhibits are intact oriented meteorites (25–27), so-called
because their conical forms strongly suggest flight with apex-
leading orientation. The photographs in Fig. 1 include examples
from the 2013 meteor burst over Chelyabinsk, Russia (Fig. 1A)
as well as the Adamana (Fig. 1B) and Karakol (Fig. 1C) oriented
meteorites. Such conical forms have fascinated collectors and
scientists alike over the last 2 centuries as documented on the
website https://meteorite-recon.com.

One important question inspired by these objects is how such
similar final shapes arise from the ablative sculpting of what pre-
sumably start out as arbitrarily shaped meteoroids. Much early
work aimed to link the overall conical shape as well as surface
features to the flows present (ref. 22 and references therein), and
laboratory experiments on the ablation of plastic bodies fixed
within supersonic airflow revealed the formation of a conical
nose directed into the flow (32). This shape is thereafter retained
as the windward face recedes. A similar convergence to a ter-
minal shape—and a similar terminal shape itself as shown in
Fig. 1D—have recently been observed for clay bodies undergo-
ing fluid mechanical erosion while fixed in flowing water (31, 33).
Cone shapes also result from flow-driven dissolving of salts (30).
The similarity between hypersonic ablation and erosion or disso-
lution in fast but subsonic flows is surprising given the important
differences in flow regime and in the physics of the material
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Fig. 1. Forms that result from atmospheric ablation and fluid mechanical
erosion. (A) Oriented meteorite measuring 12 cm in width from the 2013
event over Chelyabinsk, Russia. Image courtesy of Christie’s Images Limited.
(B and C) Meteorites from Adamana, Arizona (15 cm wide) and Karakol,
Kyrgyzstan (14 cm wide) showing similar conical forms as well as flow lines
and elongated pits. Note that the lack of fusion crust on the rear surfaces
suggests fragmentation, and thus, the complete shape during ablation can-
not be ascertained. (B) Image courtesy of Marcin Cimala (photographer). (C)
Image courtesy of Dmitry Badyukov (photographer). (D) Sculpting of clay
by water erosion (31). An initial sphere of bentonite clay is reshaped into a
cone-like form (3 cm in width), when fixed within a unidirectional flow.

removal processes. Nonetheless, these studies show quite gener-
ically that a stereotypical final form arises from the flow–solid
interaction, at least when the unidirectional flow is enforced
externally by fixing the body.

For a free body moving through a fluid, unidirectional flow
must be achieved by fixed posture. The existence of oriented
meteorites suggests aerodynamic stabilization of meteoroids dur-
ing ablation: that is, the flow-induced torques tend to restore the
apex-leading orientation against perturbations (25–27). While
there are currently no direct observations of meteoroid orien-
tation nor experiments on their stability in hypersonic flows, we
aim to explore this hypothesis in the different but related context
of eroded forms interacting with subsonic water flows. Moti-
vated by oriented forms generally and by the parallels between
hypersonic ablation and subsonic erosion, here we address the
flight stability problem as relevant to the latter case through
laboratory-scale experiments on conical bodies in water flows.
Even at high-Reynolds number but low-Mach number conditions
(34), stably oriented motion of a free body through a fluid would
be somewhat surprising given the prevalence of oscillatory, tum-
bling, and fluttering modes exhibited by simple shapes, such as
disks, plates, spheres, and cylinders (11, 35–37). The flight per-
formance of cones has been of interest throughout the Space
Age, with many stability studies carried out at high Mach num-
bers (38–42) and fewer under subsonic conditions (35, 43–46).
However, there does not seem to be a systematic characterization
of flight stability across the family of cone shapes under any flow
conditions nor any general conclusions about how the cone apex
angle affects stability. Varying this angle spans shapes from slen-
der (akin to a long, thin cylinder) to broad or dull (akin to a disk),
and the systematic characterization presented here for subsonic
conditions allows us to assess not only the existence of stably
oriented motion but also its sensitivity or robustness to changes
in shape.

Our approach draws a loose analogy between the ablation
of a meteoroid during its hypersonic motion through the atmo-
sphere and the erosion of a clay object moving at subsonic speeds
through water. These contexts are parallel, related in the broad

phenomenology of flow-induced reshaping but different in all
details of the physics (19, 20). The value of this approach is to
explore in a tractable and controlled laboratory setting a hypoth-
esis for oriented forms: The same shape that tends to be sculpted
by a unidirectional flow also satisfies the flight stability criterion
needed to ensure unidirectional flow as a freely moving body.
Showing this to be true in the subsonic erosion context while not
directly informing meteoroid flight would lend some plausibility
to the analogous explanation for oriented meteorites.

Oriented Flight of the Eroded Form
To directly assess postural stability, we first conduct experiments
aimed at observing the free motions of the eroded cone-like form
as well as perfect cones. Centimeter-scale solid aluminum bodies
are first shaped by machining and then released to drop under
gravity within a tall water tank (30 × 30 × 60 cm). Each object is
released from rest without spin and with its apex directed down-
ward, and the resulting motions are recorded from the side by a
video camera. Many trials are conducted to determine the typical
dynamics. To visualize the flows, additional trials are performed
for the same bodies with surfaces that are thinly coated with
a paste of clay and fluorescein dye. Example photographs and
extracted postures are shown in Fig. 2 for a body machined to
the erosion form of Fig. 1D (31, 33). (Note that the front surface
of the eroded form is well approximated by an ogive or a sur-
face of revolution of a circular arc.) As shown by the snapshots
in Fig. 2B, this object falls nearly straight down with only slight
lateral motions. Its apex remains closely aligned with its heading
or velocity, a clear demonstration of oriented flight. This motion
results in a rather straight wake flow left by the body as visualized

Fig. 2. Oriented flight of a body in the stereotypical shape carved by ero-
sion. An aluminum body is machined into the eroded form of Fig. 1D, and
its falling motions within water and associated flows are visualized. The
body measures 1.2 cm at its widest diameter. (A) Photograph of the wake
flow, which is visualized by thinly coating the body with a paste of fluo-
rescein dye mixed with clay. (B) Snapshots of the posture through time for
a typical descent as extracted from video. (C) Flow visualized by fixing the
body within the laminar flow of a water tunnel. (D) Flow structure when
misaligned to the oncoming (upward) flow.
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in Fig. 2A by erosion of the clay-dye coating. Additional details
of the near-body flow are revealed by fixing the object within the
imposed flow of a water tunnel as captured by the photographs
in Fig. 2 C and D. Videos of the body dynamics and wake flows
are available in Movie S1.

These observations suggest that a body undergoing simulta-
neous motion through a fluid and erosion would, after having
been sculpted into the cone-like shape, thereafter maintain the
apex-leading orientation. This postural stability would ensure
the unidirectional flow and flow-induced erosive shrinking that
thereafter preserves this shape.

Before further exploring oriented flight, we note the relevant
scales and forces: the solid bodies considered are of size L∼ 1
cm and density ρs =2.7 g/cm3, and fluid parameters are the den-
sity ρf =1.0 g/cm3 and kinematic viscosity ν=10−2 cm2/s of
water. Balancing buoyancy-corrected weight with drag yields a
scale for the resulting descent speed of U ∼

√
(ρs/ρf − 1)Lg ∼

10− 100 cm/s, where g =980 cm/s2 is gravitational acceleration.
The resulting Reynolds number Re=UL/ν∼ 103− 104 is high,
indicating the dominance of fluid inertia over viscous effects (34).

It is also important to clarify the role of gravity or weight,
which here serves to induce the descent of the body through the
fluid but does not directly contribute to its orientational stabil-
ity or instability. The weight acts at the center of mass and thus
induces no torque about this point. A similar argument holds for
buoyancy, which for a body of homogeneous density exerts no
torque and acts only to modify the vertical force. The stability of
posture thus depends only on the flow-induced torques about the
center of mass. Thus, we expect our stability results to apply in
cases where the motion is initiated by means other than gravity
(e.g., for a projectile launched at high speed through a fluid).

Dynamic Flight Stability of Cones
Is oriented flight unique to the eroded form, or do many shapes
show this behavior? To address this, we next consider the family

of perfect cones of varying slenderness or broadness as quan-
tified by the half-angle of the apex α∈ (0◦, 90◦). Fig. 3 A–F
shows snapshots captured from video for cones of varying α,
which are selected as representative of the different behaviors
observed. When released with apex aimed downward, very slen-
der cones inevitably turn over and fall with their blunt rears
leading as exemplified in Fig. 3A for α=10◦. This inversion
behavior suggests that the fluid torques tend to destabilize the
apex-leading motion of the body. For somewhat greater α, we
observe tumbling motions (Fig. 3B), in which the cone contin-
ually flips over and maintains no preferred orientation. At yet
greater α, gliding motions (Fig. 3C) are seen, in which the body
falls obliquely with its apex appreciably misaligned to its head-
ing or velocity. Intriguingly, only for bodies in the approximate
range 30◦<α< 50◦ do we see oriented flight, which is shown in
Fig. 3D by the straight descent with apex leading for a cone of
α=35◦. For yet broader cones of α> 50◦, this stability of ori-
entation gives way to rocking or fluttering motions (Fig. 3 E and
F), in which the apex oscillates about the downward direction.
Videos of these dynamics and associated wake flows are available
in Movie S1.

These dynamical modes and their dependence on shape
are summarized by the diagram in Fig. 3G. Here, the behav-
iors of inversion, tumbling, gliding, oriented flight, and rock-
ing/fluttering are shown across varying α. All experimentally
tested values of α are marked by circles, and the boundaries
can be seen to be finely resolved. We note that bodies near such
boundaries may exhibit multiple terminal behaviors (e.g., inver-
sion and tumbling), and the categorization assigned in Fig. 3G is
the most common terminal behavior after careful release very
near the apex-down orientation. This single-parameter phase
diagram shows that oriented flight is achieved only for shapes
within a specific but moderately wide range of approximately
α∈ [30◦, 50◦], encompassing bodies that are neither too slender
nor overly dull or broad.

A B C D E F

G inversion tumbling gliding oriented ϐlight rocking & ϐluttering
0                       10                      20                      30                      40                      50                      60                      70                     80                      90

apexangle,     (  )     

=10     20     26     35     55     80     

Fig. 3. Free fall dynamics of conical bodies of varying apex half-angles α. (A–F) Snapshots showing the descent and rotations of aluminum cones falling
within water. The selected cones display the characteristic behaviors of inversion, tumbling, gliding, oriented flight, rocking, and fluttering. (G) Single-
parameter phase diagram for flight modes across α∈ (0◦, 90◦). Circles represent all cones tested in this study, and modes are color coded.
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Torque Measurements and Static Stability
To better understand the basis for these dynamic behaviors, we
conduct static stability tests, in which cone and cone-like bod-
ies are fixed within an imposed flow and the fluidic torques
are measured as a function of orientation. For each trial, a
plastic body is 3D printed and mounted to a Cavendish-style
torsion balance that sits atop the test section of a laminar flow
water tunnel as shown in Fig. 4A. Flow-induced torque loads
a torsional spring that leads to slight rotation (< 2◦), which
is amplified for measurement using a reflected laser beam of
long path length (47, 48). Calibration with known loading yields
the torque N , which is measured for each body and at varying
orientation angle θ relative to the incoming flow of speed U
(Fig. 4B). Care is taken to mount each body through its cen-
ter of mass (located 1/4 from base to apex for a solid cone),
ensuring that the measurement reflects only fluid dynamical
torques about this point. For the results presented here, we use
bodies of somewhat larger scale L∼ 5 cm in flows of slower
speed U =12.5 cm/s, yielding similarly high Reynolds numbers
Re∼ 103− 104.

To compare the torque orientation profile across different
shapes, we consider the torque coefficient CN , which normalizes
the measured N by ρfU 2V /2, where V is the volume of the
body. This nondimensionalization removes the expected scaling
with fluid density, flow speed, and body size based on high-Re
pressure forces (34), thus highlighting the effect of shape for bod-
ies of equal volume. The plot of Fig. 4C compares the profiles
CN (θ) for the erosion form (Fig. 4C, black curve) of Fig. 1D and
for cones of varying α (Fig. 4C, colors). For clarity, these same
data are also broken down according to the observed dynamical
modes in the plots of Fig. 4 D–G.

As an example, the erosion form yields the CN (θ) profile
shown as the black curves in Fig. 4 C and F. Orientations of
θ=0◦ and θ=180◦ correspond to the apex aimed forward into
the flow and backward away from the flow, respectively, and we
see both yield N =0. These orientations thus correspond to equi-
librium postures as one expects given the axisymmetric shape. A
nontrivial equilibrium is also found near θ=115◦. The stability
of each equilibrium posture can be inferred from the local slope

of the N (θ) curve (49). For example, the slope is negative near
θ=0◦, meaning that perturbations that increase θ are resisted by
negative N , while decreasing θ is countered by positive N . The
fluidic torque acts as a Hookean torsional spring N ∼−θ, where
the negative slope implies stability. Thus, for the erosion form,
the apex-leading motion of θ=0◦ is statically stable as is the
backward orientation θ=180◦. The θ≈ 115◦ equilibrium pos-
ture is unstable, since increasing (or decreasing) θ is exacerbated
by increasing (or decreasing) N . In addition to corroborating the
stability of θ=0◦ for the eroded form, these data show that all
perturbations of 0◦<θ< 115◦ are resisted by N < 0, tending to
rotate the body back to θ=0◦. The apex-leading motion thus has
a robust stability with a broad basin of attraction.

How does the stability of θ=0◦ depend on shape? To address
this generally, we again examine the family of cones of differing
half-angle α. As shown in Fig. 4D, slender bodies that display
inversion during free fall have positive N for all 0◦<θ< 180◦,
implying instability of θ=0◦ and stability of θ=180◦. This is
consistent with these bodies’ apex-up descent observed in free
flight. As shown in Fig. 4E, cones that tend to tumble or glide
have 4 equilibria, with a new stable–unstable pair appearing for
intermediate θ. As shown in Fig. 4F, bodies that display stably
oriented flight have only 3 equilibria, and the θ=0◦ posture has
now become stable. This is consistent with the maintenance of
apex-leading posture seen by these bodies during free fall. As
shown in Fig. 4G, the broad or dull cones that undergo rock-
ing or fluttering have qualitatively similar profiles, with stable
equilibria at θ=0◦ and 180◦ and an unstable posture at inter-
mediate θ≈ 90◦− 100◦. These profiles differ from those of the
oriented flyers in that CN tends to be larger.

The postural equilibria and their stability are organized by the
map in Fig. 5, where stable or attracting orientations (black cir-
cles) and unstable or repelling orientations (white circles) are
shown for cones of varying α. The background color represents
the stability potential defined as P(θ)=−

∫ θ

0
CN (θ′)dθ′, which is

a dimensionless measure of the potential energy associated with
rotation of a body given its torque profile. Potential curves are
computed from CN (θ) for cones of α values indicated by the
markers, and these data are interpolated to generate the map.
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Fig. 4. Static stability of cones fixed in a unidirectional flow. (A) Apparatus for measuring torque on a body fixed at different orientations in a laminar flow
of water. A spring balance sits atop the test section of a water tunnel, and torque-induced rotations of the body are amplified optically for measurement. (B)
The torque N is measured across orientation angles θ for each cone of half-angle α. (C) Torque coefficient CN = 2N/ρf U2V across θ for cones (colored curves)
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The evolution of θ can be viewed as tending to lower P . For
example, a cone of small α< 12◦ released at any initial orienta-
tion will tend to progress toward θ=180◦, which is the minimum
of a potential valley or well. This is consistent with the inver-
sion of slender cones during free fall. Cones of 12◦<α< 28◦

have 2 minima and 2 maxima of P , but the variations in the
potential landscape are weak. Tumbling during free fall for some
such cones may be explained by the lack of any strongly pre-
ferred orientation. For α> 28◦, the stable postures of θ=0◦

and θ=180◦ correspond to valleys of P that are separated by
a branch of unstable equilibria lying along an elevated ridge. In
free fall, these bodies either converge to θ=0◦ and thus, display
oriented flight or oscillate within the valley and display rocking
or fluttering.

Viewing the map of Fig. 5 as a whole, the stable (Fig. 5, solid
curves) and unstable (Fig. 5, dashed curves) branches reveal
the intricate dependence of flight dynamics on body shape,
parametrized here by α. Inversion gives way to tumbling via a
blue sky or saddle-node bifurcation (50) near α=12◦, in which
a stable–unstable pair of equilibria is born. Gliding gives way
to oriented flight via a pitchfork bifurcation (50) near α=28◦,
in which stable branches are destroyed and the θ=0◦ branch
transitions from unstable to stable.

Discussion and Conclusions
The static and dynamic stability studies presented here help to
rationalize the role of shape in achieving oriented flight under
high speed but subsonic conditions. To relate the results of these
2 types of tests, it is important to note that static stability is a
necessary but not sufficient condition for dynamic stability. In
light of Fig. 5, all sufficiently broad bodies of α> 30◦ experi-
ence restoring torques when forward facing, and our free flight
or dynamic tests on perfect cones show that in fact only bodies
of half-angle 30◦<α< 50◦ achieve stably oriented flight. The
eroded form of Fig. 1D does so as well, indicating that this stabil-
ity is not particularly sensitive to geometric details. These results
point to a cone of intermediate breadth and homogeneous den-
sity as a surprisingly simple solution to the problem of stabilizing
flight.

In comparing with the previous literature, we are aware of
one subsonic study on the dynamic stability of cones at compara-
ble Re that noted the stability of apex-leading descent, although
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Fig. 5. Map of equilibrium orientation angles and their stability across cone
shapes. For each cone of apex half-angle α, the measured stable or attract-
ing (black circles) and unstable or repelling (white circles) orientation angles
θ are shown. The color map indicates the dimensionless stability poten-
tial, P(θ) =−

∫ θ
0 CN(θ′)dθ′, which is computed for the marked α values and

interpolated elsewhere.

for a somewhat smaller range of 30◦<α< 40◦ and limited to
Re< 103 (35). At higher Mach numbers, there is a vast liter-
ature on various shapes with conical forebodies (38–42), but
different methods have led to conflicting conclusions regarding
the dependence of stability on cone angle (41). Furthermore,
there does not seem to be a systematic study across the family
of cones or any general conclusions regarding the apex angle
(41). For subsonic conditions, future studies might explore a
broader range of Re and assess the modes as a function of
this and the other relevant dimensionless parameters of ρs/ρf
and α. The basic mechanisms for how fluidic forces are redis-
tributed to restore the apex-leading orientation in the face of
perturbations and how oscillations are damped also remain to be
investigated. Nevertheless, our characterization of flight stabil-
ity across the family of cones could prove applicable to a variety
of problems in which shape effects are important, such as the
atmospheric motions of hail and other so-called hydrometeors
(15, 16) as well as particulate dynamics in chemical engineering
applications (51, 52).

Regarding oriented forms, it is striking that the meteorites
in Fig. 1 A–C share the same basic shape as the conical forms
that achieve oriented flight in our experiments. While we are
not aware of quantitative characterizations of meteorite shapes,
inspection of such photographs shows that oriented forms are
approximately conical with apex half-angles of 40◦− 50◦. Fur-
thermore, supersonic ablation experiments have yielded nose
cones of α≈ 40◦ (32), and experimental and theoretical work
associates 50◦ with boundary-layer reattachment (22). The sim-
ilarity of such angles to that of the cone carved in our erosion
experiments (Fig. 1D) should be viewed as coincidental given the
distinct meteor phenomena of hypersonic entry, shock forma-
tion, thermodynamic effects associated with ablative mass loss,
fragmentation, and slowing and cooling during the so-called dark
flight before ground impact (19, 20, 23, 24, 53, 54). The more
intriguing coincidence revealed by our work on erosion is that the
particular shape that tends to be carved for bodies fixed in uni-
directional flows (31) also satisfies the postural stability criterion
needed to ensure unidirectional flow as a free body (i.e., oriented
flight). The conical form that “solves” the reshaping problem also
solves the orientation problem. This is surprising given that the
2 problems involve distinct physical mechanisms, with erosion
driven by skin friction or shear stresses and torques dominated
by pressure stresses (31, 33). At the same time, this finding
lends some plausibility to the same coincidence being behind
the explanation for oriented meteorites. Self-stability of posture
would account for the unidirectionality of flow that gives conical
meteorites their characteristic shape and surface morphologies.

For both subsonic erosion and hypersonic ablation, it remains
unresolved how oriented forms result from the reshaping and
reorientation processes that occur simultaneously and inter-
actively during flight. Said informally, there seems to be a
“chicken-and-egg problem.” An erodible body is carved into a
cone-like form if held at fixed orientation (31), and we now know
that a free body of this fixed shape achieves aerodynamically
stabilized orientation, but which process happens first? Which
is cause, and which is effect? Although this issue is challenging
to address for meteoroids, different hypotheses could be studied
in the subsonic regime through laboratory experiments on free
and erodible bodies held aloft against gravity in an upward flow
of water. The shape-dependent stability results presented here
can be understood as indicating the postural dynamics that one
expects as the shape-changing object proceeds through different
morphologies. In particular, if the free object is to reach the ter-
minal conical form and thereafter self-similarly shrink, then it
seems necessary that this shape be posturally stable.

While the complete origin story of oriented meteorites is yet
to be told, we should now more deeply appreciate these curious
objects whose arrival on Earth seems possible only because of a
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concurrence and apparent coincidence of 2 dynamic stabilities.
The same conical form seems to represent the stable solution
both to the ablative reshaping of a body by the atmosphere
and to the aerodynamic stabilization of posture during motion
through it.

Materials and Methods
The custom-made torque balance consists of a shaft that is mounted ver-
tically via a housing fixture to the lid of a water tunnel (Engineering
Laboratory Design, Inc.). The housing connects to the shaft via a pair
of low-friction ball bearings that allow rotation, and a torsional spring
connecting the shaft to the housing is loaded by any applied torque. Three-

dimensionally printed bodies are attached to the lower end of the shaft
that sits near the middle of the tunnel test section. Bodies may be attached
at any orientation angle θ relative to the flow direction. Calibration is car-
ried out by affixing to the upper end of the shaft a horizontal rod to which a
thread is tied. This thread is made to hang over a pulley, and known weights
are added, loading the spring and yielding corresponding displacements
of the laser beam that reflect off a shaft-mounted mirror. This proce-
dure yields a torque displacement conversion factor of 4.64 dyn·cm/mm
that is applied to all displacement data measured for different bodies at
varying θ.

ACKNOWLEDGMENTS. We acknowledge support from NSF Grant CBET-
1805506.

1. E. H. Dowell, K. C. Hall, Modeling of fluid-structure interaction. Annu. Rev. Fluid
Mech. 33, 445–490 (2001).

2. M. J. Shelley, J. Zhang, Flapping and bending bodies interacting with fluid flows.
Annu. Rev. Fluid. Mech. 43, 449–465 (2011).

3. J. Zhang, S. Childress, A. Libchaber, M. Shelley, Flexible filaments in a flowing soap
film as a model for one-dimensional flags in a two-dimensional wind. Nature 408,
835–839 (2000).

4. M. Argentina, L. Mahadevan, Fluid-flow-induced flutter of a flag. Proc. Natl. Acad.
Sci. U.S.A. 102, 1829–1834 (2005).

5. Y. C. Fung, An Introduction to the Theory of Aeroelasticity (Courier Dover
Publications, 2008).

6. J. Crank, Free and Moving Boundary Problems (Oxford Science Publications, 1987).
7. J. M. Huang, M. N. J. Moore, L. Ristroph, Shape dynamics and scaling laws for a body

dissolving in fluid flow. J. Fluid Mech. 765, R3 (2015).
8. M. N. J. Moore, Riemann-hilbert problems for the shapes formed by bodies dissolv-

ing, melting, and eroding in fluid flows. Commun. Pure Appl. Math. 70, 1810–1831
(2017).

9. W. H. Mitchell, S. E. Spagnolie, A generalized traction integral equation for Stokes
flow, with applications to near-wall particle mobility and viscous erosion. J. Comput.
Phys. 333, 462–482 (2017).

10. L. Ristroph, Sculpting with flow. J. Fluid Mech. 838, 1–4 (2018).
11. U. Pesavento, Z. J. Wang, Falling paper: Navier-Stokes solutions, model of fluid forces,

and center of mass elevation. Phys. Rev. Lett. 93, 144501 (2004).
12. D. Tam, J. W. M. Bush, M. Robitaille, A. Kudrolli, Tumbling dynamics of passive flexible

wings. Phys. Rev. Lett. 104, 184504 (2010).
13. H. R. Pruppacher, K. V. Beard, A wind tunnel investigation of the internal circulation

and shape of water drops falling at terminal velocity in air. Q. J. R. Meteorol. Soc. 96,
247–256 (1970).

14. A. Wierzba, K. Takayama, Experimental investigation of the aerodynamic breakup of
liquid drops. AIAA J. 26, 1329–1335 (1988).

15. C. A. Knight, N. C. Knight, Conical graupel. J. Atmos. Sci. 30, 118–124 (1973).
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