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Recent work in bio-fluid dynamics has studied the relation of fluid drag to flow speed for flexible
organic structures, such as tree leaves, seaweed, and coral beds, and found a reduction in drag
growth due to body reconfiguration with increasing flow speed. Our theoretical and experimental
work isolates the role of elastic bending in this process. Using a flexible glass fiber wetted into a
vertical soap-film flow, we identify a transition in flow speed beyond which fluid forces dominate
the elastic response, and yield large deformations of the fiber that greatly reduce drag. We construct
free-streamline models that couple fluid and elastic forces and solve them in an efficient numerical
scheme. Shape self-similarity emerges, with a scaling set by the balance of forces in a small “tip
region” about the flow’s stagnation point. The result is a transition from the classitalrag

scaling of rigid bodies to a neWw*? drag law. We derive an asymptotic expansion for the fiber shape
and flow, based on the length-scale of similarity. This analysis predicts that the fiber and wake are
quasiparabolic at large velocities, and obtains the new drag law in terms of the drag on the tip
region. Under variations of the model suggested by the experiment—the addition of flow tunnel
walls, and a back pressure in the wake—the drag law persists, with a simple modificatid®04o
American Institute of Physics[DOI: 10.1063/1.1668671

I. INTRODUCTION mined fluid flow, ignoring the change in the flow itself due to
body reconfiguration. Thus the fluid dynamics of the interac-
The need to withstand large fluid forces is commontion is limited to theU? drag law, possibly modulated by an
among sessile organisms, and serves as an important orgémpirical profile-width factor. This limitation is understand-
nizing principle for understanding their morphology. For ex-able. As intricate as the mechanical structure of a single tree
ample, the shape and length of seaweed plants have begf may be, the flow structure it induces as it folds up in the
shown to vary in accordance with the range of flow speedsvind is still more complicated.
experienced in coastal wavésA tree’s roots, trunk, Although drag reduction due to flexibility is the focus of
branches, stems, and leaves can be considered a compougs work, the interaction of organisms’ flexible structures
biomechanical structure built to a criterion of size and stiff-with the fluids they inhabit serves purposes beyond mere
ness determined by local wind conditich#n recent work,  endurance. Activities such as feeding and locomotion depend
Vogel has studied the drag and shape reconfiguration Qfpon the creation of specific flow patterns around a moving
leaves in typical wind speedsip to 20 m/$. Rather than a  and deforming bod§.An understanding of the simple flow-
rigid-body U?-drag law, the drag grew more slowly as the pody interaction in this work is useful as a preliminary step
leaves rolled up into conical shapes that tightened with in{o studying more complicated flows around flexible bodies.
creased wind speetin general, the reconfiguration due to previous work has studied such flow-body interactions in
Stretching, tWiSting, and bending allows a reduction in dragerms of manmade Objectsy such as ﬂ%bsarachuteéyand
compared with that on a rigid body in the original configu- g5jj59.10
ration for two main reasonsi) the profile area presented to Here we examine experimentally and theoretically the
the flow becomes smaller, artil) the body assumes a more interaction of a high-speed two-dimensional fluid flow with a
streamlined shape, which decreases fluid pressure forces fggxiple surface—a “1D leaf in a 2D wind.” Experimentally,
a given profile area. this flow is realized using a flexible glass fiber wetted into
These biological studies are becoming more quantitativeang held against a flowing soap film. Soap film is a conve-
sometimes involving measurements of elastic moduli of oryient experimental system described by two-dimensional hy-
ganic materials and using simple models to understand theHrodynamics in many aspe&s!-Our experimental setup
behavior in fluid flows. The current models of which we are 5j10ws us to simultaneously measure the flow velocity, ob-
awaré*® capture only the response of the body to a predeterggye the resultant fiber shape and flow structures, especially
the wake, and to measure the fluid drag on the fiber. We
dElectronic mail: albens@cims.nyu.edu identify a transition in a dimensionless flow speed beyond
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which fluid forces dominate the fiber's elastic restoringment, and find good agreement when a constant multiplica-
forces, yielding large shape deformations and greatly retive shift in nondimensional flow velocity is assumed. This
duced fluid drag. This is described in Sec. Il. shift arises naturally when we vary the wake pressure in our
The relative simplicity of this high-Reynolds-number model, as discussed below.
flow makes it amenable to fluid dynamical modeling. Our In Sec. V we derive several mathematical properties of
model considers the interaction of the fiber, taken to be amhe solutions, including those seen in the numerics, through
inextensible, elastic beam, with free-streamline flows. Thisan asymptotic analysis. First, we obtain an expansion for the
captures several main elements of the flow-fiber system: thdrag whenU is small, which is a regular perturbation of the
deformation of the fiber by flow forces, the rearrangement oflat-plate solution. Then we consider large and obtain the
the flow by fiber deformation, and the effect of a nearly U~ %2 length-scale of similarity from the force balance. Us-
stagnant wake behind the bent fiber. ing rescaled equations, we show that the dominance of the
Free streamline theory was originated by HelmHg8ltz tip region implies that the universal fiber shape is quasipara-
and Kirchhoff® to describe wake flows behind flat plates. bolic, and that the free streamlines asymptote to the same
Here we outline the aspects relevant to our model, which iparabola. We then determine the magnitude of the first cor-
described in Sec. Ill. The flow field is taken as incompress+ection to the universal shape, and also find that it has an
ible and irrotational outside of a stagnant wake, which has ascillatory form, with a characteristic wavelength that scales
constant pressure equal to that at infinity. This is also thavith the bending length. Using the form of the universal
pressure on the free streamlines which separate from th&olution and that of the first correction, we show how the
body and enclose the wake. Methods of complex variables)** drag scaling arises from the dominant tip-region contri-
are used to determine the location of the free streamlines artzlition.
the flow field for an obstacle whose shape is known. Some  With a detailed understanding of the basic model, Sec.
analytical properties of free-streamline flows, including re-VI revisits discrepancies in the comparison of model and
sults on existence and uniqueness for a variety of body anexperiment in Sec. 1V, in terms of the wake pressure. The
free-streamline geometries, are reviewed in Birkrafhll”  wake is the variable part of the free-streamline model. Since
In reality, the wake flow is characterized by significant the wake flow involves the complicated interaction of vortic-
vorticity and turbulence, arising in part from the instability ity in the presence of turbulence, the theory is incomplete.
of the free shear layers that the free streamlines are intendédhere is not yet a consensus on how to predict the most basic
to model. However, the time-averaged flow and pressuraspects of the wake in steady flows past a flat plate or cyl-
fields can have a relatively simple structdfeand good inder, such as its size and pressure distribution; some ap-
agreement with experiment has been found in modificationgroaches are reviewed by TanA&One empirical fact is that
of the infinite-wake(Helmholtz model which assume a con- the pressure in the near wake, that region within a body
stant wake pressure lower than that at infihftfiwo other  length of the body itself, is nearly constant for a given flow,
simple and widely-studied wake models are the constantand equal to that on the separated streamlines alongside the
vorticity Prandtl-Batchelor modéf, and the wake-source near wake. This is because the near-wake flow is practically
model of Parkinson and Jand&l.The latter has also stagnant. Knowledge of this constant is then sufficient to
achieved good agreement with experiment, as far as the predetermine the pressure drag on the body, given the pressure
sure distribution on the body. However, the Helmholtz wakedistribution on the front face from the inviscid flow theory.
is a plausible candidate for the asymptotic limit of the lami-Hence a number of free-streamline models have been devel-
nar wake flow as the body-scale Reynolds number-Re  oped to incorporate this constant pressure, normalized by the
and is consequently used in preference to the other two asdynamic pressure, as a free paraméter.
basis for theories incorporating the triple-deck theory of  Since experiments are conducted in finite flow tunnels,
boundary-layer separatid??® Thus the free streamline another important issue in these studies is the effect of the
model remains widely used for separated, high-Re flowstunnel walls on the flow. Even distant walls cause a de-

which are difficult to analyze by other means. creased wake pressure, resulting in a significant increase in
In Sec. IV we analyze numerical solutions of our model.drag over the unbounded case in flow modéls.
There are three striking featurg$} a transition velocity be- Section VI considers the effects of walls and wake pres-

low which the drag shows a rigid-body? drag scaling, and sure through three related models, based on the Helmholtz
above which the fiber shows large deformations and a mucmodel. The first model adds symmetrically-spaced flow-
reduced drag growtH(ji) a new, much-reduced drag scaling tunnel walls, which are seen to dramatically increase the
of U#3 asymptotically beyond this transitiofiii ) the emer-  fluid loading on the fiber. The second uses a finite Riabouch-
gence of self-similar fiber shapes, based on an intrinsiinsky mirror-image wak® in an unbounded flow, which al-
length scaling asu 2?2 This is the length scale of the lows direct variation of the wake-pressure. The third com-
sharply-bent “tip region” of the fiber. These results suggestbines the effects of walls and variable wake pressure, and is
that the drag scaling is the product of tHé pressure scaling readily understood in view of the first two. The main result
and theU 2% length-scale over which it acts. This length of these additional models are that & drag law persists,
scale decreases more rapidly than the profile width, which igxcept thatU is now the velocity on the free streamline of
the relevant length for rigid-body drag. Here the profilethe fiber, different in general from that at infinity upstream.
width decreases only a$~ %3, as shown in Sec. V. We com- This implies the same drag scaling with respect to the veloc-
pare the fiber shapes and drag data with those of the expeity upstream when the wake pressure coefficient tends to a
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FIG. 2. Fibers in the soap film shown with interferometry. Monochromatic
light from a low-pressure sodium lamp reflects from the two surfaces of the
film, creating an interference pattern which shows small variations in film
thickness.(a) Flow past a rigid fiber, bending rigiditf =2000 erg cm.
(b),(c) Flows around a flexible fiber of length=4.1 cm and rigidityE
=2.8 ergcm, at flow speeds of 69 cnify and 144 cm/<c).

FIG. 1. The layout of the experiment. A glass fili&) is inserted into a
flowing soap-film tunnekpartly shown. The fiber is supported by a thin

stainless-steel roB), which is clamped at one end. Fluid drag force acting : ; : s i ;
on the fiber deflects this support slightly downwards. After a calibrationsDreadS into a vertical film between two nylon fIShlng lines

using a known force, the drag force is determined by measuring the disthat are parallel and_ under tenSiC_'n_- The soap film flows
placement of a laser beath) reflected from a small mirrofM1) mounted ~ downward under gravity to the receiving k@ m below the
on S and then from a fixed mirrgM2). The rigidity of the support and the pozzle. A quasisteady p|anar flow is thus Obtaiﬁ’éjd—.]A

distances between the mirrors and the riRrdetermine the overall sensi- .
tivity of the measurement. A video camefd) records the position of the The average flow speed is regulated by the nozzle at the

laser beam spot on the ruler, which gives the force measurement. The so&9ttom of the upper reservoir, and the flow velocity of the
solution is seeded with TiDparticles, allowing the flow speed to be mea- film is measured using a laser Dopper velocimét®V). In

sured byalgser Dopplgrvelocime_(eot shown), aimed at the midling?cm our case the flow is seeded with TiQarticles(refractive
f:;‘é%;g':fg;f%boebr{ecsti eel‘lrg:, ﬁ?%‘;ﬁ;f ggt drawn to sg&igure ey n=2.7), which are small enough to be passively ad-
' ' . vected with the flow. The LDV measures their speed at the
vertical midline of the soap film tunnel, 80 cm below the
constant as) — o, which is the most common case for rigid Upper reservoir nozzle, where the flow speed is nearly uni-
bodies in experiments. form in the vertical direction. The tunnel width is 9.0 cm.
The numerical method involves the solution of a coupledGiven the flow speed and tunnel width, the volume of the
system of three equationﬁ:) a boundary_integraj equation soapy water collected over a fixed time interval ylelds a di-
relating the flow speed to the fiber shape in a conformalfect measure of the average film thickness, which varies from
mapping plane,(ii) the relation of fiber arclength to a 1to 3um as a function of the flow rate.
conformal-mapping parameter, arii) the force balance, Into this background flow, at a position 7 cm below
which gives another relation between fiber shape and flowhere the flow speed is measured, we insert a thin flexible
speed. This nonlinear system is solved using a quasi-Newto@lass fiber(bending rigidityE = 2.8—2000 erg cm, depending
method, made efficient by using a pair of fast Fourier transon fiber thickness; length=1-5 cm), which is straight in
forms to evaluate the integral equation. The details are givete absence of loading. The fiber is clamped at its midpoint,
in Appendix A. and held perpendicular to the background flow direction. The
In Appendix B we present Helmholtz-wake solutions to flow wets the bare glass fiber so that it does not cause the
the more general problem in which the fiber is held againsfilm to rupture, and surface tension forces hold the fiber sta-
the flow at an arbitrary point along its length, with an arbi- bly within the quasi-2D plane of the soap film. A short time
trary orientation to the flow. We find that again the solutionsafter insertion the flow-fiber system equilibrates, at which
tend to a universal Shape] one of a two-parameter fam||y opoint the fiber exhibits a steady deflection and the flow forms
ShapeS, parameterized by the position and orientation ﬁwake behind it. The fiber bends to an extent determined by
which the fiber is held. its mechanical propertigéength and elastic modyland the
This work expands upon a pre"minary Study of the flow- flow Speed, and the reSUlting flow Configuration results from
fiber problem by Alben, Shelley, and ZhaffgWhile we  the balance of mechanical stresses in the fiber with the fluid
present further experimenta| data here, we have especia|§ﬂesses on its surface. The fibers used in the experiment
deepened our analytical understanding of this class of modshow no plastic deformations after the fluid loading.
els, through both numerical and asymptotic analysis, and The soap film is ideal for visualizing the dynamic struc-

through their extensions that incorporate other physical efture of such a 2D flow. The film is illuminated by a 90-W
fects. low-pressure sodium lamp, which creates an interference pat-

tern of monochromatic light reflected from the front and rear

surfaces of the soap film. Bands of light and dark fringes

show submicron variations in film thickness, and qualita-
The experimental setup is illustrated in Fig. 1. A streamtively capture the structure of the flow field. FiguréaR

of soapy watef1.5% soap concentration in deionized water shows the flow pattern around a rigid fiberigidity

Il. EXPERIMENT
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E=2000 ergcm), where even the highest attainable flow ~ % ey a3
speed cannot significantly bend the fiber. Figuréds) 2and §aa ° , b n
2(c) show the flow past a more flexible fiberE( %’zo i ’ E'; %
=2.8 ergcm) at two different flow rates. % 15 8 ' e |

The wake behind the fiber is dominated by two large, § F

g

10] 8 2
slowly-rotating eddies. These are separated from the rest o o D;".,M . ng’p’
the flow by free shear layers, which become more unstable a§ ) o ®® o
the flow speed increases. The Reynolds number of the mail  ° Flov\:‘i?elocity (ifg o R p 2
flow is O(10%, based on upstream flow speed and fiber

length. The wake has a flow speed about two orders of mag=G. 3. Comparison of drag data from experiment and md@gDrag per
nitude less than that in the main flow. unit fiber length versus flow velocity for a flexible fibdr € 3.3 cm; circleg
. . . . . . and arigid fiber L=2.0 cm; squargs(b) Log—log plot of drag data ia),

The fiber is mounted at its mldpomt on top of a thin nondimensionalized aB=Cp7?; also shown are data for two fibers with

supporting rod(stainless steel, 0.3 mm in diametdhat the same rigidity as the flexible fiber {@) but different lengthgplus signs,
passes through the soap film near the flow stagnation point ih=1.8 cm; trianglesL =5.2 cm). The solid line is the values bf in the

: P odel, which are well-fitted by power law@, 7> for <1 andC,»*° for
the fiber wake, and thus has negligible effect on the flow. Thé;;l' as shown by dashed_dotted lines. Here-27/(m-+4) and C,

supporting rod has a Secon(_j ro'?* as a Ilnear “sprlng” which_ 1.87 (from a numerical fit The short-dashed line is the solid line shifted
measures the drag on the fiber in the following manisee by a factor of 2.8 iny, to correspond with the shift in the shape comparison.

Fig. 1). The rod is clamped at one end to a fixed platform,This shift compensates for the back pressure in the wake, as explained in

- - Sec. IV. The vertical marks indicate, for each of the four data sets, the value
and at the other end is attached a small square mitmm of 7 at which leakage begins, corresponding to flow spged220 cm/s.

side |en_gth; glass coverslip _0-06 mm thickvith its face  The leakage does not cause any significant deviation from the shifted drag
perpendicular to the supporting rod. The drag force on theurve. Figure adapted from Alben, Shelley, and ZhéRef. 28.

fiber deflects the support slightly downward, yielding a
spring force that balances the drag. Because the displacement

is small, this force is linearly proportional to the deflection of t|C|ty”of the soa:jp tf|Irrt1hare smzll v]\(/hlen t.rtledlﬂovlv slpt—;d_dls
the support. The deflection is proportional in turn to the dis->mall compared to the speed of longitudinal elasivia-
Bamgon} wavesv, , which is =10 m/s for our soap films

placement of a He—Ne laser beam spot. The spot is formeusmg the formulas derived by Coudet al'* Such time-

when the beam is reflected from the mirror attached to the L
. . : dependent variations are thus expected to have a small effect
support to a second, stationary mirror, and then directed to a . . :
; o —at all but the highest flow speeds used in our experiment.
ruler. Lengthening the path of the beam amplifies the dis- . ' - .
.~ .~ However, a steady thickness profile variation may be seen in

placement of the laser beam spot on the ruler, which in

th luti f the deflecti i D:[he interference fringes of Fig. 2, where the difference in
creases the resolution of the detiection measurement. Degioynass petween neighboring light and dark fringes is 0.11

pending on the bending rigidity of the support, the distance m, one-quarter wavelength of sodium ligln wateh and
from_ the fiber to the support's clamp_ed end_, and the Iength 0 pproximately 10% of the mean soap-film thickness. At the
the light path, the value of the effective spring constaatio higher flow speeds, the fiber lies across multiple fringes, pre-

of load to light-spot-displacementanges from 0.2 t0 10 g, 1ahly with a monontonic thickness change starting from
dyn/mm. Itis set in correspondence with the maximum dragne midline and moving outward. The presence of the fiber
expected for a given flow, and is calibrated using smallyis has an effect on the soap film thickness in its vicinity.
known weights. In this way we measure the total drag forcegch variations are nontrivial to measure and model, so for
as a function of flow speed. . _ simplicity we use only the average soap film thickness in this
Figure 3a) shows the drag data for two fibers used in theyori Because the fiber blocks the flow, we might expect an
experiment. The rigid fiber is not deflected appreciably byincreased soap-molecule concentration on its upstream side.
the flow at any speed, and the drag divided by fiber lengttone would therefore expect a decrease in surface tension
grows asU? in accordance with classical theory. The flexible there, which would decrease the pressure drag on the fiber.
fiber has the same drag per unit length at low flow speedg,jowever, we are unable to make local measurements of sur-
where it too is not significantly deflected by the flow. But asfactant concentration near the fiber, so it would be difficult to
the flow speed increases, the drag grows much more slowlyyantify such forces. For simplicity, we also neglect the ef-
than in the rigid case because the fiber bends, presentingfact of variations in soap molecule concentration. We none-
different shape with a smaller profile width. We will subse- theless expect that the fluid pressure forces would be pre-
quently explain this drag behavior in terms of a model basediominantly set by the high-speed flow outside of this slower-
on the underlying fluid-body interaction. moving region of increased soap concentration near the fiber.
In the following sections we model this flow as 2D, in- Despite these approximations, we shall see that our model
compressible, and irrotational outside of the wake. Now weprovides a good rationalization of the data.
examine the validity of each of these assumptions. The two-  Irrotationality outside the boundary layer and wake is
dimensionality and incompressibility of soap film flows have assumed to be a good approximation to the extent that it
been examined in connection with their use for experimentaholds for the background flow, in the absence of the fiber.
studies of 2D turbulencE:*® The theory finds that 2D in- Figure 4 shows the velocity profile across the soap film tun-
compressibility results when relative thickness variations areel, as a function of the velocity at the midline of the tunnel.
small. Time-dependent thickness variations due to the eladie see that a background shear becomes significant for mid-
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Velocnty Profile I1l. MODEL

Outside the wake we take the flow to be an incompress-

s00 ible two-dimensional potential flow, described by the equa-

o tions:
250" ¢
& 2004 o +(u-V 1V 1
gl 5t HUVu=——vp, &Y
< 150"
g V.-u=0; V+‘u=0. 2
S 100"
g Because the flow is also steady, we have Bernoulli's equa-
504" tion,
09 : . . 1121 20—
0 20 40 60 ' 50 - p+ 2P|u| =3pvs; U=V, 3

Di . . . . .
istance from left boundary (mm) where ¢ is the velocity potential, a harmonic function.

FIG. 4. The back dvel o of th dim sh . Within the wake, we assume a stagnant flow, with a constant
e background velocity profile of the soap film, shown as a func-
tion of the velocity at the midline, and measured in the absence of the flbelpressure The boundary conditions for the flow outside the

Each panel extends over 0.5 cm horizontally. Thus the longest fiber in FigVake are then
3(b) (5.15 cm occupies five segments to either side of the vertical center

line in its undeflected state. At the highest flow speed used in H.(370 u-i=0 on the fiber, 4
cm/9 its profile width is less than 2 cm, so it lies within two segments to _ .
either side of the center line. lul=vs on the free streamlines, 5

wherefi is the normal to the fiber, and, is the constant flow
speed on the free streamlines. Conditibhis a consequence
line velocities>200 cm/s, but for the flexible fibers which of Bernoulli's equation and the constant pressure in the
are our primary concern, the deflected fiber occupies onlyvake, which is also the pressure on the free streamlines. For
~2cm at the center of the soap film at these velocitiesthe Helmholtz wake model equals the speed at infinity,
Hence irrotationality of the background flow is a reasonableand is larger for the extended models in Sec. VI.
approximation in the neighborhood of the fiber, except atthe  Now we relate the fiber shape to the fluid pressure by the
highest flow speeds. Euler—Bernoulli beam equaticfi.Since the fiber’s length is
It should be noted that the eigenfrequency of vibration oftwo orders of magnitude greater than its thickness, which is
the support,~3 Hz, is far from the frequencies of vortex in turn two orders of magnitude greater than the soap film
shedding,~40 Hz. If these frequencies were close to eachthickness, the fiber behaves as a beam deflected in the plane,
other, the vortex shedding would be expected to cause seveygthout torsion. Locally the beam equation takes the form
vibrations. The diameter of the glass fiber ranges from 33 to ~ R R
200 um in our experiment, which is- 20— 100 times thicker —(T9s+(ExsN)s=fLpIN, 6)
than the soap film. Upon insertion the fiber locally blocks thewhere subscripts denote differentiation. Hdrés the soap
flow, so that nearly all of the fluid impinging on the fiber film thickness|p] is the pressure jump across the fibBiis
flows around the ends rather than around the circumferencese line tensionE the bending rigidity« the fiber curvature,
in the out-of-plane direction. But at the highest flow speedsp the unit normal vector, anéithe unit tangent vector along
it is observed that the flow “leaks” at various places alongthe fiber. The two terms on the left represent the tensile and
the fiber in the out-of-plane direction. This may result in aelastic forces on the fiber, respectively.
smaller measurable drag compared to a fully in-plane flow, \We assume free-end boundary conditions,
because less of the fluid momentum is transferred to the fi- ,
ber. Experimentally, we face a dilemma. In order to prevent 1~ k=xs=0 at the fiber ends, @)
such leakage, one would like to apply a hydrophobic coatingvhich result from the vanishing of extensional force, trans-
to the fiber. Unfortunately, such a coating makes the soaperse shear force, and bending moment, respectively, at the
film very susceptible to rupture because it does not wet théiber ends. The fiber is also clamped perpendicular to the
fiber; fibers with a plastic coating are relatively hydrophobicflow at the midpoint, so that the tangent angle is setrt®
compared with bare glass fibers. Fortunately, for flow speedgere.
below 220 cm/s, leakage is rarely observed, which supports To simplify we decompose Ed6) into tangential and
the 2D assumption of our model. We also find that as flonhormal components:
speeds exceed 220 cm/s, there is no noticeable deviation in
the drag data of Fig.(8) from the data at lower flow speeds. —Ts— 3E(x?)s=0, 8
At the highest flow speeds we find that the force mea-
surement be%:omes morg scattered, which we believe has ~ Tt Erss=TIp]. ©)
three main cause§) unsteady near-fiber flow due to leakage Integrating Eq(8) with respect to arclength and applying the
to the out-of-plane direction(i) unsteady vortex shedding boundary conditior{7) we obtainT= — E«?/2. Inserting into
that contributes an unsteady drag, afit) the increasing Eq.(9) and scaling« by 1L (L is the fiber length s by L,
influence of longitudinal Marangoni wavés. and pressure byv§/2 we obtain

Downloaded 09 Apr 2004 to 128.122.81.196. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 5, May 2004 How flexibility induces streamlining 1699

@ ()

FIG. 5. The solution to the coupled flow/bending problem fo¢ 30. The ) ,’ !’
fiber is the solid line and the free streamlines are dasladhe streamlines ! 'f ,’
near the fiber(b) Contour plot of the pressure field in the same region, with [ P
contours shown for values of 0.1 to 0.9 in increments of one-tenth. The K " :
pressure equals 1 at the stagnation point, then decreases along the filament § @
(though not monotically for;> 1, due to small oscillations described in Sec. B ,' ,‘
V), attaining zero on the free streamlines. £ L

o e oD o G e ne e
R L

FIG. 6. Fiber shapes for a range 9f The solid lines are the fibers and the
dashed lines are the free streamlines. The solutions shown correspond to
1.3_.2 _ . ; - .
Ksst 3K3=17 [p] (10) n=1,2,4,8, 16, 32, 64 apd 30000, increasing from flat to folded-over. A
measure of the transition d6.,4/d7n, the rate of change of the tangent
as the nondimensional force balance. A similar expressioangle at the fiber end with respect 4o which peaks aty=5.6.
involving the curvature arises, for example, in studying a

thin beam in a very viscous fluitt.Here 7, defined by

, przvg proportional to the bending IengtﬁEq. (12)], which alsp
U T (11 §cales as the reciprocal of the rmdpomt curvatqre; qut3|de of
it the curvature decreases rapidly, and the fiber is nearly
is the single control parameter in the problem. We have dealigned with the far-field flow. In Fig. (d) we show a sur-
fined » as a nondimensional free stream speed, and we wisprising property of the shapes for large a collapse onto a
to know the dependence of drag an Equation(11) also  universal shape when the fibers are aligned at the tip and
shows 7 as the ratio of fluid kinetic energy to the elastic scaled by, 2. We will revisit this property and analyze its
potential energy of the fiber. There is an intrinsic lengthconsequences in Secs. VC1-V CA4.
scale, Now we consider the behavior of drag with respecyto
2\ 1/3. the dimensionless velocity. Foj<1, the drag follows the
Lo=(2E/pfvg)  #*=(L/Lo)*. (12 rigid-body 7%scaling. Near »=1, the drag transitions
Thus varying can be thought of as varying length with sharply and apparently follows asf® scaling, as shown by
respect toLy, which we term thebending lengthAnother  the solid line in Fig. 8). On a log—log plot, the smal
example of an intrinsic length scale for an elastic body is thevalues follow the lineC, 7?2, whereC,=2mx/(mw+4) is the
“buckling length” of a beam under compressidh. well-known drag coefficient for a flat plate held normal to a
Helmholtz free-streamline floW. The larges values asymp-
tote to the lineC,7*3, whereC, is determined numerically
as approximately 1.87. The drag data lie within 1% of the
We first describe the main properties of the numericalfirst fit line for »<<1.7, and lie within 1% of the second fit
solutions to the model, which are found by the method giverdine for »>83. Thus, the range 1<77<83 gives one de-
in Appendix A. Figure 5 shows the solution for a case ofscription of the transition fromy? to #*® scaling.
moderate bendingz{=30). The fiber has a rounded nose at  We will derive these scaling properties from the asymp-
the stagnation point, with the curvature decreasing towardwtics of the equations. The analysis consists of studying the
the asymptotically-parabolic free streamlines. The relatiorform of solutions to Eq(10) with respect ton. The ODE
between fiber shape angis shown in Fig. 6. Asyincreases seems relatively simple, similar in form to a Duffing equa-
from O, the fiber bends, becoming progressively moreion. But contained in the equation is a nonlocal singular
aligned with the far-field flow. Fom=1, the fiber approxi- integral operator included in the pressure jump. Despite this
mates a flat plate perpendicular to the flow at infinity;zat complication, many properties of the solutions can be de-
=1, the end of the fiber has a tangent angle only one degreived; this is done in Sec. V.
less than horizontal. As; increases past one, significant Now we compare the Helmholtz wake model with the
bending begins. For =64, the tangent angle at the end is experiment. Though we will consider some refined models,
only 12 degrees from vertical. This fiber tangent angle in-for simplicity we restrict a detailed comparison to the Helm-
creases most rapidly with respectj@t »=5.6, which gives  holtz model because it exhibits many salient features. We
one way of locating the transition range. Fg¥ 1, the fiber compare in two aspectsi) the fiber shape as a function of
is well-fit by a parabola near the midpoint, with a small velocity, and(ii) the drag force as a function of velocity. The
region of high curvature there. The length of this region isdeflected shape can be considered a measure, at each point

IV. RESULTS AND COMPARISON WITH EXPERIMENT

Downloaded 09 Apr 2004 to 128.122.81.196. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1700 Phys. Fluids, Vol. 16, No. 5, May 2004 Alben, Shelley, and Zhang

FIG. 7. (Color) Comparison of six experimental fiber
shapes with model shapegs) Shapes from the experi-
ment(green and orange linesuperimposed on a mani-
fold of numerical solutiongblack lines. The numerical
solutions range fromp=5.5 to 33, in increments of
10%. The flat plate §=0) and a very bent solution
1 (»=30000) are shown for comparisoth) Compari-
son of measured drag on experimental fiber&jrwith
computed drag of nearest numerical solutions, deter-
mined by matching tip curvaturéc), (d) Transition to
self-similarity in experimentalc) and numerical solu-

s
[ =]

Nearest Shape Drag (dyne)

5 10

15

20

tions (d) (not shown at the same scal@he six fibers,
and their nearest numerical solutions, are dilatedBy

and superimposed. The black fibers are numerical solu-
tions at highery, and show the subsequent convergence
to a universal shape, as predicted by the model. Figure
reproduced from Alben, Shelley, and Zha(RRef. 28.

Measured Drag (dyne)

along the fiber, of the loading by pressure forces. In Fig),7 theory and experiment, including the transition to a lower,
we show six shapes assumed by a single fiber as the flopossibly »** drag scaling, though the upper limit on soap-
speed varies by a factor of 5. The shapes are superimposétin flow speed precludes a thorough comparison for lajyge
on a manifold of numerical solutions to the model, and seenThe vertical marks indicate, for each of the four data sets, the
to interpolate them well. More specifically, with the mid- values of » corresponding tdJ =220 cm/s, where leakage
points of the fibers aligned we find that each photographedround the fiber first becomes noticeatdee Sec. )| We do
fiber can be matched to a numerical solution that deviateaot see any systematic deviation from the fitted drag curve
from it by less than 5% in relative displacement from thewhen leakage occurs. However, the smaltata for the
midpoint. In Fig. 1b), we compare the drag values for the longest fiber deviate from the curve. Such data correspond to
six fibers shown in Fig. (&) with those for the nearest nu- the smallest flow speeds attainable in the experiment, where
merical solutions, and also obtain good agreement. This sughe soap film breaks easily and large variations are seen in
gests that the model has correctly identified the forces thanheasured velocity and drag. Since the fiber is fairly flat at
set the fiber shape as those given by the normal pressutkese speeds, it occupies more than half the channel width,
difference and the fiber’s bending rigidity. In line with this so the walls, thus far neglected, would be expected to have a
comparison, the experimental fibers also show the emergengeonounced effect. The wall effect will be discussed further
of self-similarity; the comparison is given in Figs(cY and in Sec. VI.
7(d). To summarize, in our comparison with the experimental
In these comparisons we find that the nearest numericalata thus far, we have seen agreement in the presence of a
shapes each have greater than those for the experimental transition to a reduced drag scaling, which has a form similar
shapes, by a factor of approximately 2.8 for the six shapeto that of the model. However, the drag is underestimated by
we have compared. This discrepancy can be accounted for liie model. We have noted that a simple shift by a constant
setting the wake pressure to a value different from the presfactor of 2.8 in » brings the experiment and model into
sure at infinity, as we will discuss in Sec. VI. alignment. This systematic deviation may be due in part to
For the comparison of the drag-velocity relationship inan effect which has been neglected thus far, the “back pres-
the model and experiment, we display in Figbj3a set of sure” in the wake, which increases the drag. The classic ex-
200 measurements of drag versysfor four fibers which ample of a back-pressure induced deviation is the drag coef-
differ in length and rigidity. The numerical drag curve is the ficient for the flat plate in the infinite-wake modeGp
solid black line, and is also shown shifted to lowgby a  =0.88, as compared with the experimental value of about
factor of 2.8 (dashed ling in accordance with the shape two.2?
comparison. After the shift we see good agreement between An asymptotic theory of wake flows predicts that the
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wake has width~Re"? and length~Re as Re»x, with a Z plane

slow flow in the wake giving a back pressureRe 2. This ¥

pressure is also nearly constant, with variations through the

wake ofo(Re ?). Several models have been developed to

include a back pressure, whether obtained theoretically or ; X

empirically. Among the simplest, which we will adopt in Sec. A B

VI, is that due to Riabouchinsky. cC o~ - -
Rigid walls constrain the fluid, forcing a faster flow A

around the obstacle than would be had in the unbounded

case. They thereby increase the back pressure and change i — :

limiting behavior from a Re'? decay to an approach to a K plane‘, W= ey \ C" plane

constant, nonzero valfé.The wall effect is thus one of the
major sources of back pressure in experiméhfshe back f\

pressure is very large for walls at a spacing of the order of D _ A
the obstacle length, and is still significant for a spacing as A_’_B-Chﬁtq) D A C
large as 100 obstacle lengtffs.

With these properties of wake flows in mind, we proceed
by extending the model to incorporate walls and back pres-
sure. This introduces two new control parametéts: the
ratio of wall-spacing to fiber length, and)=(pyake FIG. 8. The flow domain in the physicalplane, the complex-potentia
—p..)/(pv?/2), the back pressure nondimensionalized byP'ane: and the conformal-mappigelane.
the dynamic pressure. The physical parameters of our experi-
ment setH. Both H and the dynamics of the wake flow

determineQ. We will not try to predictQ in our model, but  yelocity potential andy is the stream function. The analytic

rather understand how the drag and shape depend on fiinctionw has derivative equal to the complex conjugate of
through numerical solutions. We will see that the drag scalihe velocity:

ing with velocity is againrJ*®, whereU is now the velocity
on the free streamline of the fiber. This will be discussed d_W___l S (19
further in Sec. VI. The extended models have wakes which dz ° 7 ’

are smaller than the Helmholtz wake, and thus agree better in . o
shape with those of the experiment. where |v] is the flow speed an® the flow direction. We

We estimate the effect of skin friction by considering the "OW déscribe how to obtain the velocity field and the loca-
limiting case of a fiber folded in two at high flow speeds. Thetion of the free streaml-mes via conjormal mapping, assuming
fiber is then like a flat plate aligned with the flow, for which momentarily that the fiber shape is known. o
the corresponding skin-friction drag is 1832 f Re Y2 by _The flow is deter_mmed by the method of _LeV|—C|V|ta,
Blasius boundary layer theo?.This component of the drag which uses the Iogarlthm of the complex velocity, known as
grows asU32 which would eventually dominate thg*3  the log-hodograph variable:
pressure drag we have identified, as long as the boundary () —j|og(dw/dz)=0+iT: 7=log|v], (14)
layer is laminar (Re10%), so that the Blasius solution is
valid. We use RelLU/v, where v=0.03 cni/s is the kine- Wwhereuvg is hereafter set to one. The method consists of
matic viscosity of the soap film. For the range of parametersolving for () and z simultaneously as functions of a com-
in our experiment, this estimate lies at least an order of magplex parametet, which is related by a conformal mapping.
nitude below the total measured drag, and thus we neglect A typical flow domain is shown in Fig. 8, along with the
the effect of skin friction. corresponding region in the-plane. By setting a constant,

Before extending the Helmholtz model to address thewe fix the flow's unique stagnation point at the origin in the
points raised in the comparison with experiment, we preseri-plane. Since the flow region in the-plane is the whole
in Sec. V the complete equations and an asymptotic analysigane with a slit along the positive real axis, it is mapped to
of the Helmholtz model. The goal is to provide a mathemati-the upper half of the unit disk by
cal explanation for the drag and shape scaling, which are the _ 2
primary results of this work. Section VI will consider other w=KIB(£+110)%, (15
models in light of these results. where K is a positive constant determined by fixing the

length of the fiber.
We obtain the map from to ¢ in terms of() by using the
following identity:
V. FURTHER DEVELOPMENT AND ANALYSIS OF THE ~ia

MODEL v=e (16)
Using Eq.(13) with Egs.(15) and(16) gi
A steady, incompressible, and irrotational flow is de- sing Eq.( )\_NI gs.(15) and(16) gives
scribed by the complex potentiel= ¢+i, whereg is the dz=(K/4)e'(¢—1/3)d¢. (17
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On the upper semicircle, where the filament liés,e'” and
Eqg. (17) becomes

dz=—(K/2)e'%e™ "sin 20do. (18

Note thatd has a jump ofr at the stagnation point on the

Alben, Shelley, and Zhang

[p]=e*"—1, (29

where[ p] is nondimensionalized byvglz. Then the force
balance(10) becomes

kst K312=9?(€27—1). (30)

fiber, o= m/2, where the flow changes direction. Thus on the

fiber,
dz=sign w/2— o)ds €°, (19

whereds is the increment in fiber length. Thuks is related
to do by

ds=(K/2)e "|sin(20)|do. (20

On the intervall —1,1] of the real axis,7 must vanish to

satisfy the boundary conditiof5). Thus we can extend the
domain of definition ofQ) from the upper half of the disk to

Now we express Eq30) in terms of¢. By introducing v
=d«/do the ODE(30) becomes the first-order system:

K\’ v
( V) - ( (2627 1)~ k¥2)(s' 2~ vs'ls' | S
where the primes denote differentiation with respecisto
The boundary condition§7) becomex=v=v'=0 at the
fiber endso=0, 7. (To enforcexs=0 we require thav and
v'=0 becauses’=0 at the end$.We integrate Eq(31)
from each end to the support @at= /2. After solving fork,

the whole disk by the Schwarz reflection principle. Conditionwe integrate

(5) is then automatically satisfied by enforcing the symmetry
of the extended?, which is the main point of the Levi—

k=dé/ds=(d6é/do)/(ds/do) (32

Civita method. Now() can be written as a power series in from the support to each end of the fiber, to obtéinThe

the disk,
Q=2 al (21)
0

where thea, are real becausél(f)=ﬂ(g). Evaluating at
{=¢'" gives the expressions

6=, a,codka),
k=0

(22
= kzl ay sin(ko), (23)

which relate# and . It is useful to decompos€) as Qg
+0, where

elv—i
QO:00+iT0:7T+i|nEiU__’_i, (24)
0p=signo— m/2) /2, (25)
sin((o—m/2)/2)
=N Sin(ot 712)72) 26

“clamp” boundary condition at the support is
0| o=ml2= = *7/2 (33)

for the flow angle. We have thus used the force balance to get

a second relation betweehand 7, in Egs.(31)—(33).

A. Summary of equations

To organize the procedure, we rewrite the above as a
system of equations:

T=F,(0) from (22)—(23), (39
s=F,(7) from (27), (35
0=F5(7,s) from (31)—(33). (36)

In the case of the sail considered by previous autfibtéthe
force balance equation [9]=—Tk, whereT is the con-
stant tension in the sail. Replacitfg by the analogous equa-
tion, one can combine the four equations into a single inte-
gral equation forr. In our case, the elastic force balance
involves higher-order derivatives, so that the analogous inte-
grodifferential equation is more complicated to write down.
We solve (34)—(36) as a coupled system in our numerical

is the flat plate solution, containing the singularity at themethod, a quasi-Newton iteration described in Appendix A.

stagnation pointg=w/2. We integrate the desingularized

form of Eq. (20),

S(U'):KIU, (sing’ +sirf o’ )e " do’  oe[0,7],
w2
(27)

B. The asymptotic regime »<1

Consideringzn as a ratio of energies, in this regime the
elastic potential energy dominates the fluid kinetic energy.
The problem admits a regular asymptotic expansion about
the »=0 (flat plate solution. Because the right side of the

where the lower limit of integration has been chosen to seforce-balance equatiof80) is O(7%?) over the plate5? is

s=0 at the midpoint. We determiri¢ by setting the length

of the fiber to 1:

the natural small parameter in which to expafdnd its
harmonic conjugate. We have

o [T (sing’ +sir2 o Ve T d -
1/K ZL/Z(sma +sirfo')e do’. (28 6,(0_):90(0)_,_”12:1 O 0) 2™, (37)
Now we close the system by relating the fiber shape, w0
given by kx=d#/ds, to the pressure difference in termsof _ + 2m 38
Bernoulli's equation(3) gives 7(0)=Tow) mz=1 Tl )7 38
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where the first terms are the flat-plate solutions. Using the 1sf
force balance, we obtain

01,554 o)= e?m—1 (39 1

which may be integrated thrice to give an expressiondor

in terms of trigonometric functions and polynomials. The
succeeding terms may be integrated similarly. We have esti-
mated the first terms in the expansion for the flat-plate drag ©
coefficient directly from the numerical solutions to the full
nonlinear problem, rather than from the expansion above. We_g.5}
obtain

0.5

Cp=Cpo+2.85346< 10 372+8.14x 10 °*+1.4 -1t
+0.2x10 ¢5°+0(7®), (40) 18l |
Cpo=2/(m+4)=0.879802. (41) -10 -5 0 o3 5 10

The precision to which we have determined the second anE‘IG. 9. The asymptotic form of the rescaled numerical solutions near the tip
higher coefficients is limited by our use of double-precisionas ; ., in terms of ¢ (solid lines, 7?3 (solid line), 7~ *3, (dashed
arithmetic. The small magnitude of the coefficients comesine), and 7 %« (dashed—dotted lije The first and third functions are
from the free-end boundary conditions, which cause the firstntisymmetric and the second and fourth are symmetric ahgfit=0.
corrections to the curvature and its arc-length derivative to

be small in response to the flat-plate pressure distribution. i ) _
for the curvature, which scales as inverse length,xis

=7n*K(sn*). HereU, P, andK are order-one functions.
Inserting these expressions into the force bala(3&, we
For large », the flow tends to a singular limit: uniform find in the limit 7—c, the terms on the left and right may
flow past a fiber folded in two, except for the stagnationpalance only whem = 2/3. Thus the tip-region length scales
pOint at the tlp of the folded fiber. The discontinuity in ve- as 7772/3, which is also the Sca“ng of the bending |ength with
locity there indicates that a local stagnation-point expansiofespect to fiber length.
is expected for large;. We define the restriction of this 2D The numerical solutions give clear evidence of the inner
neighborhood to the fiber as “the tip region.” Using an an- ;=23 scale. In Fig. 9, we show the quantitiés 7~ 23«,
satz of self-similarity suggested by the equations and con =43, and 5~ 2« for 7 ranging over several orders of
firmed by the numerics, we shall derive some of the notablenagnitude in the range;>100. We see that the functions
asymptotic properties of the solutions: overlap, having apparently converged to universal functions
2B asy— . Thenralso has the universal behavior,

C. The asymptotic regime »>1

(1) The solutions are self-similar on a length which scales adf S=s7

7 23 (Sec. VC. by the force balance.
(2) The leading-order fiber shape is quasiparabolic and the Recasting the force balance in termsfwe have
geéaz_;,treamlmes asymptote to the same parali®ks. 9"+ 10'3=e?7—1, (42)

(3) The magnitude of the second-order term scaleg as where primes denotes differentiation with respecstorhe
and it has an oscillatory form with a characteristic waveassociated boundary conditions are

C/u(;n;er of 2837?37 away from the fiber end$Sec. 0'=0'=0 at S==+?¥2, 43)
(4) The tip region contributes the domina®X( »*? drag, 6==+m/2 at S=0~. (44)

while the drag on the remainder of the fiber is subdomi-

Now 7 has been scaled out of the equation and into the
nant(Sec. VC4. K g

boundary conditions. One can take the linjit>o of Egs.
(42)—(44), which takes the boundary conditionsdofor an

In what follows we shall describe the solutions in terms; "7 * " : . :
of the shape variable$, «, ks, k.. the log-velocityr: and infinite fiber. The universal shape and flow obtained in the
(] l S SS ]

the conformal-mapping parametrizatis(v). numerical solution appear to satisfy this I!mltlng eque_mon
and boundary conditions, so we take the universal solution as
1. The length scale of similarity the leading-order term in an asymptotic expansionyirin

] . ] the next section we pursue the asymptotic development of
The pressure jump at the stagnation poing#s Thus for the solutions.

large » we can expect a large curvature at the tip from the

force balance. The inverse of this curvature sets the length- ,

scale of the tip region. We presume the inner length to scalé- Form of solutions

with a power of#, which can be determined from the force As an ansatz we assume an asymptotic development
balance. The flow variables may be takenussU (x%%), consisting of the universal shape and fl¢ive limit of the
p=P(x7%) as a tip-region ansatz. The corresponding formsolutions asy— =) plus a power series i~ #, B>0:
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FIG. 10. Tip and end region behavior of numerical solutigasConvergence of— 7,— (1/3)log % to a constan€ at the tip. Also shown is the convergence
of the normalized pressure loadie§’— 1= 5~ ?[p], and the two elastic termg™ ?«,, and ~2«/2 which sum to it in the force balance. Note that the cubic
elastic term decays more rapidly than the?« term, which holds outside of the tip region as wel) Numerical evidence for the convergence of the
tangent angle at the end of the fiber, normalized/&y, to a constan€, as »—. This implies that the universal fiber shape is quasiparabolic. The peak of
the curve occurs near the transition to bending.

0(a)= () + 0(0)=01(S(0))+ 1 POx(S(0)) (0t — 1= — 1+ (Ud)c(y) (o —ml2)?

+ 57 2P05(S(0))+- -, (45) +o(lo—m/2]?). (49
(o) = ro(0) +70) = 11(S(0)) + 7~ Bro(S(0)) = — 1+ S°/(16K25"%c(n)*)

+ n_zﬁrg(S(U))+-~~ ) (46) +0(|S|2) using Eq. (48). (50

. . By the ansatZ46) this function is independent of at lead-
B
The successive powers gf © allow a matching of terms at ing order, so if the coefficient 2 does not vanish at lead-

each order by inserting the expansion into the force balance U3 \yhereC is independent

- . ing order, we have(n)=Cn
The explicit dependence of the second and hlgher-ordecr)f 7. This implies the expansions

terms ony results from they-dependence of the boundary

conditions(43), as described in Sec. V C 3. Sinéand 7 are F(o)=(1/3)log n+ Cy+0o(|o— /2, (51)
linearly related by the Hilbert transforf,they are devel- . 5 5
oped in the same powers. We assume corresponding expan- € —1=—1+C;8°+0(S°). (52)

sions in the flow field for@(Z)ZI?ndﬂZ), in the rescaled  Thege expansions are consistent with the numerical solu-
physical plane coordina=z7,“". Now we will determine  {jons a5 shown in Fig. 10. Finally, by inserting expansion
the exponenB and some properties of the first two terms, (51) into Eq. (47), we conclude that ifS=0(1) then |o
7'-i(S) and 6,(S), i=1,2, which give the dominant cont'ribu- — /2| =0(5~ 3. This is the size of the tip region im. We
tions to the shape and drag of the fiber. To accomplish thigij| yse this fact repeatedly in this section. The first use is to

we use the three equations that constitute the system in Segatermine the behavior of the universal shape away from the
V A: (i) the force balancé42)—(44); (i) the conjugacy rela- tip

tion (22)—(23); (iii) the conformal-mapping relatiof20), in

We start with the relation fo®,(¢) in terms of r,(o),
terms ofS:

given by the Poisson formuf&which we evaluate at a point
on the free streamlines; i.e., on the interall,1] in (=&

S' = (K/2) 2P "|sin(20)| =K 5?3 "(sino +sir o). iy

(47)
: ; - - 1 2mel + ¢
The first step is to determine the length-scale of the tip 04,(&)=—=—Im f -
region in terms oftr. We use Eq(47), where the value of ™7 2 o e7v—¢
at_;fle tip L:;hto be criletermlne_d. SinGeis f|n|';e fgt.tthest}p, Since®,(0)=0, C; vanishes. Using,(— o) = — 7,(¢") and
e:T—.c(n) . ere, W erec(#) is nonzero qn inite. Since (7 o) = ,(c), the expression becomes
e~ 7 is continuous it has a general expansadmy) +0(1) as

7(c")do"+C5. (53

o— /2. Insert this form into the expression 8f, integrate 4 (w2 (14 £)¢sing’ ) )

and then invert to obtain the first term of the Taylor series for ~ ©1(6)=— fo (1+&2)2—4£2co2 o' 7i(o’)do’.

o—ml2 in terms ofS andc( %) about the tip: (54)
o—ml2=SI(2K *%c( 7))+ 0(S). (48)  Evaluating at one end of the fiber=0, gives

Now expand the right-hand side of E@2) abouto= /2, 0y(0=0)=0(é=1)= 2 J’”’Z T?(U") do (55

using the form fore™ " T Jo Sinc
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which is well-defined becausg vanishes atr=0. Because
the flow speedv| deviates significantly from 1 only near the 30f
tip, r=log(jv|) is only large near the tip. Consequently we
will assume that the contribution to the integral in E§5)
from the tip region, withirO(z~ %) of 7/2, is at least of the
same order as that from the rest of the fiber. By 8), near ,
the tip 7,(S)=log|g+C,+--- (higher-order terms ir8), so “s ol
the integral over the tip region is ;

—1of

0o(1)
J;) [log(S)+C4+---]dS. (56) _oo}

2C7]_1/3
7K

Then @,(é=1)~Cqyn Y3 for some constan€, [see e | .

Fig. 10(b)] which depends on the specifi(1) form of 7; in o e 20D P 00 e

the tip-region. Sinc&;~*Cyn Y2 at S=+(1/2)5*2 asy a2

—0, 6,(S)~*+Cy|29 Y2 as |9 —o. ThusdY;/dX,(S) fe 11 o f ol fber <h 4 streamiines 1

_ " —1/2 . . . . Convergence of numerical Tfiber shapes and streamlines to a qua-

=tan(@y(9)~= |S as |S| —. Integrating givesY; siparabolic universal shape. Shown in alternating shades are the fiber shapes

~=[X|" for large X;, which means that the universal for =200, 550, 1500, 4050, 11 000, and 30 000, as well as the streamlines
shape is asymptotically parabolic. for the smallest and largest valu@sosses and circles, respectivelyith x

We have assumed thay is small outside of the tip re- andy scaled bys**. The asymptotic parabola has the fohe- 1.11X.
gion to obtain the parabolic decay of the universal shapes® \TEIES e Shapes or o0 v bk e, De0(ue
The numerics suggest that the asymptotic relatlgiS)  gnape fits the parabol=1.3422
~|S|7*2 may be differentiated, which implies that>(S)
decays a$S| %2 and 07 (S) decays a$S|~ "2 for large|S|.
Thus the latter is the dominant term in the force balancdor large . Henceé~ = (8]s| nearé=0". Thus, from
equation(42), and since both terms are small for lai@,  Eq. (57), ©1(&)~—2Coén Y3~ =Cy|25| 712 giving free
the relation 2,(S)~ 67 (S) follows from it. This will be  streamlines which are asymptotically parabol& general
used to derive the form of the second-order terms in the nexproperty of Helmholtz flow¥), and asymptote to theame
section, but for now we note that,(S) decays asS|~ "2 parabola as the universal shape, so thatyas= the free
Because of this rapid decay, the contribution to the integrastreamlines merge with the universal fiber shape. This is seen
in Eq. (55) from the|S|=0(1) tip region is apparently of the in the numerical solutions of Fig. 11. We have shown this as
same order as that over the rest of the fiber, consistent wite consequence of the far-field behavior induced by the tip
our initial hypothesis. region.

The same type of argument used to show that the body is This result may indicate a more general principle of
asymptotically parabolic also shows that the free streamlineglinimizing the sum of the kinetic energyelative to the free
are asymptotically parabolic. Expanding E&4) abouté  stream speegdand elastic potential energy. It has been shown
=0, for finite constant-pressure wakes attached to bodies that the

free streamlines minimize the added mass of the combined

)71/2

A (2 3 body and wake, within the class of piecewise-analytic wake-
®1(§)_?f0 sing y(@)do+O(£7). (57) bounding streamlines, including those on which the flow
speed is nonconstant. Thus the free streamlines also mini-
Note that mize the kinetic energy of the flow relative to the free stream
2 (a2 speed-’ A similar result may be obtained for the unbounded
;j sinor(o)do (58)  wake of the Helmholtz flow by taking the limit of the finite
0

case, though we will not give the argument hésee Gara-
bedian and Spenc¥y. Since in our case the rest of the body
sits near the boundary of the wake induced by the tip, it adds
little to the induced mass and kinetic energy of the free
streamline flow which would be set up by the part of the
body lying in the tip region alone. The rest of the body also
adds little to the stored elastic energy of the fiber
=(E/f2)f k?. This is partly due to the rapid decay of the

has the same value as the integral in Eap), at leading
order in % (here then dependence of the integral is seen by
changing the parameter from to S). This is because the
tip-region contribution to expressids8) also transforms to
expression56). From Eq.(17), ¢ is related tos on the free
streamlines by

s=—sign(&)(1/2+ (K/8)(é—1/£)?), &e[—1,0U(0,1]. leading-order curvature terms away from the tip, and also to
(59) the size of the second-order term in the curvature, which we
now discuss.

Using the asymptotic expansion efand the decay ofr;
outside of the tip region, Eq20) implies thatK—1 asz

; 3. Second-order equation
—o0, Thus Eq.(59) gives

Our purposes in deriving the form of second-order term
s~ —sign(&)(1/2+ (1/8)(&¢— 1/£)?) (60) are twofold. First, the term further illuminates the asymptotic
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properties of the solutions, as well as the role of the bound¢62)]. It can be approximately solved if the Hilbert transform
ary conditions in the problem. Second, in order to give ais performed in the same variable as the differentiation.
guantitative explanation of the drag scaling it is useful to
estimate the contributions from the successive terms in eX4. Oscillatory form of second-order term
panS|on(45)—(46?. To approximately solve Eq64), we first rescaleS on
We now derive the form of the second-order terms, be- . o
I . . the fiber asu=z#% “°S, and then extendd, to a
ginning with the exponenp. None of the equations—the . : . :
: 2r-periodic function inu by the relations 8,(u+2)
force balance, the Hilbert transform, or the conformal map_ _ . e
L . . = 0,(u)=0,(7—u), which come from periodicity and
s(o)—fix this exponent, in the sense that any choiceBof . .
. . . . evenness with respect ta We obtain
gives an expansion which can be matched at successive pow-
ers of 2. The only remaining information is the boundary Gz,uuu(S(u))qr%‘Z:2H”(92(S(u)))
conditions(43)—(44), and indeed these can be seen to set the

. . 1 r2n
e_xponem SO that the sum of the f|_r_st two terms in th_e expan- + = g(u,u’),(S(u’))du’,
sion satisfies the boundary conditions. The numerical solu- m™Jo
tions show that it is possible to differentiate the asymptotic (65)

decay of the universal shape, and thus obta@i(S) _ ) _

~ T(Cy/2)|2S] %2 and ]~ = (3C,/4)|S| 52 as S— * . whereH" is the Hilbert transform iru and the kernel
Thus 0;~F(Col2)n ' and @]~ +(3Cy4)p >® at S do

=+ 7?%2. If we assume thati,(S)=0(1) as|S|—x, then  g(u,u’)=cot(o(u)=o(u"))/2) z-(u")—cot(u—u")/2)
by settingB=1, the boundary conditiod’ =0 may be sat- (66)
isfied, while the other boundary condition is deferred to a _

lower-order correction. is doubly continuous and unbounded only for=n, n

Inserting the expansion@5)—(46) into (42), and match- €7, which may be seen from the t?eha"i_ord"”d“ given
ing at orders 1 andy~* gives the equations by Eq. (20) along with the special tip region behavior at
=7/2 given by Eq.(51). We wish to show that the integral

o)+ 20;3=e?1—1, (61)  operatorG with kernelg is a smoothing operator on even,
2-periodic functions, and thus it is subdominant to the
0y + 20,20,=2€*"17,. (62  Hilbert transform in Eq.(65). For u fixed, u#nm, neZ,

g(u,u’) has an inverse-square root behavior near n.
The first-order equation is satisfied by the universal solutionFor u=na, g(n,u’)=0((u’—n) !) nearu’ =n. The
with the conditionsf; , #]—0 asS— *. Given the first- integral in Eq.(65) is of principal-value type and thus it is
order solution, the second-order solution is found by solvingyell-defined in this case.
Eq. (62 1subject to the bzc;;mdary Conditionﬁi;r/;flﬂé For u#nar, Eq.(27) may be used to show tha(u, -)
=01t "0,=0 atS=xy /2. Thus atS==7""2, 6,  has the smoothness ef, aside from the inverse-square-root
~*+Cpl2 asn—o andf,=0. Now we derive the form of,  singularities. Using the symmetry about the tip, one can
andr, in Fourier space, and show that they are characterizeghow that for a classical solution to the force-balance equa-

by a single wave number over most of the fiber. tion, e” has at least one continuous derivative’ ¢ C1).
The conjugacy relatiof22)—-(23) can be rewritten as the  Thysg(u,u’) is C* except for the inverse-square-root singu-
Hilbert transforni’ larities atu’ =nr.
1 (o We claim thatG(cosmuy=0(m *? as m—ow, for u
(0)=H7(0,)= ﬁf cot((o—0")12) 6,(c")do”’, #nar. This may be seen by writing as a sum of singular
0

terms plus aC?! part: g(u,u’)=cot(e(u)/2)/(ym/2Ku")
63 4 cot(e(uy2)/(Jal2K(u' —m) + f(u’) for u’e[0,27), u
where the integral is a principal value. Because the transforr n7. Integrating the first two terms against cos gives
is linear, we may confine it to the second-order terms. Sincéerms ofO(m~?); this comes from substituting= \/m u,
liminf|95|=Co/2 at S=+(1/2)7%® as p—=, unlike the which leaves a Fresnel integral. The contribution frém
first-order term the second-order term does not tend to zere C* is O(m™1).
away from the tip, and the full range of integration in Eq. Using this smoothing property dB, we show that a
(63) must be kept. From the asymptotic decay of the univerieading-order oscillatory behavior df, is consistent with
sal shapeg;*=0(|9 %), e21—1=0(|S| ") away from  Eq. (65, with wave number scaling as the bending length,
the tip region. Thus fofS|>1 but fixed asp—, Eq.(62)is  7°". We assume as an ansatz
approximately 0,=Acos (U— )le)+ePo(u), e=2"Vry 28
02554S(0) ~27(S(0)) (67)
1 (on The first term satisfie®,,,,,=2H"(6,) exactly, with an
= _f cot((o—a')/2)6,(S(a’))da’, (64)  O(1) phaseg set by the boundary conditions, abgu) is
™ Jo assumed to b&(1) at leading order. Matching at the next

l/ . - _ .
with an error ofO(|S|~3). This is a homogeneous equation order,O(e'"), gives a leading-order equation fbr

with inhomogeneous boundary conditigrggven below Eg. —HYb)-G(b)=j(u), (68
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0 T gion contribution to the integral in Ed55). Consequently
0.001 'ﬂ_2/3‘< 7,(c=0)#0 by the Cauchy—Riemann equations, so locally
7=Co+---. Outside of the tip region,
| 10 ds=|sin 2¢|do+O( 713 (70)
-0.003f i 7 )
which implies a leading-order square root behavior-(®)
~0.004r at the fiber ends. By the Cauchy—Riemann equations, this is
-0.005} equivalent to an inverse square-root behavior for the separa-
—0.006} tion curvatured (1).
One interesting result of expressidf9) is that the
-0.007f second-order terms dominate the first-order terms in the
_0.008} force balance away from the tip region. The dominant first-
order terms ared] and r;, which, from the numerics, are
~0.009r O(7%~ " at an arbitrary but fixed distance from the tip, as
-0.01; = = = = o 50 J n—o. Hence thed(7 1) second-order terms dominatee

23 Fig. 12. The third and higher-order terms in the expansion

(46) may be derived in a similar fashion, but we will not
FIG. 12. The numerical solutions away from the tip region fpr 550, pursue this here.
1500, 4050, in terms of the rescaled curvatyré3« and(insep the domi-
nant terms in the force balanceand » 2k,,. Because of the rapid decay
of the first-order term, the oscillatory second-order term is clearly visible

For each of the functions shown, the amplitude of the second-order tern‘?’ Drag scaling

decays asn’;/,3 and the wave number of the oscillatiokg appears to Having described the scalings of the first two terms in
hing i ithin 1% forp= ithin 0.1% . . . .
f;n;iri%ég + matching it to within 19 fory =550 and to within 0.1% o asymptotic expansion, we are now in a position to under-

stand then*® drag scaling.
We use the rescaled, y, and x as X=x7?° Y
=y 7?3 and K= 75 %2k, and recall that the tip region has
wherej is e Y2 times (G applied to the cosine tepmBy the  lengthO(7% 23 in s andO(1) in S. We will now show that
smoothing ofG, j is thenO(1) except near the fiber end the tip region controls the drag, in the sense that any region
points,u=0, . which is slightly larger than it gives the dominant contribu-
This oscillatory form for the second-order term is cap-tion to the drag. More precisely, for ary>0, the drag in an
tured well by the numericésee Fig. 12 In particular, the intervall of lengthCz~ 2" € about the tips=0, is asymp-
characteristic wave number of the numerical solutions aptotically dominant to that on the remainder of the fiber.

pears to converge to that predicted by the ang#® The drag onl is given by
(2Y%5?R1 7 in u, or 2Y%in S) with an error 0f<0.1% for

X C”—2/3+E/2 1 dy
7=4050. The agreement improves for larggrpresumably D(l)= 7]2f pdy:f = K3+ Kkgg| ==ds (71
because the nexthird-) order term becomes smaller relative I —Cyp 2\ 2 ds
to the second. cre (1 dy

We have determined the functional form of the first two = 7]4/3f 7 (—IC3+ K"l —dS.

terms in the asymptotic expansion of the curvature. Combin- ~cy2l 2 ds

ing the asymptotics and the numerics, we find that the nu- (72
merical solutions away from the tip region are well fit by ~The drag contribution from the remainder of the fiber is
given by

7 ?Pk=0.308|" *?+0.62p * cog23p*¥(s— 1)), o , dy
(69 D% =79 f[n2/3/2,n2’3/2]\|(2 K2+ K deS. (73
for all S away from an “end region]|S|— »?%2|<3, which ~ We estimate the curvature terms from E§9), and obtain
corresponds to a region with leng®( 7~ %) aboutu=0, m.  K3<C,|S| %2+ C,5 S "% and K"<C,|S| "?+Cop*
Here ¢,= ¢/ is a constant phase. for positive constantsC; and C,. Also, dY/dS~6

For completeness, we describe the solutions’ behavior-|S|~ Y2 Inserting these estimates into E@3) we find that
near the fiber end. In the end regiepis characterized by a D(1¢)<C,37*3 3¢, for e sufficiently small, which comes
square-root behavior, which has to do with the properties ofrom the bound forK”. The integrand iSO(1) in the tip
free-streamline separation from a sharp edge. The continuitsegion, so a similar argument shows ttagl) is O(7*3).
of flow speed requires that=0 at the ends, but does not We have shown that the tip region gives the dominant drag
specify the form ofr near the end. It has been shdWfor a  contribution, even though the tip region@( » ) smaller
C? barrier that unles€)’=Q"=0 at the separation point, than the remainder of the fiber.
the curvature of a free streamline diverges there. Here it can The self-similar quasiparabolic fiber shape gives the
be seen to diverge like an inverse square root. By differentiscaling of the profile width. First, express the parabola to
ating (54) with respect ta<1 and lettingé—1~, we obtain  which the fiber asymptotes a6=CY?. At the fiber endsX
0:(1)=26(1)+0 due to the dominant, single-signed tip re- ~S= = *¥2, so thaty~ = 3 ory~ = "3 Hence the

1
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profile width decreases ag *®, which would imply a drag

scaling of °2 in the absence of streamlining. By “stream-
lining” we mean a reduction in drag due to a change of shape
which keeps the profile width fixed. For example, a flat plate
may be streamlined by changing it to a circular arc with
chord length equal to the plate length. Streamlining thus
gives a size-independent measure of the effect of shape or
drag. For the fiber, the streamlining caused by bending de-
creases the drag by a factor 9t *3, so that the reduction of
the drag exponent from 2 is due in equal parts to decrease o v
profile width and to streamlining.

F

VI. EXTENDED MODELS A Bl G
Now we examine the effect of incorporating walls and

of wall-spacing to fiber length, and the wake pressure coef-

ficient Q= (Pyake— P=)/ (pv2/2). Unlike the Helmholtz flow, ) o .

these models have a free-streamline spegavhich is dif- and having an infinite wake. From our numerical results,

ferent from the upstream flow speeg,. [both speeds are there is apparently a unique flow of this type for each choice

nondimensionalized as in definitiogi1)]. The two are re- ©f wall-spacing, as is known to be the case for flows past

lated by 7= 7..y1— Q. plates and wedges:®
We begin by examining a model in whict is the only We map half of the flow field to the upper half of the unit

free parameter: the case of “choked flo®Here the wake disk, sending the fiber, stagnation streamline, and upper wall
is of infinite length, but the flow is bounded by infinite par- 1© the upper semicirclesee Fig. 13 Starting from
allel rigid walls. Since the wake occupies part of the channel cosyp+(L2—(+1)
width downstream of the body, conservation of mass requires W=2a log cosyr— (22— ¢+1)’ (74)
that s> 7... The resulting non-zero value &, which is set F
by the wall-spacing, thus reflects the contribution of thethe development then parallels that of the Helmholtz case.
walls to the wake pressure. We will then consider the effectHere a is used to set the fiber length andi
of varying Q in the unbounded Riabouchinsky flogor ~ =(wall spacing){fiber length sets the free parametes:,
which H=). The effect is to shift the drag curve from the the argument of the point i corresponding to upstream
Helmholtz curve by the factof/I—Q in 7., which is the infinity in z. The stagnation-point singularity is explicitly
same type of shift as was used to align the Helmholtz andemoved by
experimental drag data in Sec. IV. Finally, we study the wall- ir—1
bounded Riabouchinsky flow, witQ andH as free param- Qo=(—1i/2)log =7
eters. We find that the models give similar shapes and nearly
identical values for the drag whe@ is the same in all of which leaves) continuous on the boundary of the unit disk.
them. ForQ fixed, changing the wall spacing gives only a Figure 14a) shows an example of the wall-bounded flow
small perturbation to the solution, except in the special caséor H=9/5.15, corresponding to the longest fiber used in our
of very closely spaced walls. experiment. The pressure field tends to different limiting val-
In these extended models we specialize to the symmetriges upstream and downstream, but is otherwise similar to
case of a fiber clamped at its midpoint and held perpendicuthat of the Helmholtz case. Because of the lower wake pres-
lar to the flow. The effect of asymmetry is described in Ap-
pendix B for the Helmholtz model, and the effect of asym-
metry in the extended models may be deduced from the()
results there. This allows us to model only half of the flow
domain, in which case the flow angteis known on a con-
nected part of the boundary, and the conjugateknown on
its complement. Hence the boundary value problemQor
may still be solved using the Schwarz reflection principle.
By contrast the asymmetric case involves a mixed Riemann—
Hilbert problem, which adds some complications to the nu-
merical method.

(79

(b)

FIG. 14. (a) Contour plot of the choked-flow pressure field f@r=54 and
H=9/5.15. The pressure is scaled to equal 1 at the stagnation point and 0 on
the free streamlines. A small region in which the pressure in negative is

To examine the effect of increased momentum tranSfe[;ontained between the leftmost O contour and the fiber, showing the non-
monotonic behavior of the pressure due to the oscillatory second-order term.

FO _th_e fiber due to walls, we construct _ﬂOWS bounded b)_’ tWQ(b) A comparison of the Helmholt£l) and choked flow(2) solutions for
infinite parallel walls placed symmetrically about the fiber, 5..=3. The wall for(2) is shown, andH=2.7.

A. Wall-bounded infinite wake model
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a)
10°

FIG. 15. The choked-flow drag curvébnes covered by small symbgls
compared to the Helmholtz drag cur¢solid line) and the four sets of
experimental data shown in Fig(8. (a) H=9/1.95, corresponding to the
most rigid fiber €=2000) used in the experimenth) H=9/1.79, E
=2.8;(c) H=9/3.3,E=2.8; and(d) H=9/5.15,E=2.8.
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FIG. 16. The symmetric Riabouchinsky flow domain in thand¢ planes.
The ordinatd  of A is a free parameter set by the wake presgpre

mass flux through the channel far upstream and far down-

stream, and usingns=7.v1—Q, gives Hn,=2dy,
=2d7.,,y1—Q, which with the previous scaling implied

71/3 . .
sure, the fiber deflection is significantly increased over thaf” 7= - 1Nis gives the rate of decay of the back pressure

in the Helmholtz case with the same upstream velocity. Fig

ure 14b) shows this comparison fop..= 3.

due to the wall effect for the flexible fiber.

Because we have a used four different fiber lengths irfP- Riabouchinsky mirror-image wake model

the experimenfsee Fig. 80)], we compare the drag versus

In order to freely vary the wake pressure, we must

7. in the choked flow model for each fiber separately. Inchoose a different flow geometry. For the infinite waRe

Fig. 15 we see that the effect of the walls is to shift the drag=0, but for a finite wakeéQ <0 and the free-stream speed is
curve significantly leftward from the Helmholtz curve. higher than the upstream flow speed. Several simple finite-
Hence the addition of walls to the Helmholtz model canwake models have been developed, having many properties
provide a large increase in drag. In all cases the increase ia common. Each model take® as a free parameter and
not sufficient to close the gap with the experiment. Thiseach yields realistic pressure distributions wi@ris set to
might be expected because the experimental wake is finiteonform with a particular experimefit.Also, the flow in

and thus should have a still lower back pressure than theach case tends asymptotically to that of the Helmholtz wake

choked flow.

solution asQ—0. The simplest and best-known of these

We note two other main results for the bending fiber in amodels is the mirror-image model of Riabouchinékwhich
choked flow. The first is that the choked flow drag curvewe adopt.

converges to the Helmholtz curve as— . This is because

The conformal mapping planes are shown in Fig. 16.

as the fiber approaches the folded limit, the streamlines nedathe system of equations is derived starting from

the fiber become more parallel to the walls. Hence the flow
converges to that of the corresponding Helmholtz flow, as the

w=a((({+ 1) 1(1g—1Ng))2+1) 22, (76)

deviation required to meet the no-penetration boundary conwhere il is the location of the point at infinity in the
dition at the wall becomes smaller. The second result is thai-plane, and is set by the choice ©f

the wake pressure coefficie@t 7, Y as 7..— . This may

Figure 17 shows the drag versys for three choices of

be explained using a conservation-of-mass argument. To b&, and the same data plotted versps, in which case the
gin, there is a range starting at the fiber end over which theurves are nearly identical. This is because for fixgdand
free streamlines approximate the self-similar parabolic shapdifferentQ, the flow near the fiber is nearly independent of

of Helmholtz streamlines for the samg,. This range in-

the differing values ofy., far upstream. Thus, for fixegs,

creases in length ag,,—o0, but is eventually matched to a the pressure jump distribution is nearly identical. As Fig. 17
subsequent region in which the free streamlines become ashows, the effect of varyin@ for fixed 7.. is simply to shift

ymptotically parallel to the walls. The limiting distanck

the Helmholtz drag curve by a factor fL—Q in 7... We

between the free streamline and the wall in this region igind that the valu&) = — 6.8 corresponds to the-shift of 2.8
apparently set by the distance between the free streamlines retween the Helmholtz drag curve and the experimental data
the self-similar parabolic region. This wake width has theshown in Fig. 8b). For wakes in standard flow tunnels, the
samey,, *® scaling as the fiber profile width, since both arerange—2<Q<0 is typical®® our value of—6.8 is probably

asymptotically parabolic. Thud —2d~ 7, . Equating the

caused by soap film effects such as surface tension.
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FIG. 17. Drag vsz. for Riabouchinsky solutions witlQ=—6.84, —1,

—0.1, and O(Helmholtz moving from left to right. For eack the data are  F|G. 19. The wall-bounded mirror-image flow domain in thew, and ¢
shown for the maximum intervals in which the solutions existse) Drag planes.

vs 7, for the same solutions.

1-AD)

W=alogl+—A(§),

An inconvenience with this particular choice of model is
that for each value of, the mirror image flow solutions do
not exist above a critical value of... As this value is ap- A(§)= (&= 1)I(1—secye)(£7+1),
proached from the below, the mirror-image fibers approachyhere the fiber length fixea. The two free parametergs
one another and touch at the critical valsee Fig. 18 This  (jocation of the midpoint of the fibgrand yg (upstream in-
is an artifact of the mirror-image model; other wake models finity) are set byQ and the wall-spacingi. The stagnation
such as the several listed by upresumably would not point singularity is now subtracted off by
share this difficulty. However, the characteristics of the v
mirror-image solutions relative to those of the Helmholtz QO=(—i/2)Ioge 5_1_
flow are clear enough from the range in which solutions ex- e'78—¢
ist. In particular, Fig. 17 shows that the effect of a constant |, Fig. 20 we compare a solution from this combined
back pressure is to shift the drag data, leaving#ff€ scal- el with one from each of the previous two flow models:
ing intact. The scaling also_ holds asymptotically for a non-; ~hoked-flow solution with the same valuesspf, H, and
constant back pressure which tends to a constant-as>. 5 and an unbounded Riabouchinsky solution with the same
values of ., and Q. The fiber deflections are nearly the
same in all three solutions and the drag values agree to

Finally, we compute symmetric wall-bounded flows with within 0.1%. This suggests that the flow near the fiber is
a mirror-image wake while allowing a nonzero wake pres-essentially determined by.. andQ. When these parameters
sure(see Fig. 19 The corresponding map is are set, the presence or absence of walls and/or a finite wake

does not seem to change the near-body flow significantly.

(77)

(78)

C. Wall-bounded mirror-image wake model

P Aadl T
o S
” -~

A
2oty T3
[ -~ ‘] ~

FIG. 18. Riabouchinsky solutions f@p=—6.8 and7,,=0.65, 1.77, and  FIG. 20. A comparison of the unbounded Riabouchinsky fl@w, wall-
3.56, increasing from flat to bent. Solution fiber collides with the mirror- bounded Riabouchinsky flouB), and choked flow(C). For (B) and (C),
image fiber aty,.=3.6. H=9/5.15. For all three flows;,,= 3.4 andQ= —4.8.
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These models have shown that the fiber deflection anihtegro-differential equation ori0, r] with the free-end
drag are changed by wake pressure to become very close boundary conditions, which we have not written out in this
the Helmholtz solution with speed given by, instead of work because it is rather complicated. The second formula-
7. . For the typical cases of a wake pressure coeffici@nt tion is that of solving Laplace’s equation fél in the unit
which is nearly constant, or tends to a constant or zero adisk with the nonlinear force balance as the boundary condi-
flow speed is increased, ap”® drag scaling is expected. tion relating the real and imaginary pamsand 7. This is a
Otherwise the dependen€¥ 7..) can be used to determine type of nonlinear Riemann—Hilbert problem, and theoretical

75, at which value the drag given by the Helmholtz curve isresults have been obtained for other boundary-value prob-

approximately obtained. lems from fluids and elasticity using this type of formulation
(see Wegefb).
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elastic bending forces. An important consequence is a reduc-
tion from rigid-body U? drag scaling to aJ*® behavior. ~APPENDIX A: COMPUTATIONAL METHODS
Using the force balance equation we identified a similarity  Aside from certain cases of straight or circular bodies, a
length-scale~ »~?2 By constructing an asymptotic expan- free-streamline flow cannot be solved analytically in closed
sion in the rescaled fiber length, we found that the leadingform. Several computational methods exist for determining
order fiber and wake shapes asymptote to the same parabalie flow past a fixed body, or for solving the inverse
when distances are scaled p¥/%. Thus the fiber tends to the problem!®#°Ours is based on that of Hureatial,** which
boundary of the wake induced by the shrinking “tip region” has a convenient formulation in terms of the tangent angle of
as n—. The first correction to this term has an oscillatory the body contour as a function of arclength.
character and decays @5 ! in magnitude. Using the form of Equations (34)—(36) form the basis of an iterative
the first two terms in the expansion we showed that the tigcheme. Given an initial guess fé¢o), we computér and
region gives the dominar@(»*?) contribution to the drag. s, and use the updated values to recomputdll functions

One consequence of the leading-order fiber shape is that trg\?e represented on the same equidistant me$B,ar. Thus
profile width scales ag~*%. This shows that the drag reduc- we solve a nonlinear system of equations ’

tion is due in equal parts to a smaller profile width and to a
more streamlined shape F(9)=6—F6)=0. (A1)

The main discrepancy between the simplg#timholtz ) R
wake model and experiment is that in the experiment, the€réF symbolizes the computation éfusing updated and
transition to self-similar behavior occurs at a smaller value ofr. We iterate untilF(6)<e, with e=10""* for the results
the control parameter. Motivated by previous wake-flowdiven in this paper. At each step E@1) is solved using a
studies, we incorporate a constant nonzero wake pressur@yasi-Newton method, the damped Broyden metfiadhich
and show that this causes a uniform shift of the drag data, a&8hows superlinear convergence so long as the Jacobian ma-
seen in the experiment. The contribution of the walls to thelfix at the solution is nonsingular.
wake pressure is shown to be significant as the fiber bends, The initial guess is crucial for obtaining convergence,
but does not account for the entire mismatch between theorjarticularly for largen. Since we are interested in the behav-
and experiment. The missing part of the wake pressure i®r over a large range of), we begin by solving forp<1
presumably provided by surface tension effects in the soaffor which convergence is rapid, starting from the flat plate
film as well as the process of shedding vorticity into theshapg, and then take small steps to larggrextrapolating
wake. In future work we shall consider the details of howfrom the previous solutions to form an accurate initial guess.
this occurs for a flexible body in a high-Reynolds-numberThe Jacobian matrix is initialized using divided differences
flow. of F evaluations, and the inverse is computed explicitly once

We have not addressed mathematical questions of exigt the start of the Broyden iteration. Updating the Jacobian
tence and uniqueness for the system of free-streamline/beali@quires only matrix-vector multiplications.
equations. It is useful nonetheless to place the mathematical Each computation oF involves three separate compu-
problem in the context of more general theoretical work andations, one each fé, s, andd. The first uses two FFTs and
to this end we note that our problem can be formulated coninvolves O(n logn) work; the last two involveD(n) opera-
cisely in two ways. The first, which we have used in thistions. Thus the total work foF is O(nlogn). The overall
work, consists of substituting for in the force balance with time is dominated by the evaluations ofF needed to ini-
the Hilbert transform o#, and then changing variables from tialize the Jacobian matrix in the Broyden method. The itera-
s to 0. The problem may then be reduced to one singulation typically converges in 10-20 iterations. For 1024,
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FIG. 22. (a) Contour plot of the pressure field for a fiber clamped at one-
quarter length, perpendicular to the floils) Solid line: The universal shape

0.263
10 oo S T 1 for fibers clamped at 3/5 length with an orientation of 45° to the oncoming

102 10° 10* 10° 10° flow. The clamp point is marked with an X. Dashed line: The symmetric
n universal shape, shown for comparison.

FIG. 21. The convergence @f, 7%° for the mesh sizes= 256, 512, 1024,
2048, 4096, shown starting from the bottom. The uppermost p@%8a  each step of the computation while the overall efficiency is
are forn=256 but with a highefsquare-rootgrid density at the tip. maintained.
The solutions have been compared with symmetric and

asymmetric flows past plates shown in the Appendix of
running in Matlab 6 on a Sun Ultra-80, the code requires aBirkhoff et al,!” and with the sail solutions shown by
few hours to compute solutions up to the valueyait which  Dugan®® In each of these cases agreement was obtained to
the solution can no longer be resolved, about i@ this  the highest precision given by the previous results.
choice ofn.

Once’d is known, we can obtailf) everywhere in the APPENDIX B: ASYMMETRIC EIBER
upper half disk using Eq21), and then compute the velocity
and pressure field. Integrating E@.7) (for the Helmholtz

flow) we obtain the physical location of all points in the > o )
upper half disk, including the shape of the free streamlinesStagnation point in th¢-plane to vary fromm/2 (see Hureau

41 :
which lie on the real diameter. Integrating the pressure jumt &), 0one may compute asymmetric flows. We have used
along the fiber determines the drag. this method to compute the shape of a fiber clamped at any

In Fig. 21 we show the convergence @f, 72 for the point along its length, held at any orientation relative to the
mesh sizes1=256,512,1024,2048,4096. Letting, be the free stream. We find the symmetric case to be representative
value of 7 at which the drag deviates from the=4096 of these cases as far as the asymptotic s_cal_ing of shape and
value by a specified factor, we estimate thatn3. This drag. For cases in which the sqpport pomt is closer to one
indicates that the minimum grid size needed to resolve th&"d than the other, the two scaling regimes are separated by
solution for a particular value of scales ag;3. This hap-  @n mterm_edlate interval isp in which the longer end exgeeds
pens to be the inverse length scale of the tip region, giving"® Pending length but the shorter end does not. In Fig)22
further evidence that the tip region controls the flow. In the'Ve& Show such a case, the fiber clamped at one-quarter length
same vein, Fig. 21 suggests that a 256-point grid with dor »=10. In each of these cases of asymmetric clamping,

square-root density of points near the tip is approximately athe numerical solutions ag_ain show self-similar behavior
accurate as the=2048 uniform mesh. In addition to resolv- When rescaled by the bending length, but now converge as

ing the tip region, it may also be important to resolve the7 % to one of a two-parameter family of universal shapes,

component of the next-ordey~* term with growing wave parametrized by clamp position and orientation. In Figb22
number 33723 in s, even as the term decays for large we show the universal shape for the clamp position at 3/5

The methods for the extended models are similar, excegendth, with an orientation of 45° to the oncoming flow.
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