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The classical theory of high-speed flow1 predicts that a moving
rigid object experiences a drag proportional to the square of its
speed. However, this reasoning does not apply if the object in the
flow is flexible, because its shape then becomes a function of its
speed—for example, the rolling up of broad tree leaves in a stiff
wind2. The reconfiguration of bodies by fluid forces is common in
nature, and can result in a substantial drag reduction that is
beneficial for many organisms3,4. Experimental studies of such
flow–structure interactions5 generally lack a theoretical
interpretation that unifies the body and flow mechanics. Here
we use a flexible fibre immersed in a flowing soap film to measure
the drag reduction that arises from bending of the fibre by the
flow. Using a model that couples hydrodynamics to bending, we
predict a reduced drag growth compared to the classical theory.
The fibre undergoes a bending transition, producing shapes that
are self-similar; for such configurations, the drag scales with the
length of self-similarity, rather than the fibre profile width. These
predictions are supported by our experimental data.

Experiments that cleanly reveal the nature of interactions
between deformable bodies and flows are difficult to perform.
Complications include controlling three-dimensional flow effects
and visualizing the flows. Soap film is a convenient experimental
system described by two-dimensional hydrodynamics in many
aspects6–10. Our soap-film flow tunnel is illustrated in Fig. 1. Driven
by gravity, soapy water (1.5% Dawn dish detergent; density
r ¼ 1 gm cm23) leaves an elevated reservoir and spreads into a
vertical soap film (thickness f ¼ 1–3 mm) descending between two
straight nylon lines (tunnel width, 9.0 cm). Adjusting reservoir
efflux rate adjusts flow velocity U through the range 0.5–
3.0 m s21; breakage occurs at velocities outside this range.

Half-way down the tunnel, a thin, flexible glass fibre (length
L ¼ 1–5 cm; diameter, 34 mm; rigidity E ¼ 2.8 erg cm), glued at its
midpoint to a thin rod, is inserted transverse to the flow. We
measure the drag force on the fibre, record its shape, and visualize
the flow structures using interferometry, all as a function of flow
speed. For comparison, a much more rigid fibre is also used
(L ¼ 2.0 cm; E ¼ 2,000 erg cm). On the basis of fibre lengths, flow
velocities, and soap film viscosity n, the Reynolds number Re ¼ LU/n
is typically large, in the range 2,000–40,000.

Figure 2a and b shows the flow patterns around a flexible fibre at
two different flow speeds. Typical of high-Reynolds-number flows
past bluff bodies, they are characterized by a thin separated
boundary layer which divides the wake—containing slow-moving
(a few cm s21), turbulent flow in which vorticity and viscosity are
important—from the rest of the flow field, which is fast and laminar.
But unlike rigid-body flows, as the flow speed is increased the body
changes its shape by bending and so presents a smaller profile to the
flow. Figure 3a shows in alternating colour the successively more-
streamlined fibre shapes as flow speed is increased. We expect this to
lead to a reduced growth of drag with flow speed, and this is borne
out by Fig. 4a, which compares the drag induced by a nearly rigid
fibre, well-approximated by U 2 growth, with that for a flexible fibre,
which shows a much decreased, more slowly growing drag. An
upper bound for the contribution of skin friction to the drag can be
estimated by the expression for viscous drag per unit width on a flat

plate aligned with the flow1, 1.33rU 2LRe21/2. For the parameters of
our experiment, this value is at least an order of magnitude below
the total drag; hence form drag predominates.

As we shall argue, a natural non-dimensional control parameter
that scales linearly with flow velocity is:

h¼
rfL2U2=2

E=L

� �1=2

¼ ðL=L0Þ
3=2 with L0 ¼ ð2E=rfU2Þ1=3 ð1Þ

Here, h involves a ratio of fluid kinetic energy to elastic potential
energy, or the ratio of fibre length to an intrinsic ‘bending length’ L 0,
which captures the competition between fibre rigidity and fluid
forcing. Loaded elastic bodies often involve intrinsic length scales,
such as the ‘buckling length’ of a beam under compression11. To
study the scaling of drag with flow speed, we introduce the drag
coefficient CD ¼Drag=ðrU2Lf =2Þ; which for a rigid object in
inviscid flow depends only on its geometric shape1. A non-dimen-
sional drag is defined as D¼ CDh2 so that D scales with h as the drag
scales with velocity. Figure 4b plots D versus h. The data for a nearly
rigid fibre (green) show approximately h2 growth. The other data
sets are for flexible fibres of equal rigidity but different lengths. The
data for the longest fibre (blue) deviate at lower flow velocities,
probably induced by proximity to the channel walls, but as the fibre
profile narrows with increasing h, the data sets overlap. It appears
that there is a transition at h < O(1) from h2 scaling of drag to a
new, more slowly growing form.

To interpret the experiment, we abstract its crucial features and
build a mathematical model coupling hydrodynamics to body
flexibility. The fibre is modelled as a thin, inextensible elastic
beam loaded by the difference in fluid pressure p between its
upstream and downstream sides. The pressure is found by con-
structing exact, steady solutions to the inviscid, incompressible
Euler equations, using free-streamline theory12 (FST). This method,
based upon conformal mapping, originated13 as a way to model
flows around flat plates with a downstream wake. It has since been
extended as a numerical method to compute flows around curved
shapes, and to determine the shapes of sails under constant

Figure 1 The layout of the experiment. A glass fibre (F) is inserted into a flowing soap-film

tunnel (partly shown). The fibre is supported by a thin stainless-steel rod (S), which is

clamped at one end. Fluid drag force acting on the fibre deflects this support slightly

downwards. After a calibration using a known force, the drag force is determined by

measuring the displacement of a laser beam (L) reflected from a small mirror (M1)

mounted on S and then from a fixed mirror (M2). The rigidity of the support and the

distances between the mirrors and the ruler (R) determine the overall sensitivity of the

measurement. A video camera (V) records the position of the laser beam, which gives the

force measurement. The soap solution is seeded with TiO2 particles, allowing the flow

speed to be measured by a laser Doppler velocimeter (not shown), aimed at the midline

7 cm above the filament. (Objects and distances are not drawn to scale).
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tension14. The extension here is to simultaneously determine the
body and flow as a balance of elastic forces with pressure forces. By
assuming incompressibility, we neglect possible effects of flow
compressibility due to thickness variations in the soap film. Pre-
liminary studies of such effects indicate that compressibility is not a
dominant influence on the flow15,16. In our case, this assumption
seems to give a good account of the data.

The wake is represented by a stagnant region of constant-pressure
fluid behind the body. Outside the wake, the flow is steady, inviscid
and irrotational. ‘Free streamlines’ separate from the fibre ends,
dividing these two regions. The main flow is a potential flow, with
the boundary conditions u·n ¼ 0 on the fibre, and juj ¼ U on the
free streamlines, where u is fluid velocity, n the unit normal to the
fibre, and U the flow speed at infinity. We take the simplest version
of FST, which has an infinite wake and fluid pressure equal to wake
pressure at the free streamlines. We set the far-field pressure p1 to
zero. The formulation of ref. 17 is convenient, relating u to the body
shape given as v(s), the tangent angle as a function of the signed arc
length s along the fibre.

Given u, the pressure loading is given by the Bernoulli equation:
½p� ¼ pfibre 2 pwake ¼ pfibre 2 p1 ¼ rðU2 2 jufibrej

2
Þ=2:Here pwake is

the far-field pressure, or zero, and hence the pressure jump across
the fibre is p fibre. In real flows, p wake is nearly constant but
significantly less than zero near the body, rising gradually to zero
downstream. For this reason, the infinite-wake model must be
modified to accurately represent the pressure distribution and
drag on the body. This has usually been achieved with a more
complicated wake structure which takes pwake as an input param-
eter, generally determined by empirical considerations18. We retain
the infinite-wake model with pwake ¼ 0, but instead apply a uniform
multiplicative increase to the free-stream velocity in the model over
that in the corresponding experiment. Through Bernoulli’s
equation, [p] is then increased in a way similar to that achieved
with a non-zero pwake. This technique has produced good empirical
results for wake models19.

The pressure load is balanced by the fibre’s tensile and bending
forces:

2ðTsÞ
0
þ ðEk

0
nÞ

0
¼ fpfibren ð2Þ

with T the axial tension, k ¼ v
0

the fibre curvature, and s its unit
tangent vector. The superscript 0 denotes differentiation with
respect to arc length. Equation (2) is supplemented by ‘free-end’
boundary conditions: T ¼ k¼ k

0
¼ 0 at fibre ends, s¼^L=2: The

fibre is fixed and clamped at its midpoint (that is, v (0) ¼ 0).
Making the beam/FST system non-dimensional simplifies

equation (2) to a nonlinear scalar equation for beam curvature:

k
00
þ

1

2
k3 ¼ h2pfibre ð3Þ

(A similar expression involving the curvature arises, for example, in
studying the deformations of an inextensible elastic beam in a very
viscous fluid20.) This closes the model, with the non-dimensional
speed h its only parameter. The beam/FST system is solved numeri-
cally (S.A., M.S. and J.Z., manuscript in preparation).

A solution is found for each value of h, giving fluid velocity and
pressure fields, fibre shape, and free streamline shapes. Figure 2c

Figure 2 Examples of the flow field and fibre shape in experiment and model. a,b, Flow

around a flexible fibre of length 4.1 cm and rigidity 2.8 erg cm, at flow speeds of

69 cm s21 (a) and 144 cm s21 (b). Monochromatic light from a low-pressure sodium

lamp reflects from the two surfaces of the film, creating an interference pattern which

shows small variations in film thickness. c, Free-streamline model solution for non-

dimensional velocity h ¼ 27. The pressure field, shown in colour, varies from its

maximum value of 1 at the stagnation point on the fibre (black) to its minimum value of 0

on the free streamlines (dashed lines); overlaid are the streamlines of the flow.

Figure 3 Comparison of six experimental fibre shapes with model shapes. a, Shapes from

the experiment (green and orange lines) superimposed on a manifold of numerical

solutions (black lines). The numerical solutions range from h ¼ 5.5 to 33, in increments

of 10%. The flat plate (h ¼ 0) and a very bent solution (h ¼ 30,000) are shown for

comparison. b, Comparison of measured drag on experimental fibres in a with computed

drag of nearest numerical solutions, determined by matching tip curvature. c,d, Transition

to self-similarity in experimental (c) and numerical solutions (d) (not shown at the same

scale). The six fibres, and their nearest numerical solutions, are dilated by h2/3 and

superimposed. The black fibres are numerical solutions at higher h, and show the

subsequent convergence to a universal shape, as predicted by the model.
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shows a detailed solution, and Fig. 3a shows computed fibre shapes
for h small to large. For h ,, 1, the fibre is nearly straight, but as h
becomes O(1) there is a sharp transition to bending. The most
notable property of the transition is an emerging self-similarity in
fibre shape. For h .. 1, large curvature becomes confined to an
ever-smaller region near the tip as h increases. The length of this ‘tip
region’ is proportional to the bending length, L0 ¼ Lh22=3: This sets
the scale for self-similarity: when dilated by h2/3 the shapes overlap a
universal, quasi-parabolic form (Fig. 3d). The transition is also
captured in the computed dimensionless drag D (Fig. 4b). For
h ,, 1 the model’s drag scales quadratically, as does the experimen-
tal data; for h < O(1), the model’s drag undergoes a transition to a
much slower growth, scaling as h4/3 for h .. 1.

Self-similarity of shape gives an interpretation for the h4/3 drag-
scaling. Rescaling arc length as S ¼ sh 2/3, curvature as h 2/3

Kðsh2=3Þ ¼ kðsÞ; and pressure as Pðsh2=3Þ ¼ pðsÞ; equation (3)
becomes K3=2þK 00

¼ P; with h appearing only in the boundary
conditions: K ¼ K

0
¼ 0 at S¼^h2=3=2: As h ! 1, K and P tend to

the curvature and pressure of the universal shape. The drag is given
by

D¼ h2

ð
fibre

½p�dy ¼ h4=3

ðþh2=3=2

2h2=3=2

1

2
K3þK

00

� �
dY

dS
dS ð4Þ

where Y ¼ yh2=3: As h ! 1, the integral converges to its value for
the universal shape, and hence the drag scales as the prefactor h4/3.

Figure 3a compares computed to experimental shapes for the full
range of flow speeds. Aligning the midpoints, the relative displace-
ment from the midpoint between the experimental shape and the
nearest computed shape is less than five per cent over the entire

length. Figure 3c indicates the emergence of self-similarity in the
experimental shapes, as in the computed shapes, though the upper
limit on the soap-film flow speed impedes a thorough comparison
for large h. In Fig. 3b the measured drag for the fibres is compared to
that of their nearest computed solutions, demonstrating that the
similar shapes in theory and experiment also give similar drags. We
interpret this to mean that the model captures the nature of the
pressure jump distribution across the fibre.

Through this comparison, we obtain a quantitative estimate for
the multiplicative increase of h needed for the model to account for
the wake pressure and its effect on the drag. The values of h for the
corresponding theoretical and experimental fibre shapes of Fig. 3a
differ by an almost uniform factor of 2.8. In Fig. 4b, the model and
experiment show very similar drag scaling and transition when the
theoretical curve is shifted leftward in h to adjust for this factor.

Fluid pressure and elastic bending forces seem sufficient to
describe the drag reduction observed in our experiment. Though
negligible for our flow speeds, skin friction may become important
in much faster flows, where the fibre would be more swept-back,
like a flat plate aligned with the flow. As implied earlier, the viscous
drag on the fibre would then scale as U 3/2, eventually dominating
the U 4/3 form drag.

A final comment concerns the relation of bending length to drag.
Two-dimensional form drag usually scales as rU 2W, where W is
profile width. In our case, the parabolic form of the universal shape
implies that W decreases as h21/3. Hence one would expect D , h5/3.
Instead we find that the drag is induced on the bending length L0 ,
h22=3; giving the more slowly growing form D , h4/3. In essence, the
tip region creates a parabolic wake in which the rest of the body sits,
contributing little to the drag. A
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Figure 4 Comparison of drag data from experiment and model. a, Drag per unit fibre

length versus flow velocity for a flexible fibre (L ¼ 3.3 cm; red circles) and a rigid fibre

(L ¼ 2.0 cm; green squares). b, Log–log plot of drag data in a, non-dimensionalized as

D ¼ C Dh
2; also shown are data for two fibres with the same rigidity as the flexible fibre in

a but different lengths (pink plus signs, L ¼ 1.8 cm; blue triangles, L ¼ 5.2 cm). The

solid line is the values of D in the model (well-fitted by power laws h 2 for h ,, 1 and h4/3

for h .. 1, as shown by dash-dotted lines). The short-dashed line is the solid line shifted

by a factor of 2.8 in h, to correspond with the shift in the shape comparison. This shift

compensates for the ‘back pressure’ in the wake, as explained in the text.
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