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Recent work in bio-fluid dynamics has studied the relation of fluid drag to flow speed for flexible
organic structures, such as tree leaves, seaweed, and coral beds, and found a reduction in drag
growth due to body reconfiguration with increasing flow speed. Our theoretical and experimental
work isolates the role of elastic bending in this process. Using a flexible glass fiber wetted into a
vertical soap-film flow, we identify a transition in flow speed beyond which fluid forces dominate
the elastic response, and yield large deformations of the fiber that greatly reduce drag. We construct
free-streamline models that couple fluid and elastic forces and solve them in an efficient numerical
scheme. Shape self-similarity emerges, with a scaling set by the balance of forces in a small ‘‘tip
region’’ about the flow’s stagnation point. The result is a transition from the classicalU2 drag
scaling of rigid bodies to a newU4/3 drag law. We derive an asymptotic expansion for the fiber shape
and flow, based on the length-scale of similarity. This analysis predicts that the fiber and wake are
quasiparabolic at large velocities, and obtains the new drag law in terms of the drag on the tip
region. Under variations of the model suggested by the experiment—the addition of flow tunnel
walls, and a back pressure in the wake—the drag law persists, with a simple modification. ©2004
American Institute of Physics.@DOI: 10.1063/1.1668671#

I. INTRODUCTION

The need to withstand large fluid forces is common
among sessile organisms, and serves as an important orga-
nizing principle for understanding their morphology. For ex-
ample, the shape and length of seaweed plants have been
shown to vary in accordance with the range of flow speeds
experienced in coastal waves.1 A tree’s roots, trunk,
branches, stems, and leaves can be considered a compound
biomechanical structure built to a criterion of size and stiff-
ness determined by local wind conditions.2 In recent work,
Vogel has studied the drag and shape reconfiguration of
leaves in typical wind speeds~up to 20 m/s!. Rather than a
rigid-body U2-drag law, the drag grew more slowly as the
leaves rolled up into conical shapes that tightened with in-
creased wind speed.3 In general, the reconfiguration due to
stretching, twisting, and bending allows a reduction in drag
compared with that on a rigid body in the original configu-
ration for two main reasons:~i! the profile area presented to
the flow becomes smaller, and~ii ! the body assumes a more
streamlined shape, which decreases fluid pressure forces for
a given profile area.

These biological studies are becoming more quantitative,
sometimes involving measurements of elastic moduli of or-
ganic materials and using simple models to understand their
behavior in fluid flows. The current models of which we are
aware4,5 capture only the response of the body to a predeter-

mined fluid flow, ignoring the change in the flow itself due to
body reconfiguration. Thus the fluid dynamics of the interac-
tion is limited to theU2 drag law, possibly modulated by an
empirical profile-width factor. This limitation is understand-
able. As intricate as the mechanical structure of a single tree
leaf may be, the flow structure it induces as it folds up in the
wind is still more complicated.

Although drag reduction due to flexibility is the focus of
this work, the interaction of organisms’ flexible structures
with the fluids they inhabit serves purposes beyond mere
endurance. Activities such as feeding and locomotion depend
upon the creation of specific flow patterns around a moving
and deforming body.3 An understanding of the simple flow-
body interaction in this work is useful as a preliminary step
to studying more complicated flows around flexible bodies.
Previous work has studied such flow-body interactions in
terms of manmade objects, such as flags,6,7 parachutes,8 and
sails.9,10

Here we examine experimentally and theoretically the
interaction of a high-speed two-dimensional fluid flow with a
flexible surface—a ‘‘1D leaf in a 2D wind.’’ Experimentally,
this flow is realized using a flexible glass fiber wetted into
and held against a flowing soap film. Soap film is a conve-
nient experimental system described by two-dimensional hy-
drodynamics in many aspects.6,11–14Our experimental setup
allows us to simultaneously measure the flow velocity, ob-
serve the resultant fiber shape and flow structures, especially
the wake, and to measure the fluid drag on the fiber. We
identify a transition in a dimensionless flow speed beyonda!Electronic mail: albens@cims.nyu.edu
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which fluid forces dominate the fiber’s elastic restoring
forces, yielding large shape deformations and greatly re-
duced fluid drag. This is described in Sec. II.

The relative simplicity of this high-Reynolds-number
flow makes it amenable to fluid dynamical modeling. Our
model considers the interaction of the fiber, taken to be an
inextensible, elastic beam, with free-streamline flows. This
captures several main elements of the flow-fiber system: the
deformation of the fiber by flow forces, the rearrangement of
the flow by fiber deformation, and the effect of a nearly
stagnant wake behind the bent fiber.

Free streamline theory was originated by Helmholtz15

and Kirchhoff16 to describe wake flows behind flat plates.
Here we outline the aspects relevant to our model, which is
described in Sec. III. The flow field is taken as incompress-
ible and irrotational outside of a stagnant wake, which has a
constant pressure equal to that at infinity. This is also the
pressure on the free streamlines which separate from the
body and enclose the wake. Methods of complex variables
are used to determine the location of the free streamlines and
the flow field for an obstacle whose shape is known. Some
analytical properties of free-streamline flows, including re-
sults on existence and uniqueness for a variety of body and
free-streamline geometries, are reviewed in Birkhoffet al.17

In reality, the wake flow is characterized by significant
vorticity and turbulence, arising in part from the instability
of the free shear layers that the free streamlines are intended
to model. However, the time-averaged flow and pressure
fields can have a relatively simple structure,18 and good
agreement with experiment has been found in modifications
of the infinite-wake~Helmholtz! model which assume a con-
stant wake pressure lower than that at infinity.19 Two other
simple and widely-studied wake models are the constant-
vorticity Prandtl–Batchelor model,20 and the wake-source
model of Parkinson and Jandali.21 The latter has also
achieved good agreement with experiment, as far as the pres-
sure distribution on the body. However, the Helmholtz wake
is a plausible candidate for the asymptotic limit of the lami-
nar wake flow as the body-scale Reynolds number Re→`,
and is consequently used in preference to the other two as a
basis for theories incorporating the triple-deck theory of
boundary-layer separation.22,23 Thus the free streamline
model remains widely used for separated, high-Re flows,
which are difficult to analyze by other means.

In Sec. IV we analyze numerical solutions of our model.
There are three striking features:~i! a transition velocity be-
low which the drag shows a rigid-bodyU2 drag scaling, and
above which the fiber shows large deformations and a much
reduced drag growth;~ii ! a new, much-reduced drag scaling
of U4/3, asymptotically beyond this transition;~iii ! the emer-
gence of self-similar fiber shapes, based on an intrinsic
length scaling asU22/3. This is the length scale of the
sharply-bent ‘‘tip region’’ of the fiber. These results suggest
that the drag scaling is the product of theU2 pressure scaling
and theU22/3 length-scale over which it acts. This length
scale decreases more rapidly than the profile width, which is
the relevant length for rigid-body drag. Here the profile
width decreases only asU21/3, as shown in Sec. V. We com-
pare the fiber shapes and drag data with those of the experi-

ment, and find good agreement when a constant multiplica-
tive shift in nondimensional flow velocity is assumed. This
shift arises naturally when we vary the wake pressure in our
model, as discussed below.

In Sec. V we derive several mathematical properties of
the solutions, including those seen in the numerics, through
an asymptotic analysis. First, we obtain an expansion for the
drag whenU is small, which is a regular perturbation of the
flat-plate solution. Then we consider largeU, and obtain the
U22/3 length-scale of similarity from the force balance. Us-
ing rescaled equations, we show that the dominance of the
tip region implies that the universal fiber shape is quasipara-
bolic, and that the free streamlines asymptote to the same
parabola. We then determine the magnitude of the first cor-
rection to the universal shape, and also find that it has an
oscillatory form, with a characteristic wavelength that scales
with the bending length. Using the form of the universal
solution and that of the first correction, we show how the
U4/3 drag scaling arises from the dominant tip-region contri-
bution.

With a detailed understanding of the basic model, Sec.
VI revisits discrepancies in the comparison of model and
experiment in Sec. IV, in terms of the wake pressure. The
wake is the variable part of the free-streamline model. Since
the wake flow involves the complicated interaction of vortic-
ity in the presence of turbulence, the theory is incomplete.
There is not yet a consensus on how to predict the most basic
aspects of the wake in steady flows past a flat plate or cyl-
inder, such as its size and pressure distribution; some ap-
proaches are reviewed by Tanner.24 One empirical fact is that
the pressure in the near wake, that region within a body
length of the body itself, is nearly constant for a given flow,
and equal to that on the separated streamlines alongside the
near wake. This is because the near-wake flow is practically
stagnant. Knowledge of this constant is then sufficient to
determine the pressure drag on the body, given the pressure
distribution on the front face from the inviscid flow theory.
Hence a number of free-streamline models have been devel-
oped to incorporate this constant pressure, normalized by the
dynamic pressure, as a free parameter.25

Since experiments are conducted in finite flow tunnels,
another important issue in these studies is the effect of the
tunnel walls on the flow. Even distant walls cause a de-
creased wake pressure, resulting in a significant increase in
drag over the unbounded case in flow models.26

Section VI considers the effects of walls and wake pres-
sure through three related models, based on the Helmholtz
model. The first model adds symmetrically-spaced flow-
tunnel walls, which are seen to dramatically increase the
fluid loading on the fiber. The second uses a finite Riabouch-
insky mirror-image wake27 in an unbounded flow, which al-
lows direct variation of the wake-pressure. The third com-
bines the effects of walls and variable wake pressure, and is
readily understood in view of the first two. The main result
of these additional models are that theU4/3 drag law persists,
except thatU is now the velocity on the free streamline of
the fiber, different in general from that at infinity upstream.
This implies the same drag scaling with respect to the veloc-
ity upstream when the wake pressure coefficient tends to a
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constant asU→`, which is the most common case for rigid
bodies in experiments.25

The numerical method involves the solution of a coupled
system of three equations:~i! a boundary-integral equation
relating the flow speed to the fiber shape in a conformal-
mapping plane,~ii ! the relation of fiber arclength to a
conformal-mapping parameter, and~iii ! the force balance,
which gives another relation between fiber shape and flow
speed. This nonlinear system is solved using a quasi-Newton
method, made efficient by using a pair of fast Fourier trans-
forms to evaluate the integral equation. The details are given
in Appendix A.

In Appendix B we present Helmholtz-wake solutions to
the more general problem in which the fiber is held against
the flow at an arbitrary point along its length, with an arbi-
trary orientation to the flow. We find that again the solutions
tend to a universal shape, one of a two-parameter family of
shapes, parameterized by the position and orientation at
which the fiber is held.

This work expands upon a preliminary study of the flow-
fiber problem by Alben, Shelley, and Zhang.28 While we
present further experimental data here, we have especially
deepened our analytical understanding of this class of mod-
els, through both numerical and asymptotic analysis, and
through their extensions that incorporate other physical ef-
fects.

II. EXPERIMENT

The experimental setup is illustrated in Fig. 1. A stream
of soapy water~1.5% soap concentration in deionized water!

spreads into a vertical film between two nylon fishing lines
that are parallel and under tension. The soap film flows
downward under gravity to the receiving tank 2 m below the
nozzle. A quasisteady planar flow is thus obtained.6,11–14

The average flow speed is regulated by the nozzle at the
bottom of the upper reservoir, and the flow velocity of the
film is measured using a laser Dopper velocimeter~LDV !. In
our case the flow is seeded with TiO2 particles~refractive
index n52.7), which are small enough to be passively ad-
vected with the flow. The LDV measures their speed at the
vertical midline of the soap film tunnel, 80 cm below the
upper reservoir nozzle, where the flow speed is nearly uni-
form in the vertical direction. The tunnel width is 9.0 cm.
Given the flow speed and tunnel width, the volume of the
soapy water collected over a fixed time interval yields a di-
rect measure of the average film thickness, which varies from
1 to 3 mm as a function of the flow rate.

Into this background flow, at a position 7 cm below
where the flow speed is measured, we insert a thin flexible
glass fiber~bending rigidityE52.8– 2000 erg cm, depending
on fiber thickness; lengthL51 – 5 cm), which is straight in
the absence of loading. The fiber is clamped at its midpoint,
and held perpendicular to the background flow direction. The
flow wets the bare glass fiber so that it does not cause the
film to rupture, and surface tension forces hold the fiber sta-
bly within the quasi-2D plane of the soap film. A short time
after insertion the flow-fiber system equilibrates, at which
point the fiber exhibits a steady deflection and the flow forms
a wake behind it. The fiber bends to an extent determined by
its mechanical properties~length and elastic moduli! and the
flow speed, and the resulting flow configuration results from
the balance of mechanical stresses in the fiber with the fluid
stresses on its surface. The fibers used in the experiment
show no plastic deformations after the fluid loading.

The soap film is ideal for visualizing the dynamic struc-
ture of such a 2D flow. The film is illuminated by a 90-W
low-pressure sodium lamp, which creates an interference pat-
tern of monochromatic light reflected from the front and rear
surfaces of the soap film. Bands of light and dark fringes
show submicron variations in film thickness, and qualita-
tively capture the structure of the flow field. Figure 2~a!
shows the flow pattern around a rigid fiber~rigidity

FIG. 1. The layout of the experiment. A glass fiber~F! is inserted into a
flowing soap-film tunnel~partly shown!. The fiber is supported by a thin
stainless-steel rod~S!, which is clamped at one end. Fluid drag force acting
on the fiber deflects this support slightly downwards. After a calibration
using a known force, the drag force is determined by measuring the dis-
placement of a laser beam~L! reflected from a small mirror~M1! mounted
on S and then from a fixed mirror~M2!. The rigidity of the support and the
distances between the mirrors and the ruler~R! determine the overall sensi-
tivity of the measurement. A video camera~V! records the position of the
laser beam spot on the ruler, which gives the force measurement. The soap
solution is seeded with TiO2 particles, allowing the flow speed to be mea-
sured by a laser Doppler velocimeter~not shown!, aimed at the midline 7 cm
above the filament.~Objects and distances are not drawn to scale.! Figure
reproduced from Alben, Shelley, and Zhang~Ref. 28!.

FIG. 2. Fibers in the soap film shown with interferometry. Monochromatic
light from a low-pressure sodium lamp reflects from the two surfaces of the
film, creating an interference pattern which shows small variations in film
thickness.~a! Flow past a rigid fiber, bending rigidityE52000 erg cm.
~b!,~c! Flows around a flexible fiber of lengthL54.1 cm and rigidityE
52.8 erg cm, at flow speeds of 69 cm/s~b! and 144 cm/s~c!.
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E52000 erg cm), where even the highest attainable flow
speed cannot significantly bend the fiber. Figures 2~b! and
2~c! show the flow past a more flexible fiber (E
52.8 erg cm) at two different flow rates.

The wake behind the fiber is dominated by two large,
slowly-rotating eddies. These are separated from the rest of
the flow by free shear layers, which become more unstable as
the flow speed increases. The Reynolds number of the main
flow is O(104), based on upstream flow speed and fiber
length. The wake has a flow speed about two orders of mag-
nitude less than that in the main flow.

The fiber is mounted at its midpoint on top of a thin
supporting rod~stainless steel, 0.3 mm in diameter! that
passes through the soap film near the flow stagnation point in
the fiber wake, and thus has negligible effect on the flow. The
supporting rod has a second role, as a linear ‘‘spring’’ which
measures the drag on the fiber in the following manner~see
Fig. 1!. The rod is clamped at one end to a fixed platform,
and at the other end is attached a small square mirror~10 mm
side length; glass coverslip 0.06 mm thick!, with its face
perpendicular to the supporting rod. The drag force on the
fiber deflects the support slightly downward, yielding a
spring force that balances the drag. Because the displacement
is small, this force is linearly proportional to the deflection of
the support. The deflection is proportional in turn to the dis-
placement of a He–Ne laser beam spot. The spot is formed
when the beam is reflected from the mirror attached to the
support to a second, stationary mirror, and then directed to a
ruler. Lengthening the path of the beam amplifies the dis-
placement of the laser beam spot on the ruler, which in-
creases the resolution of the deflection measurement. De-
pending on the bending rigidity of the support, the distance
from the fiber to the support’s clamped end, and the length of
the light path, the value of the effective spring constant~ratio
of load to light-spot-displacement! ranges from 0.2 to 10
dyn/mm. It is set in correspondence with the maximum drag
expected for a given flow, and is calibrated using small
known weights. In this way we measure the total drag force
as a function of flow speed.

Figure 3~a! shows the drag data for two fibers used in the
experiment. The rigid fiber is not deflected appreciably by
the flow at any speed, and the drag divided by fiber length
grows asU2 in accordance with classical theory. The flexible
fiber has the same drag per unit length at low flow speeds,
where it too is not significantly deflected by the flow. But as
the flow speed increases, the drag grows much more slowly
than in the rigid case because the fiber bends, presenting a
different shape with a smaller profile width. We will subse-
quently explain this drag behavior in terms of a model based
on the underlying fluid-body interaction.

In the following sections we model this flow as 2D, in-
compressible, and irrotational outside of the wake. Now we
examine the validity of each of these assumptions. The two-
dimensionality and incompressibility of soap film flows have
been examined in connection with their use for experimental
studies of 2D turbulence.12,29 The theory finds that 2D in-
compressibility results when relative thickness variations are
small. Time-dependent thickness variations due to the elas-

ticity of the soap film are small when the flow speedU is
small compared to the speed of longitudinal elastic~Ma-
rangoni! wavesvL , which is '10 m/s for our soap films
using the formulas derived by Couderet al.11 Such time-
dependent variations are thus expected to have a small effect
at all but the highest flow speeds used in our experiment.
However, a steady thickness profile variation may be seen in
the interference fringes of Fig. 2, where the difference in
thickness between neighboring light and dark fringes is 0.11
mm, one-quarter wavelength of sodium light~in water! and
approximately 10% of the mean soap-film thickness. At the
higher flow speeds, the fiber lies across multiple fringes, pre-
sumably with a monontonic thickness change starting from
the midline and moving outward. The presence of the fiber
also has an effect on the soap film thickness in its vicinity.
Such variations are nontrivial to measure and model, so for
simplicity we use only the average soap film thickness in this
work. Because the fiber blocks the flow, we might expect an
increased soap-molecule concentration on its upstream side.
One would therefore expect a decrease in surface tension
there, which would decrease the pressure drag on the fiber.
However, we are unable to make local measurements of sur-
factant concentration near the fiber, so it would be difficult to
quantify such forces. For simplicity, we also neglect the ef-
fect of variations in soap molecule concentration. We none-
theless expect that the fluid pressure forces would be pre-
dominantly set by the high-speed flow outside of this slower-
moving region of increased soap concentration near the fiber.
Despite these approximations, we shall see that our model
provides a good rationalization of the data.

Irrotationality outside the boundary layer and wake is
assumed to be a good approximation to the extent that it
holds for the background flow, in the absence of the fiber.
Figure 4 shows the velocity profile across the soap film tun-
nel, as a function of the velocity at the midline of the tunnel.
We see that a background shear becomes significant for mid-

FIG. 3. Comparison of drag data from experiment and model.~a! Drag per
unit fiber length versus flow velocity for a flexible fiber (L53.3 cm; circles!
and a rigid fiber (L52.0 cm; squares!. ~b! Log–log plot of drag data in~a!,
nondimensionalized asD5CDh2; also shown are data for two fibers with
the same rigidity as the flexible fiber in~a! but different lengths~plus signs,
L51.8 cm; triangles,L55.2 cm). The solid line is the values ofD in the
model, which are well-fitted by power lawsC1h2 for h!1 andC2h4/3 for
h@1, as shown by dashed–dotted lines. HereC152p/(p14) and C2

51.87 ~from a numerical fit!. The short-dashed line is the solid line shifted
by a factor of 2.8 inh, to correspond with the shift in the shape comparison.
This shift compensates for the back pressure in the wake, as explained in
Sec. IV. The vertical marks indicate, for each of the four data sets, the value
of h at which leakage begins, corresponding to flow speedU5220 cm/s.
The leakage does not cause any significant deviation from the shifted drag
curve. Figure adapted from Alben, Shelley, and Zhang~Ref. 28!.
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line velocities.200 cm/s, but for the flexible fibers which
are our primary concern, the deflected fiber occupies only
'2 cm at the center of the soap film at these velocities.
Hence irrotationality of the background flow is a reasonable
approximation in the neighborhood of the fiber, except at the
highest flow speeds.

It should be noted that the eigenfrequency of vibration of
the support,'3 Hz, is far from the frequencies of vortex
shedding,'40 Hz. If these frequencies were close to each
other, the vortex shedding would be expected to cause severe
vibrations. The diameter of the glass fiber ranges from 33 to
200mm in our experiment, which is'20– 100 times thicker
than the soap film. Upon insertion the fiber locally blocks the
flow, so that nearly all of the fluid impinging on the fiber
flows around the ends rather than around the circumference,
in the out-of-plane direction. But at the highest flow speeds,
it is observed that the flow ‘‘leaks’’ at various places along
the fiber in the out-of-plane direction. This may result in a
smaller measurable drag compared to a fully in-plane flow,
because less of the fluid momentum is transferred to the fi-
ber. Experimentally, we face a dilemma. In order to prevent
such leakage, one would like to apply a hydrophobic coating
to the fiber. Unfortunately, such a coating makes the soap
film very susceptible to rupture because it does not wet the
fiber; fibers with a plastic coating are relatively hydrophobic
compared with bare glass fibers. Fortunately, for flow speeds
below 220 cm/s, leakage is rarely observed, which supports
the 2D assumption of our model. We also find that as flow
speeds exceed 220 cm/s, there is no noticeable deviation in
the drag data of Fig. 3~b! from the data at lower flow speeds.

At the highest flow speeds we find that the force mea-
surement becomes more scattered, which we believe has
three main causes:~i! unsteady near-fiber flow due to leakage
to the out-of-plane direction,~ii ! unsteady vortex shedding
that contributes an unsteady drag, and~iii ! the increasing
influence of longitudinal Marangoni waves.11

III. MODEL

Outside the wake we take the flow to be an incompress-
ible two-dimensional potential flow, described by the equa-
tions:

]u

]t
1~u•¹!u52

1

r
¹p, ~1!

¹•u50; ¹'u50. ~2!

Because the flow is also steady, we have Bernoulli’s equa-
tion,

p1 1
2 ruuu25 1

2 rvs
2; u5¹f, ~3!

where f is the velocity potential, a harmonic function.
Within the wake, we assume a stagnant flow, with a constant
pressure. The boundary conditions for the flow outside the
wake are then

u"n̂50 on the fiber, ~4!

uuu5vs on the free streamlines, ~5!

wheren̂ is the normal to the fiber, andvs is the constant flow
speed on the free streamlines. Condition~5! is a consequence
of Bernoulli’s equation and the constant pressure in the
wake, which is also the pressure on the free streamlines. For
the Helmholtz wake modelvs equals the speed at infinity,
and is larger for the extended models in Sec. VI.

Now we relate the fiber shape to the fluid pressure by the
Euler–Bernoulli beam equation.30 Since the fiber’s length is
two orders of magnitude greater than its thickness, which is
in turn two orders of magnitude greater than the soap film
thickness, the fiber behaves as a beam deflected in the plane,
without torsion. Locally the beam equation takes the form

2~Tŝ!s1~Eksn̂!s5 f @p#n̂, ~6!

where subscripts denote differentiation. Heref is the soap
film thickness,@p# is the pressure jump across the fiber,T is
the line tension,E the bending rigidity,k the fiber curvature,
n̂ the unit normal vector, andŝ the unit tangent vector along
the fiber. The two terms on the left represent the tensile and
elastic forces on the fiber, respectively.

We assume free-end boundary conditions,

T5k5ks50 at the fiber ends, ~7!

which result from the vanishing of extensional force, trans-
verse shear force, and bending moment, respectively, at the
fiber ends. The fiber is also clamped perpendicular to the
flow at the midpoint, so that the tangent angle is set top/2
there.

To simplify we decompose Eq.~6! into tangential and
normal components:

2Ts2
1
2 E~k2!s50, ~8!

2Tk1Ekss5 f @p#. ~9!

Integrating Eq.~8! with respect to arclength and applying the
boundary condition~7! we obtainT52Ek2/2. Inserting into
Eq. ~9! and scalingk by 1/L (L is the fiber length!, s by L,
and pressure byrvs

2/2 we obtain

FIG. 4. The background velocity profile of the soap film, shown as a func-
tion of the velocity at the midline, and measured in the absence of the fiber.
Each panel extends over 0.5 cm horizontally. Thus the longest fiber in Fig.
3~b! ~5.15 cm! occupies five segments to either side of the vertical center
line in its undeflected state. At the highest flow speed used in Fig. 3~b! ~270
cm/s! its profile width is less than 2 cm, so it lies within two segments to
either side of the center line.
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kss1
1
2 k35h2@p# ~10!

as the nondimensional force balance. A similar expression
involving the curvature arises, for example, in studying a
thin beam in a very viscous fluid.31 Hereh, defined by

h25
r f L2vs

2

2E/L
, ~11!

is the single control parameter in the problem. We have de-
finedh as a nondimensional free stream speed, and we wish
to know the dependence of drag onh. Equation~11! also
showsh as the ratio of fluid kinetic energy to the elastic
potential energy of the fiber. There is an intrinsic length
scale,

L05~2E/r f vs
2!1/3; h25~L/L0!3. ~12!

Thus varyingh can be thought of as varying length with
respect toL0 , which we term thebending length. Another
example of an intrinsic length scale for an elastic body is the
‘‘buckling length’’ of a beam under compression.30

IV. RESULTS AND COMPARISON WITH EXPERIMENT

We first describe the main properties of the numerical
solutions to the model, which are found by the method given
in Appendix A. Figure 5 shows the solution for a case of
moderate bending (h530). The fiber has a rounded nose at
the stagnation point, with the curvature decreasing towards
the asymptotically-parabolic free streamlines. The relation
between fiber shape andh is shown in Fig. 6. Ash increases
from 0, the fiber bends, becoming progressively more
aligned with the far-field flow. Forh&1, the fiber approxi-
mates a flat plate perpendicular to the flow at infinity; ath
51, the end of the fiber has a tangent angle only one degree
less than horizontal. Ash increases past one, significant
bending begins. Forh564, the tangent angle at the end is
only 12 degrees from vertical. This fiber tangent angle in-
creases most rapidly with respect toh at h55.6, which gives
one way of locating the transition range. Forh@1, the fiber
is well-fit by a parabola near the midpoint, with a small
region of high curvature there. The length of this region is

proportional to the bending length@Eq. ~12!#, which also
scales as the reciprocal of the midpoint curvature; outside of
it the curvature decreases rapidly, and the fiber is nearly
aligned with the far-field flow. In Fig. 7~d! we show a sur-
prising property of the shapes for largeh: a collapse onto a
universal shape when the fibers are aligned at the tip and
scaled byh22/3. We will revisit this property and analyze its
consequences in Secs. V C 1–V C 4.

Now we consider the behavior of drag with respect toh,
the dimensionless velocity. Forh&1, the drag follows the
rigid-body h2-scaling. Near h51, the drag transitions
sharply and apparently follows anh4/3 scaling, as shown by
the solid line in Fig. 3~b!. On a log–log plot, the small-h
values follow the lineC1h2, whereC152p/(p14) is the
well-known drag coefficient for a flat plate held normal to a
Helmholtz free-streamline flow.17 The large-h values asymp-
tote to the lineC2h4/3, whereC2 is determined numerically
as approximately 1.87. The drag data lie within 1% of the
first fit line for h,1.7, and lie within 1% of the second fit
line for h.83. Thus, the range 1.7,h,83 gives one de-
scription of the transition fromh2 to h4/3 scaling.

We will derive these scaling properties from the asymp-
totics of the equations. The analysis consists of studying the
form of solutions to Eq.~10! with respect toh. The ODE
seems relatively simple, similar in form to a Duffing equa-
tion. But contained in the equation is a nonlocal singular
integral operator included in the pressure jump. Despite this
complication, many properties of the solutions can be de-
rived; this is done in Sec. V.

Now we compare the Helmholtz wake model with the
experiment. Though we will consider some refined models,
for simplicity we restrict a detailed comparison to the Helm-
holtz model because it exhibits many salient features. We
compare in two aspects:~i! the fiber shape as a function of
velocity, and~ii ! the drag force as a function of velocity. The
deflected shape can be considered a measure, at each point

FIG. 5. The solution to the coupled flow/bending problem forh530. The
fiber is the solid line and the free streamlines are dashed.~a! The streamlines
near the fiber.~b! Contour plot of the pressure field in the same region, with
contours shown for values of 0.1 to 0.9 in increments of one-tenth. The
pressure equals 1 at the stagnation point, then decreases along the filament
~though not monotically forh@1, due to small oscillations described in Sec.
V!, attaining zero on the free streamlines.

FIG. 6. Fiber shapes for a range ofh. The solid lines are the fibers and the
dashed lines are the free streamlines. The solutions shown correspond to
h51, 2, 4, 8, 16, 32, 64, and 30 000, increasing from flat to folded-over. A
measure of the transition isduend/dh, the rate of change of the tangent
angle at the fiber end with respect toh, which peaks ath55.6.
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along the fiber, of the loading by pressure forces. In Fig. 7~a!,
we show six shapes assumed by a single fiber as the flow
speed varies by a factor of 5. The shapes are superimposed
on a manifold of numerical solutions to the model, and seem
to interpolate them well. More specifically, with the mid-
points of the fibers aligned we find that each photographed
fiber can be matched to a numerical solution that deviates
from it by less than 5% in relative displacement from the
midpoint. In Fig. 7~b!, we compare the drag values for the
six fibers shown in Fig. 7~a! with those for the nearest nu-
merical solutions, and also obtain good agreement. This sug-
gests that the model has correctly identified the forces that
set the fiber shape as those given by the normal pressure
difference and the fiber’s bending rigidity. In line with this
comparison, the experimental fibers also show the emergence
of self-similarity; the comparison is given in Figs. 7~c! and
7~d!.

In these comparisons we find that the nearest numerical
shapes each haveh greater than those for the experimental
shapes, by a factor of approximately 2.8 for the six shapes
we have compared. This discrepancy can be accounted for by
setting the wake pressure to a value different from the pres-
sure at infinity, as we will discuss in Sec. VI.

For the comparison of the drag-velocity relationship in
the model and experiment, we display in Fig. 3~b! a set of
200 measurements of drag versush, for four fibers which
differ in length and rigidity. The numerical drag curve is the
solid black line, and is also shown shifted to lowerh by a
factor of 2.8 ~dashed line!, in accordance with the shape
comparison. After the shift we see good agreement between

theory and experiment, including the transition to a lower,
possiblyh4/3 drag scaling, though the upper limit on soap-
film flow speed precludes a thorough comparison for largeh.
The vertical marks indicate, for each of the four data sets, the
values ofh corresponding toU5220 cm/s, where leakage
around the fiber first becomes noticeable~see Sec. II!. We do
not see any systematic deviation from the fitted drag curve
when leakage occurs. However, the small-h data for the
longest fiber deviate from the curve. Such data correspond to
the smallest flow speeds attainable in the experiment, where
the soap film breaks easily and large variations are seen in
measured velocity and drag. Since the fiber is fairly flat at
these speeds, it occupies more than half the channel width,
so the walls, thus far neglected, would be expected to have a
pronounced effect. The wall effect will be discussed further
in Sec. VI.

To summarize, in our comparison with the experimental
data thus far, we have seen agreement in the presence of a
transition to a reduced drag scaling, which has a form similar
to that of the model. However, the drag is underestimated by
the model. We have noted that a simple shift by a constant
factor of 2.8 in h brings the experiment and model into
alignment. This systematic deviation may be due in part to
an effect which has been neglected thus far, the ‘‘back pres-
sure’’ in the wake, which increases the drag. The classic ex-
ample of a back-pressure induced deviation is the drag coef-
ficient for the flat plate in the infinite-wake model,CD

50.88, as compared with the experimental value of about
two.32

An asymptotic theory of wake flows22 predicts that the

FIG. 7. ~Color! Comparison of six experimental fiber
shapes with model shapes.~a! Shapes from the experi-
ment~green and orange lines! superimposed on a mani-
fold of numerical solutions~black lines!. The numerical
solutions range fromh55.5 to 33, in increments of
10%. The flat plate (h50) and a very bent solution
(h530 000) are shown for comparison.~b! Compari-
son of measured drag on experimental fibers in~a! with
computed drag of nearest numerical solutions, deter-
mined by matching tip curvature.~c!, ~d! Transition to
self-similarity in experimental~c! and numerical solu-
tions ~d! ~not shown at the same scale!. The six fibers,
and their nearest numerical solutions, are dilated byh2/3

and superimposed. The black fibers are numerical solu-
tions at higherh, and show the subsequent convergence
to a universal shape, as predicted by the model. Figure
reproduced from Alben, Shelley, and Zhang~Ref. 28!.
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wake has width;Re1/2 and length;Re as Re→`, with a
slow flow in the wake giving a back pressure;Re21/2. This
pressure is also nearly constant, with variations through the
wake ofo(Re21/2). Several models have been developed to
include a back pressure, whether obtained theoretically or
empirically. Among the simplest, which we will adopt in Sec.
VI, is that due to Riabouchinsky.27

Rigid walls constrain the fluid, forcing a faster flow
around the obstacle than would be had in the unbounded
case. They thereby increase the back pressure and change its
limiting behavior from a Re21/2 decay to an approach to a
constant, nonzero value.22 The wall effect is thus one of the
major sources of back pressure in experiments.24 The back
pressure is very large for walls at a spacing of the order of
the obstacle length, and is still significant for a spacing as
large as 100 obstacle lengths.26

With these properties of wake flows in mind, we proceed
by extending the model to incorporate walls and back pres-
sure. This introduces two new control parameters:H, the
ratio of wall-spacing to fiber length, andQ5(pwake

2p`)/(rv`
2 /2), the back pressure nondimensionalized by

the dynamic pressure. The physical parameters of our experi-
ment setH. Both H and the dynamics of the wake flow
determineQ. We will not try to predictQ in our model, but
rather understand how the drag and shape depend on it
through numerical solutions. We will see that the drag scal-
ing with velocity is againU4/3, whereU is now the velocity
on the free streamline of the fiber. This will be discussed
further in Sec. VI. The extended models have wakes which
are smaller than the Helmholtz wake, and thus agree better in
shape with those of the experiment.

We estimate the effect of skin friction by considering the
limiting case of a fiber folded in two at high flow speeds. The
fiber is then like a flat plate aligned with the flow, for which
the corresponding skin-friction drag is 1.33rU2L f Re21/2, by
Blasius boundary layer theory.32 This component of the drag
grows asU3/2, which would eventually dominate theU4/3

pressure drag we have identified, as long as the boundary
layer is laminar (Re&106), so that the Blasius solution is
valid. We use Re5LU/n, wheren50.03 cm2/s is the kine-
matic viscosity of the soap film. For the range of parameters
in our experiment, this estimate lies at least an order of mag-
nitude below the total measured drag, and thus we neglect
the effect of skin friction.

Before extending the Helmholtz model to address the
points raised in the comparison with experiment, we present
in Sec. V the complete equations and an asymptotic analysis
of the Helmholtz model. The goal is to provide a mathemati-
cal explanation for the drag and shape scaling, which are the
primary results of this work. Section VI will consider other
models in light of these results.

V. FURTHER DEVELOPMENT AND ANALYSIS OF THE
MODEL

A steady, incompressible, and irrotational flow is de-
scribed by the complex potentialw5f1 ic, wheref is the

velocity potential andc is the stream function. The analytic
function w has derivative equal to the complex conjugate of
the velocity:

dw

dz
5 v̄5uvue2 iQ, ~13!

where uvu is the flow speed andQ the flow direction. We
now describe how to obtain the velocity field and the loca-
tion of the free streamlines via conformal mapping, assuming
momentarily that the fiber shape is known.

The flow is determined by the method of Levi–Civita,
which uses the logarithm of the complex velocity, known as
the log-hodograph variable:

V5 i log~dw/dz!5Q1 iT; T5 loguvu, ~14!

where vs is hereafter set to one. The method consists of
solving for V and z simultaneously as functions of a com-
plex parameterz, which is related by a conformal mapping.

A typical flow domain is shown in Fig. 8, along with the
corresponding region in thew-plane. By setting a constant,
we fix the flow’s unique stagnation point at the origin in the
w-plane. Since the flow region in thew-plane is the whole
plane with a slit along the positive real axis, it is mapped to
the upper half of the unit disk by

w5K/8~z11/z!2, ~15!

where K is a positive constant determined by fixing the
length of the fiber.

We obtain the map fromz to z in terms ofV by using the
following identity:

v5e2 iV. ~16!

Using Eq.~13! with Eqs.~15! and ~16! gives

dz5~K/4!eiV~z21/z3!dz. ~17!

FIG. 8. The flow domain in the physicalz plane, the complex-potentialw
plane, and the conformal-mappingz plane.
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On the upper semicircle, where the filament lies,z5eis and
Eq. ~17! becomes

dz52~K/2!eiue2t sin 2sds. ~18!

Note thatu has a jump ofp at the stagnation point on the
fiber,s5p/2, where the flow changes direction. Thus on the
fiber,

dz5sign~p/22s!ds eiu, ~19!

whereds is the increment in fiber length. Thusds is related
to ds by

ds5~K/2!e2tusin~2s!uds. ~20!

On the interval@21,1# of the real axis,T must vanish to
satisfy the boundary condition~5!. Thus we can extend the
domain of definition ofV from the upper half of the disk to
the whole disk by the Schwarz reflection principle. Condition
~5! is then automatically satisfied by enforcing the symmetry
of the extendedV, which is the main point of the Levi–
Civita method. NowV can be written as a power series in
the disk,

V5(
0

`

akz
k, ~21!

where theak are real becauseV( z̄)5V(z). Evaluating at
z5eis gives the expressions

u5 (
k50

`

ak cos~ks!, ~22!

t5 (
k51

`

ak sin~ks!, ~23!

which relateu and t. It is useful to decomposeV as V0

1Ṽ, where

V05u01 i t05p1 i ln
eis2 i

eis1 i
, ~24!

u05sign~s2p/2!p/2, ~25!

t05 lnU sin~~s2p/2!/2!

sin~~s1p/2!/2!
U ~26!

is the flat plate solution, containing the singularity at the
stagnation point,s5p/2. We integrate the desingularized
form of Eq. ~20!,

s~s!5KE
p/2

s

~sins81sin2 s8!e2 t̃(s8)ds8 sP@0,p#,

~27!

where the lower limit of integration has been chosen to set
s50 at the midpoint. We determineK by setting the length
of the fiber to 1:

1/K52E
p/2

p

~sins81sin2 s8!e2 t̃(s8)ds8. ~28!

Now we close the system by relating the fiber shape,
given byk5du/ds, to the pressure difference in terms oft.
Bernoulli’s equation~3! gives

@p#5e2t21, ~29!

where@p# is nondimensionalized byrvs
2/2. Then the force

balance~10! becomes

kss1k3/25h2~e2t21!. ~30!

Now we express Eq.~30! in terms ofs. By introducingn
5dk/ds the ODE~30! becomes the first-order system:

S k
n D 8

5S n
~h2~e2t21!2k3/2)(s822ns9/s8 D , ~31!

where the primes denote differentiation with respect tos.
The boundary conditions~7! becomek5n5n850 at the
fiber endss50, p. ~To enforceks50 we require thatn and
n850 becauses850 at the ends.! We integrate Eq.~31!
from each end to the support ats5p/2. After solving fork,
we integrate

k5du/ds5~du/ds!/~ds/ds! ~32!

from the support to each end of the fiber, to obtainu. The
‘‘clamp’’ boundary condition at the support is

uus5p/2656p/2 ~33!

for the flow angle. We have thus used the force balance to get
a second relation betweenu andt, in Eqs.~31!–~33!.

A. Summary of equations

To organize the procedure, we rewrite the above as a
system of equations:

t5F1~u! from ~22!–~23!, ~34!

s5F2~t! from ~27!, ~35!

u5F3~t,s! from ~31!–~33!. ~36!

In the case of the sail considered by previous authors,33,34the
force balance equation is@p#52Tk, whereT is the con-
stant tension in the sail. ReplacingF3 by the analogous equa-
tion, one can combine the four equations into a single inte-
gral equation fort. In our case, the elastic force balance
involves higher-order derivatives, so that the analogous inte-
grodifferential equation is more complicated to write down.
We solve~34!–~36! as a coupled system in our numerical
method, a quasi-Newton iteration described in Appendix A.

B. The asymptotic regime h™1

Consideringh as a ratio of energies, in this regime the
elastic potential energy dominates the fluid kinetic energy.
The problem admits a regular asymptotic expansion about
the h50 ~flat plate! solution. Because the right side of the
force-balance equation~30! is O(h2) over the plate,h2 is
the natural small parameter in which to expandu and its
harmonic conjugatet. We have

u~s!5u0(s)1 (
m51

`

um~s!h2m, ~37!

t~s!5t0(s)1 (
m51

`

tm~s!h2m, ~38!
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where the first terms are the flat-plate solutions. Using the
force balance, we obtain

u1,sss~s!5e2t021 ~39!

which may be integrated thrice to give an expression foru1

in terms of trigonometric functions and polynomials. The
succeeding terms may be integrated similarly. We have esti-
mated the first terms in the expansion for the flat-plate drag
coefficient directly from the numerical solutions to the full
nonlinear problem, rather than from the expansion above. We
obtain

CD5CD012.8534631023h218.1431025h411.4

60.231026h61O~h8!, ~40!

CD052p/~p14!50.879802. ~41!

The precision to which we have determined the second and
higher coefficients is limited by our use of double-precision
arithmetic. The small magnitude of the coefficients comes
from the free-end boundary conditions, which cause the first
corrections to the curvature and its arc-length derivative to
be small in response to the flat-plate pressure distribution.

C. The asymptotic regime hš1

For largeh, the flow tends to a singular limit: uniform
flow past a fiber folded in two, except for the stagnation
point at the tip of the folded fiber. The discontinuity in ve-
locity there indicates that a local stagnation-point expansion
is expected for largeh. We define the restriction of this 2D
neighborhood to the fiber as ‘‘the tip region.’’ Using an an-
satz of self-similarity suggested by the equations and con-
firmed by the numerics, we shall derive some of the notable
asymptotic properties of the solutions:

~1! The solutions are self-similar on a length which scales as
h22/3 ~Sec. V C 1!.

~2! The leading-order fiber shape is quasiparabolic and the
free streamlines asymptote to the same parabola~Sec.
V C 2!.

~3! The magnitude of the second-order term scales ash21,
and it has an oscillatory form with a characteristic wave
number of 21/3h2/3/p away from the fiber ends~Sec.
V C 3!.

~4! The tip region contributes the dominantO(h4/3) drag,
while the drag on the remainder of the fiber is subdomi-
nant ~Sec. V C 4!.

In what follows we shall describe the solutions in terms
of the shape variables,u, k, ks , kss; the log-velocityt; and
the conformal-mapping parametrizations(s).

1. The length scale of similarity

The pressure jump at the stagnation point ish2. Thus for
large h we can expect a large curvature at the tip from the
force balance. The inverse of this curvature sets the length-
scale of the tip region. We presume the inner length to scale
with a power ofh, which can be determined from the force
balance. The flow variables may be taken asu5U(xha),
p5P(xha) as a tip-region ansatz. The corresponding form

for the curvature, which scales as inverse length, isk
5haK(sha). Here U, P, and K are order-one functions.
Inserting these expressions into the force balance~30!, we
find in the limit h→`, the terms on the left and right may
balance only whena52/3. Thus the tip-region length scales
ash22/3, which is also the scaling of the bending length with
respect to fiber length.

The numerical solutions give clear evidence of the inner
h22/3 scale. In Fig. 9, we show the quantitiesu, h22/3k,
h24/3ks , and h22kss for h ranging over several orders of
magnitude in the rangeh.100. We see that the functions
overlap, having apparently converged to universal functions
of S[sh2/3 ash→`. Thent also has the universal behavior,
by the force balance.

Recasting the force balance in terms ofS, we have

u-1 1
2 u835e2t21, ~42!

where primes denotes differentiation with respect toS. The
associated boundary conditions are

u95u850 at S56h2/3/2, ~43!

u56p/2 at S506. ~44!

Now h has been scaled out of the equation and into the
boundary conditions. One can take the limith→` of Eqs.
~42!–~44!, which takes the boundary conditions tòfor an
infinite fiber. The universal shape and flow obtained in the
numerical solution appear to satisfy this limiting equation
and boundary conditions, so we take the universal solution as
the leading-order term in an asymptotic expansion inh. In
the next section we pursue the asymptotic development of
the solutions.

2. Form of solutions

As an ansatz we assume an asymptotic development
consisting of the universal shape and flow~the limit of the
solutions ash→`) plus a power series inh2b, b.0:

FIG. 9. The asymptotic form of the rescaled numerical solutions near the tip
as h→`, in terms ofu ~solid lines!, h22/3k ~solid line!, h24/3ks ~dashed
line!, and h22kss ~dashed–dotted line!. The first and third functions are
antisymmetric and the second and fourth are symmetric aboutsh2/350.
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u~s!5u0~s!1 ũ~s!5u1~S~s!!1h2bu2~S~s!!

1h22bu3~S~s!!1¯ , ~45!

t~s!5t0~s!1 t̃~s!5t1~S~s!!1h2bt2~S~s!!

1h22bt3~S~s!!1¯ . ~46!

The successive powers ofh2b allow a matching of terms at
each order by inserting the expansion into the force balance.
The explicit dependence of the second and higher-order
terms onh results from theh-dependence of the boundary
conditions~43!, as described in Sec. V C 3. Sinceu andt are
linearly related by the Hilbert transform,37 they are devel-
oped in the same powers. We assume corresponding expan-
sions in the flow field forQ(Z) and T(Z), in the rescaled
physical plane coordinateZ5zh2/3. Now we will determine
the exponentb and some properties of the first two terms,
t i(S) andu i(S), i 51,2, which give the dominant contribu-
tions to the shape and drag of the fiber. To accomplish this
we use the three equations that constitute the system in Sec.
V A: ~i! the force balance~42!–~44!; ~ii ! the conjugacy rela-
tion ~22!–~23!; ~iii ! the conformal-mapping relation~20!, in
terms ofS:

S85~K/2!h2/3e2tusin~2s!u5Kh2/3e2 t̃~sins1sin2 s!.
~47!

The first step is to determine the length-scale of the tip
region in terms ofs. We use Eq.~47!, where the value ofe2 t̃

at the tip is to be determined. Sincet̃ is finite at the tip,
e2 t̃5c(h) there, wherec(h) is nonzero and finite. Since
e2 t̃ is continuous it has a general expansionc(h)1o(1) as
s→p/2. Insert this form into the expression forS8, integrate
and then invert to obtain the first term of the Taylor series for
s2p/2 in terms ofS andc(h) about the tip:

s2p/25S/~2Kh2/3c~h!!1o~S!. ~48!

Now expand the right-hand side of Eq.~42! abouts5p/2,
using the form fore2 t̃:

e2(t01 t̃)215211~1/4!c~h!22~s2p/2!2

1o~ us2p/2u2!. ~49!

5211S2/~16K2h4/3c~h!4!

1o~ uSu2! using Eq. ~48!. ~50!

By the ansatz~46! this function is independent ofh at lead-
ing order, so if the coefficient ofS2 does not vanish at lead-
ing order, we havec(h)5Ch21/3, whereC is independent
of h. This implies the expansions

t̃~s!5~1/3!logh1C11o~ us2p/2u0!, ~51!

e2t215211C2S21o~S2!. ~52!

These expansions are consistent with the numerical solu-
tions, as shown in Fig. 10. Finally, by inserting expansion
~51! into Eq. ~47!, we conclude that ifS5O(1) then us
2p/2u5O(h21/3). This is the size of the tip region ins. We
will use this fact repeatedly in this section. The first use is to
determine the behavior of the universal shape away from the
tip.

We start with the relation forQ1(z) in terms oft1(s),
given by the Poisson formula,35 which we evaluate at a point
on the free streamlines; i.e., on the interval@21,1# in z5j
1 in:

Q1~j!52
1

2p
Im E

0

2p eis81j

eis82j
t1~s8!ds81C3 . ~53!

SinceQ1(0)50, C3 vanishes. Usingt1(2s)52t1(s) and
t1(p2s)5t1(s), the expression becomes

Q1~j!5
4

p E
0

p/2 ~11j2!j sins8

~11j2!224j2 cos2 s8
t1~s8!ds8.

~54!

Evaluating at one end of the fiber,s50, gives

u1~s50!5Q1~j51!5
2

p E
0

p/2 t1~s8!

sins8
ds8 ~55!

FIG. 10. Tip and end region behavior of numerical solutions.~a! Convergence oft2t02(1/3)logh to a constantC at the tip. Also shown is the convergence
of the normalized pressure loadinge2t215h22@p#, and the two elastic termsh22kss andh22k3/2 which sum to it in the force balance. Note that the cubic
elastic term decays more rapidly than theh22kss term, which holds outside of the tip region as well.~b! Numerical evidence for the convergence of the
tangent angle at the end of the fiber, normalized byh1/3, to a constantC0 ash→`. This implies that the universal fiber shape is quasiparabolic. The peak of
the curve occurs near the transition to bending.
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which is well-defined becauset1 vanishes ats50. Because
the flow speeduvu deviates significantly from 1 only near the
tip, t[ log(uvu) is only large near the tip. Consequently we
will assume that the contribution to the integral in Eq.~55!
from the tip region, withinO(h21/3) of p/2, is at least of the
same order as that from the rest of the fiber. By Eq.~52!, near
the tip t1(S)5 loguSu1C41¯ ~higher-order terms inS), so
the integral over the tip region is

2Ch21/3

pK E
0

O(1)

@ log~S!1C41¯#dS. ~56!

Then Q1(j51);C0h21/3, for some constantC0 @see
Fig. 10~b!# which depends on the specificO(1) form of t1 in
the tip-region. Sinceu1;6C0h21/3 at S56(1/2)h2/3 ash
→`, u1(S);6C0u2Su21/2 as uSu→`. Thus dY1 /dX1(S)
5tan(u1(S));6uSu21/2 as uSu→`. Integrating gives Y1

;6uX1u1/2 for large X1 , which means that the universal
shape is asymptotically parabolic.

We have assumed thatt1 is small outside of the tip re-
gion to obtain the parabolic decay of the universal shape.
The numerics suggest that the asymptotic relationu1(S)
;uSu21/2 may be differentiated, which implies thatu18

3(S)
decays asuSu29/2 andu1-(S) decays asuSu27/2 for large uSu.
Thus the latter is the dominant term in the force balance
equation~42!, and since both terms are small for largeuSu,
the relation 2t1(S);u1-(S) follows from it. This will be
used to derive the form of the second-order terms in the next
section, but for now we note thatt1(S) decays asuSu27/2.
Because of this rapid decay, the contribution to the integral
in Eq. ~55! from theuSu5O(1) tip region is apparently of the
same order as that over the rest of the fiber, consistent with
our initial hypothesis.

The same type of argument used to show that the body is
asymptotically parabolic also shows that the free streamlines
are asymptotically parabolic. Expanding Eq.~54! about j
50,

Q1~j!5
4j

p E
0

p/2

sins t1~s!ds1O~j3!. ~57!

Note that

2

p E
0

p/2

sinst1~s!ds ~58!

has the same value as the integral in Eq.~55!, at leading
order inh ~here theh dependence of the integral is seen by
changing the parameter froms to S). This is because the
tip-region contribution to expression~58! also transforms to
expression~56!. From Eq.~17!, j is related tos on the free
streamlines by

s52sign~j!~1/21~K/8!~j21/j!2!, jP@21,0!ø~0,1#.
~59!

Using the asymptotic expansion oft and the decay oft1

outside of the tip region, Eq.~20! implies thatK→1 ash
→`. Thus Eq.~59! gives

s;2sign~j!~1/21~1/8!~j21/j!2! ~60!

for largeh. Hencej;6(8usu)21/2 nearj506. Thus, from
Eq. ~57!, Q1(j);22C0jh21/3;6C0u2Su21/2, giving free
streamlines which are asymptotically parabolic~a general
property of Helmholtz flows17!, and asymptote to thesame
parabola as the universal shape, so that ash→` the free
streamlines merge with the universal fiber shape. This is seen
in the numerical solutions of Fig. 11. We have shown this as
a consequence of the far-field behavior induced by the tip
region.

This result may indicate a more general principle of
minimizing the sum of the kinetic energy~relative to the free
stream speed! and elastic potential energy. It has been shown
for finite constant-pressure wakes attached to bodies that the
free streamlines minimize the added mass of the combined
body and wake, within the class of piecewise-analytic wake-
bounding streamlines, including those on which the flow
speed is nonconstant. Thus the free streamlines also mini-
mize the kinetic energy of the flow relative to the free stream
speed.17 A similar result may be obtained for the unbounded
wake of the Helmholtz flow by taking the limit of the finite
case, though we will not give the argument here~see Gara-
bedian and Spencer36!. Since in our case the rest of the body
sits near the boundary of the wake induced by the tip, it adds
little to the induced mass and kinetic energy of the free
streamline flow which would be set up by the part of the
body lying in the tip region alone. The rest of the body also
adds little to the stored elastic energy of the fiber
5(E/2)*k2. This is partly due to the rapid decay of the
leading-order curvature terms away from the tip, and also to
the size of the second-order term in the curvature, which we
now discuss.

3. Second-order equation

Our purposes in deriving the form of second-order term
are twofold. First, the term further illuminates the asymptotic

FIG. 11. Convergence of numerical fiber shapes and streamlines to a qua-
siparabolic universal shape. Shown in alternating shades are the fiber shapes
for h5200, 550, 1500, 4050, 11 000, and 30 000, as well as the streamlines
for the smallest and largest values~crosses and circles, respectively!, with x
and y scaled byh2/3. The asymptotic parabola has the formY51.11X1/2.
~Inset! Numerical fiber shapes forh5200 ~thin black line!, 4050 ~white
line!, and 30 000~thick black line! in the tip region, where the universal
shape fits the parabolaY51.34X1/2.
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properties of the solutions, as well as the role of the bound-
ary conditions in the problem. Second, in order to give a
quantitative explanation of the drag scaling it is useful to
estimate the contributions from the successive terms in ex-
pansion~45!–~46!.

We now derive the form of the second-order terms, be-
ginning with the exponentb. None of the equations—the
force balance, the Hilbert transform, or the conformal map
s(s)—fix this exponent, in the sense that any choice ofb
gives an expansion which can be matched at successive pow-
ers ofh2b. The only remaining information is the boundary
conditions~43!–~44!, and indeed these can be seen to set the
exponent so that the sum of the first two terms in the expan-
sion satisfies the boundary conditions. The numerical solu-
tions show that it is possible to differentiate the asymptotic
decay of the universal shape, and thus obtainu18(S)
;7(C0/2)u2Su23/2 and u19;6(3C0/4)uSu25/2 as S→6`.
Thus u18;7(C0/2)h21 and u19;6(3C0/4)h25/3 at S
56h2/3/2. If we assume thatu2(S)5O(1) asuSu→`, then
by settingb51, the boundary conditionu850 may be sat-
isfied, while the other boundary condition is deferred to a
lower-order correction.

Inserting the expansions~45!–~46! into ~42!, and match-
ing at orders 1 andh21 gives the equations

u1-1 1
2 u18

35e2t121, ~61!

u2-1 3
2 u18

2u2852e2t1t2 . ~62!

The first-order equation is satisfied by the universal solution,
with the conditionsu18 , u19→0 asS→6`. Given the first-
order solution, the second-order solution is found by solving
Eq. ~62! subject to the boundary conditionsu181h21u28
5u191h21u2950 at S56h2/3/2. Thus atS56h2/3/2, u28
;6C0/2 ash→` andu2950. Now we derive the form ofu2

andt2 in Fourier space, and show that they are characterized
by a single wave number over most of the fiber.

The conjugacy relation~22!–~23! can be rewritten as the
Hilbert transform37

t2~s!5Hs~u2![
1

2p E
0

2p

cot~~s2s8!/2!u2~s8!ds8,

~63!

where the integral is a principal value. Because the transform
is linear, we may confine it to the second-order terms. Since
lim inf uu28u>C0/2 at S56(1/2)h2/3 as h→`, unlike the
first-order term the second-order term does not tend to zero
away from the tip, and the full range of integration in Eq.
~63! must be kept. From the asymptotic decay of the univer-
sal shape,u18

25O(uSu23), e2t1215O(uSu27/2) away from
the tip region. Thus foruSu@1 but fixed ash→`, Eq.~62! is
approximately

u2,SSS~S~s!!'2t2~S~s!!

5
1

p E
0

2p

cot~~s2s8!/2!u2~S~s8!!ds8, ~64!

with an error ofO(uSu23). This is a homogeneous equation
with inhomogeneous boundary conditions@given below Eq.

~62!#. It can be approximately solved if the Hilbert transform
is performed in the same variable as the differentiation.

4. Oscillatory form of second-order term

To approximately solve Eq.~64!, we first rescaleS on
the fiber as u5ph22/3S, and then extendu2 to a
2p-periodic function in u by the relationsu2(u12p)
5u2(u)5u2(p2u), which come from periodicity and
evenness with respect tos. We obtain

u2,uuu~S~u!!p3h2252Hu~u2~S~u!!!

1
1

p E
0

2p

g~u,u8!u2~S~u8!!du8,

~65!

whereHu is the Hilbert transform inu and the kernel

g~u,u8!5cot~~s~u!2s~u8!!/2!
ds

du
~u8!2cot~~u2u8!/2!

~66!

is doubly continuous and unbounded only foru85np, n
PZ, which may be seen from the behavior ofds/du given
by Eq. ~20! along with the special tip region behavior ats
5p/2 given by Eq.~51!. We wish to show that the integral
operatorG with kernel g is a smoothing operator on even,
2p-periodic functions, and thus it is subdominant to the
Hilbert transform in Eq.~65!. For u fixed, uÞnp, nPZ,
g(u,u8) has an inverse-square root behavior nearu85np.
For u5np, g(np,u8)5O((u82np)21) nearu85np. The
integral in Eq.~65! is of principal-value type and thus it is
well-defined in this case.

For uÞnp, Eq. ~27! may be used to show thatg(u,•)
has the smoothness ofet̃, aside from the inverse-square-root
singularities. Using the symmetry about the tip, one can
show that for a classical solution to the force-balance equa-
tion, et̃ has at least one continuous derivative (et̃PC1).
Thusg(u,u8) is C1 except for the inverse-square-root singu-
larities atu85np.

We claim thatG(cosmu)5O(m21/2) as m→`, for u
Þnp. This may be seen by writingg as a sum of singular
terms plus aC1 part: g(u,u8)5cot(s(u)/2)/(Ap/2Ku8)
1cot(s(u)/2)/(Ap/2K(u82p))1 f (u8) for u8P@0,2p), u
Þnp. Integrating the first two terms against cosmu gives
terms ofO(m21/2); this comes from substitutingx5Am u,
which leaves a Fresnel integral. The contribution fromf
PC1 is O(m21).

Using this smoothing property ofG, we show that a
leading-order oscillatory behavior ofu2 is consistent with
Eq. ~65!, with wave number scaling as the bending length,
h2/3. We assume as an ansatz

u25A cos~~u2f!/e!1e1/2b~u!, e5221/3ph22/3.
~67!

The first term satisfiesu2,uuu52Hu(u2) exactly, with an
O(1) phasef set by the boundary conditions, andb(u) is
assumed to beO(1) at leading order. Matching at the next
order,O(e1/2), gives a leading-order equation forb:

2Hu~b!2G~b!5 j ~u!, ~68!
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wherej is e21/2 times (G applied to the cosine term!. By the
smoothing ofG, j is thenO(1) except near the fiber end
points,u50, p.

This oscillatory form for the second-order term is cap-
tured well by the numerics~see Fig. 12!. In particular, the
characteristic wave number of the numerical solutions ap-
pears to converge to that predicted by the ansatz~67!
(21/3h2/3/p in u, or 21/3 in S) with an error of,0.1% for
h>4050. The agreement improves for largerh, presumably
because the next~third-! order term becomes smaller relative
to the second.

We have determined the functional form of the first two
terms in the asymptotic expansion of the curvature. Combin-
ing the asymptotics and the numerics, we find that the nu-
merical solutions away from the tip region are well fit by

h22/3k50.30uSu2 ~3/2!10.62h21 cos~21/3h2/3~s2f1!!,
~69!

for all S away from an ‘‘end region’’uuSu2h2/3/2u,3, which
corresponds to a region with lengthO(h22/3) aboutu50, p.
Heref15f/p is a constant phase.

For completeness, we describe the solutions’ behavior
near the fiber end. In the end regiont2 is characterized by a
square-root behavior, which has to do with the properties of
free-streamline separation from a sharp edge. The continuity
of flow speed requires thatt50 at the ends, but does not
specify the form oft near the end. It has been shown17 for a
C2 barrier that unlessV85V950 at the separation point,
the curvature of a free streamline diverges there. Here it can
be seen to diverge like an inverse square root. By differenti-
ating ~54! with respect toj,1 and lettingj→12, we obtain
uj(1)52u(1)Þ0 due to the dominant, single-signed tip re-

gion contribution to the integral in Eq.~55!. Consequently
ts(s50)Þ0 by the Cauchy–Riemann equations, so locally
t5Cs1¯ . Outside of the tip region,

ds5usin 2suds1O~h21/3! ~70!

which implies a leading-order square root behavior int(S)
at the fiber ends. By the Cauchy–Riemann equations, this is
equivalent to an inverse square-root behavior for the separa-
tion curvatureuj(1).

One interesting result of expression~69! is that the
second-order terms dominate the first-order terms in the
force balance away from the tip region. The dominant first-
order terms areu1- and t1 , which, from the numerics, are
O(h27/3) at an arbitrary but fixed distance from the tip, as
h→`. Hence theO(h21) second-order terms dominate~see
Fig. 12!. The third and higher-order terms in the expansion
~46! may be derived in a similar fashion, but we will not
pursue this here.

5. Drag scaling

Having described the scalings of the first two terms in
the asymptotic expansion, we are now in a position to under-
stand theh4/3 drag scaling.

We use the rescaledx, y, and k as X5xh2/3, Y
5yh2/3, andK5h22/3k, and recall that the tip region has
lengthO(h22/3) in s andO(1) in S. We will now show that
the tip region controls the drag, in the sense that any region
which is slightly larger than it gives the dominant contribu-
tion to the drag. More precisely, for anye.0, the drag in an
interval I of lengthCh22/31e about the tip,s50, is asymp-
totically dominant to that on the remainder of the fiber.

The drag onI is given by

D~ I !5h2E
I
pdy5E

2Ch22/31e/2

Ch22/31e/2 S 1

2
k31kssD dy

ds
ds ~71!

5h4/3E
2Che/2

Che/2 S 1

2
K 31K9D dY

dS
dS.

~72!

The drag contribution from the remainder of the fiber is
given by

D~ I c!5h4/3E
[ 2h2/3/2,h2/3/2]\I

S 1

2
K 31K9D dY

dS
dS. ~73!

We estimate the curvature terms from Eq.~69!, and obtain
K 3<C1uSu29/21C2h21uSu23 and K9<C1uSu27/21C2h21

for positive constantsC1 and C2 . Also, dY/dS;u
;uSu21/2. Inserting these estimates into Eq.~73! we find that
D(I c)<C3h4/323e, for e sufficiently small, which comes
from the bound forK9. The integrand isO(1) in the tip
region, so a similar argument shows thatD(I ) is O(h4/3).
We have shown that the tip region gives the dominant drag
contribution, even though the tip region isO(h22/3) smaller
than the remainder of the fiber.

The self-similar quasiparabolic fiber shape gives the
scaling of the profile width. First, express the parabola to
which the fiber asymptotes asX5CY2. At the fiber endsX
;S56h2/3/2, so thatY;6h1/3, or y;6h21/3. Hence the

FIG. 12. The numerical solutions away from the tip region forh5550,
1500, 4050, in terms of the rescaled curvatureh22/3k and~inset! the domi-
nant terms in the force balance,t andh22kss . Because of the rapid decay
of the first-order term, the oscillatory second-order term is clearly visible.
For each of the functions shown, the amplitude of the second-order term
decays ash21, and the wave number of the oscillationskS appears to
converge to 21/3, matching it to within 1% forh5550 and to within 0.1%
for h54050.

1707Phys. Fluids, Vol. 16, No. 5, May 2004 How flexibility induces streamlining

Downloaded 09 Apr 2004 to 128.122.81.196. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



profile width decreases ash21/3, which would imply a drag
scaling ofh5/3 in the absence of streamlining. By ‘‘stream-
lining’’ we mean a reduction in drag due to a change of shape
which keeps the profile width fixed. For example, a flat plate
may be streamlined by changing it to a circular arc with
chord length equal to the plate length. Streamlining thus
gives a size-independent measure of the effect of shape on
drag. For the fiber, the streamlining caused by bending de-
creases the drag by a factor ofh21/3, so that the reduction of
the drag exponent from 2 is due in equal parts to decrease of
profile width and to streamlining.

VI. EXTENDED MODELS

Now we examine the effect of incorporating walls and
wake pressure into our flow model, in terms ofH, the ratio
of wall-spacing to fiber length, and the wake pressure coef-
ficient Q5(pwake2p`)/(rv`

2 /2). Unlike the Helmholtz flow,
these models have a free-streamline speedhs which is dif-
ferent from the upstream flow speed,h` @both speeds are
nondimensionalized as in definition~11!#. The two are re-
lated byhs5h`A12Q.

We begin by examining a model in whichH is the only
free parameter: the case of ‘‘choked flow.’’26 Here the wake
is of infinite length, but the flow is bounded by infinite par-
allel rigid walls. Since the wake occupies part of the channel
width downstream of the body, conservation of mass requires
thaths.h` . The resulting non-zero value ofQ, which is set
by the wall-spacing, thus reflects the contribution of the
walls to the wake pressure. We will then consider the effect
of varying Q in the unbounded Riabouchinsky flow~for
which H5`). The effect is to shift the drag curve from the
Helmholtz curve by the factorA12Q in h` , which is the
same type of shift as was used to align the Helmholtz and
experimental drag data in Sec. IV. Finally, we study the wall-
bounded Riabouchinsky flow, withQ andH as free param-
eters. We find that the models give similar shapes and nearly
identical values for the drag whenQ is the same in all of
them. ForQ fixed, changing the wall spacing gives only a
small perturbation to the solution, except in the special case
of very closely spaced walls.

In these extended models we specialize to the symmetric
case of a fiber clamped at its midpoint and held perpendicu-
lar to the flow. The effect of asymmetry is described in Ap-
pendix B for the Helmholtz model, and the effect of asym-
metry in the extended models may be deduced from the
results there. This allows us to model only half of the flow
domain, in which case the flow angleu is known on a con-
nected part of the boundary, and the conjugatet is known on
its complement. Hence the boundary value problem forV
may still be solved using the Schwarz reflection principle.
By contrast the asymmetric case involves a mixed Riemann–
Hilbert problem, which adds some complications to the nu-
merical method.

A. Wall-bounded infinite wake model

To examine the effect of increased momentum transfer
to the fiber due to walls, we construct flows bounded by two
infinite parallel walls placed symmetrically about the fiber,

and having an infinite wake. From our numerical results,
there is apparently a unique flow of this type for each choice
of wall-spacing, as is known to be the case for flows past
plates and wedges.26,38

We map half of the flow field to the upper half of the unit
disk, sending the fiber, stagnation streamline, and upper wall
to the upper semicircle~see Fig. 13!. Starting from

w5a log
cosgF1~z22z11!

cosgF2~z22z11!
, ~74!

the development then parallels that of the Helmholtz case.
Here a is used to set the fiber length andH
5(wall spacing)/~fiber length! sets the free parametergF ,
the argument of the point inz corresponding to upstream
infinity in z. The stagnation-point singularity is explicitly
removed by

V05~2 i /2!log
i z21

i 2z
, ~75!

which leavesṼ continuous on the boundary of the unit disk.
Figure 14~a! shows an example of the wall-bounded flow

for H59/5.15, corresponding to the longest fiber used in our
experiment. The pressure field tends to different limiting val-
ues upstream and downstream, but is otherwise similar to
that of the Helmholtz case. Because of the lower wake pres-

FIG. 13. The infinite wall-bounded flow domain in thez, w, andz planes.

FIG. 14. ~a! Contour plot of the choked-flow pressure field forh`554 and
H59/5.15. The pressure is scaled to equal 1 at the stagnation point and 0 on
the free streamlines. A small region in which the pressure in negative is
contained between the leftmost 0 contour and the fiber, showing the non-
monotonic behavior of the pressure due to the oscillatory second-order term.
~b! A comparison of the Helmholtz~1! and choked flow~2! solutions for
h`53. The wall for~2! is shown, andH52.7.
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sure, the fiber deflection is significantly increased over that
in the Helmholtz case with the same upstream velocity. Fig-
ure 14~b! shows this comparison forh`53.

Because we have a used four different fiber lengths in
the experiment@see Fig. 3~b!#, we compare the drag versus
h` in the choked flow model for each fiber separately. In
Fig. 15 we see that the effect of the walls is to shift the drag
curve significantly leftward from the Helmholtz curve.
Hence the addition of walls to the Helmholtz model can
provide a large increase in drag. In all cases the increase is
not sufficient to close the gap with the experiment. This
might be expected because the experimental wake is finite,
and thus should have a still lower back pressure than the
choked flow.

We note two other main results for the bending fiber in a
choked flow. The first is that the choked flow drag curve
converges to the Helmholtz curve ash`→`. This is because
as the fiber approaches the folded limit, the streamlines near
the fiber become more parallel to the walls. Hence the flow
converges to that of the corresponding Helmholtz flow, as the
deviation required to meet the no-penetration boundary con-
dition at the wall becomes smaller. The second result is that
the wake pressure coefficientQ;h`

21/3 ash`→`. This may
be explained using a conservation-of-mass argument. To be-
gin, there is a range starting at the fiber end over which the
free streamlines approximate the self-similar parabolic shape
of Helmholtz streamlines for the sameh` . This range in-
creases in length ash`→`, but is eventually matched to a
subsequent region in which the free streamlines become as-
ymptotically parallel to the walls. The limiting distanced
between the free streamline and the wall in this region is
apparently set by the distance between the free streamlines in
the self-similar parabolic region. This wake width has the
sameh`

21/3 scaling as the fiber profile width, since both are
asymptotically parabolic. ThusH22d;h`

21/3. Equating the

mass flux through the channel far upstream and far down-
stream, and usinghs5h`A12Q, gives Hh`52dhs

52dh`A12Q, which with the previous scaling impliesQ
;h`

21/3. This gives the rate of decay of the back pressure
due to the wall effect for the flexible fiber.

B. Riabouchinsky mirror-image wake model

In order to freely vary the wake pressure, we must
choose a different flow geometry. For the infinite wakeQ
50, but for a finite wakeQ,0 and the free-stream speed is
higher than the upstream flow speed. Several simple finite-
wake models have been developed, having many properties
in common. Each model takesQ as a free parameter and
each yields realistic pressure distributions whenQ is set to
conform with a particular experiment.25 Also, the flow in
each case tends asymptotically to that of the Helmholtz wake
solution asQ→0. The simplest and best-known of these
models is the mirror-image model of Riabouchinsky,27 which
we adopt.

The conformal mapping planes are shown in Fig. 16.
The system of equations is derived starting from

w5a~~~z11/z!/~ I 021/I 0!!211!21/2, ~76!

where i I 0 is the location of the point at infinity in the
z-plane, and is set by the choice ofQ.

Figure 17 shows the drag versush` for three choices of
Q, and the same data plotted versushs , in which case the
curves are nearly identical. This is because for fixedhs and
different Q, the flow near the fiber is nearly independent of
the differing values ofh` far upstream. Thus, for fixedhs ,
the pressure jump distribution is nearly identical. As Fig. 17
shows, the effect of varyingQ for fixed h` is simply to shift
the Helmholtz drag curve by a factor ofA12Q in h` . We
find that the valueQ526.8 corresponds to theh-shift of 2.8
between the Helmholtz drag curve and the experimental data
shown in Fig. 3~b!. For wakes in standard flow tunnels, the
range22,Q,0 is typical;25 our value of26.8 is probably
caused by soap film effects such as surface tension.

FIG. 15. The choked-flow drag curves~lines covered by small symbols!
compared to the Helmholtz drag curve~solid line! and the four sets of
experimental data shown in Fig. 3~b!. ~a! H59/1.95, corresponding to the
most rigid fiber (E52000) used in the experiment;~b! H59/1.79, E
52.8; ~c! H59/3.3,E52.8; and~d! H59/5.15,E52.8.

FIG. 16. The symmetric Riabouchinsky flow domain in thez andz planes.
The ordinateI 0 of A is a free parameter set by the wake pressureQ.

1709Phys. Fluids, Vol. 16, No. 5, May 2004 How flexibility induces streamlining

Downloaded 09 Apr 2004 to 128.122.81.196. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



An inconvenience with this particular choice of model is
that for each value ofQ, the mirror image flow solutions do
not exist above a critical value ofh` . As this value is ap-
proached from the below, the mirror-image fibers approach
one another and touch at the critical value~see Fig. 18!. This
is an artifact of the mirror-image model; other wake models,
such as the several listed by Wu,25 presumably would not
share this difficulty. However, the characteristics of the
mirror-image solutions relative to those of the Helmholtz
flow are clear enough from the range in which solutions ex-
ist. In particular, Fig. 17 shows that the effect of a constant
back pressure is to shift the drag data, leaving theh4/3 scal-
ing intact. The scaling also holds asymptotically for a non-
constant back pressure which tends to a constant ash→`.

C. Wall-bounded mirror-image wake model

Finally, we compute symmetric wall-bounded flows with
a mirror-image wake while allowing a nonzero wake pres-
sure~see Fig. 19!. The corresponding map is

w5a log
12A~z!

11A~z!
;

~77!
A~z!5~z21!/A~12secgF!~z211!,

where the fiber length fixesa. The two free parametersgB

~location of the midpoint of the fiber! andgF ~upstream in-
finity! are set byQ and the wall-spacingH. The stagnation
point singularity is now subtracted off by

V05~2 i /2!log
eigBz21

eigB2z
. ~78!

In Fig. 20 we compare a solution from this combined
model with one from each of the previous two flow models:
a choked-flow solution with the same values ofh` , H, and
Q, and an unbounded Riabouchinsky solution with the same
values of h` and Q. The fiber deflections are nearly the
same in all three solutions and the drag values agree to
within 0.1%. This suggests that the flow near the fiber is
essentially determined byh` andQ. When these parameters
are set, the presence or absence of walls and/or a finite wake
does not seem to change the near-body flow significantly.

FIG. 17. Drag vsh` for Riabouchinsky solutions withQ526.84, 21,
20.1, and 0~Helmholtz! moving from left to right. For eachQ the data are
shown for the maximum intervals in which the solutions exist.~Inset! Drag
vs hs for the same solutions.

FIG. 18. Riabouchinsky solutions forQ526.8 andh`50.65, 1.77, and
3.56, increasing from flat to bent. Solution fiber collides with the mirror-
image fiber ath`53.6.

FIG. 19. The wall-bounded mirror-image flow domain in thez, w, andz
planes.

FIG. 20. A comparison of the unbounded Riabouchinsky flow~A!, wall-
bounded Riabouchinsky flow~B!, and choked flow~C!. For ~B! and ~C!,
H59/5.15. For all three flowsh`53.4 andQ524.8.
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These models have shown that the fiber deflection and
drag are changed by wake pressure to become very close to
the Helmholtz solution with speed given byhs instead of
h` . For the typical cases of a wake pressure coefficientQ
which is nearly constant, or tends to a constant or zero as
flow speed is increased, anh`

4/3 drag scaling is expected.
Otherwise the dependenceQ(h`) can be used to determine
hs , at which value the drag given by the Helmholtz curve is
approximately obtained.

VII. CONCLUSION

In this work we have studied the streamlining of a flex-
ible fiber in a 2D flow. Modelling it as a thin beam in a
free-streamline flow, we have identified a single nondimen-
sional control parameterh which governs the underlying me-
chanical interaction. In both theory and experiment we find a
sharp transition to bending whenh exceedsO(1), corre-
sponding to a transition to dominance of pressure forces over
elastic bending forces. An important consequence is a reduc-
tion from rigid-body U2 drag scaling to aU4/3 behavior.
Using the force balance equation we identified a similarity
length-scale;h22/3. By constructing an asymptotic expan-
sion in the rescaled fiber length, we found that the leading-
order fiber and wake shapes asymptote to the same parabola
when distances are scaled byh2/3. Thus the fiber tends to the
boundary of the wake induced by the shrinking ‘‘tip region’’
ash→`. The first correction to this term has an oscillatory
character and decays ash21 in magnitude. Using the form of
the first two terms in the expansion we showed that the tip
region gives the dominantO(h4/3) contribution to the drag.
One consequence of the leading-order fiber shape is that the
profile width scales ash21/3. This shows that the drag reduc-
tion is due in equal parts to a smaller profile width and to a
more streamlined shape

The main discrepancy between the simplest~Helmholtz
wake! model and experiment is that in the experiment, the
transition to self-similar behavior occurs at a smaller value of
the control parameter. Motivated by previous wake-flow
studies, we incorporate a constant nonzero wake pressure,
and show that this causes a uniform shift of the drag data, as
seen in the experiment. The contribution of the walls to the
wake pressure is shown to be significant as the fiber bends,
but does not account for the entire mismatch between theory
and experiment. The missing part of the wake pressure is
presumably provided by surface tension effects in the soap
film as well as the process of shedding vorticity into the
wake. In future work we shall consider the details of how
this occurs for a flexible body in a high-Reynolds-number
flow.

We have not addressed mathematical questions of exis-
tence and uniqueness for the system of free-streamline/beam
equations. It is useful nonetheless to place the mathematical
problem in the context of more general theoretical work and
to this end we note that our problem can be formulated con-
cisely in two ways. The first, which we have used in this
work, consists of substituting fort in the force balance with
the Hilbert transform ofu, and then changing variables from
s to s. The problem may then be reduced to one singular

integro-differential equation on@0, p# with the free-end
boundary conditions, which we have not written out in this
work because it is rather complicated. The second formula-
tion is that of solving Laplace’s equation forV in the unit
disk with the nonlinear force balance as the boundary condi-
tion relating the real and imaginary partsu and t. This is a
type of nonlinear Riemann–Hilbert problem, and theoretical
results have been obtained for other boundary-value prob-
lems from fluids and elasticity using this type of formulation
~see Wegert39!.
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APPENDIX A: COMPUTATIONAL METHODS

Aside from certain cases of straight or circular bodies, a
free-streamline flow cannot be solved analytically in closed
form. Several computational methods exist for determining
the flow past a fixed body, or for solving the inverse
problem.19,40 Ours is based on that of Hureauet al.,41 which
has a convenient formulation in terms of the tangent angle of
the body contour as a function of arclength.

Equations ~34!–~36! form the basis of an iterative
scheme. Given an initial guess forũ(s), we computet̃ and
s, and use the updated values to recomputeũ. All functions
are represented on the same equidistant mesh on@0, p#. Thus
we solve a nonlinear system of equations

F~ ũ !5 ũ2F~ ũ !50. ~A1!

HereF symbolizes the computation ofũ using updateds and
t̃. We iterate untilF( ũ),e, with e510212 for the results
given in this paper. At each step Eq.~A1! is solved using a
quasi-Newton method, the damped Broyden method,42 which
shows superlinear convergence so long as the Jacobian ma-
trix at the solution is nonsingular.

The initial guess is crucial for obtaining convergence,
particularly for largeh. Since we are interested in the behav-
ior over a large range ofh, we begin by solving forh!1
~for which convergence is rapid, starting from the flat plate
shape!, and then take small steps to largerh, extrapolating
from the previous solutions to form an accurate initial guess.
The Jacobian matrix is initialized using divided differences
of F evaluations, and the inverse is computed explicitly once
at the start of the Broyden iteration. Updating the Jacobian
requires only matrix-vector multiplications.

Each computation ofF involves three separate compu-
tations, one each fort̃, s, andũ. The first uses two FFTs and
involvesO(n logn) work; the last two involveO(n) opera-
tions. Thus the total work forF is O(n logn). The overall
time is dominated by then evaluations ofF needed to ini-
tialize the Jacobian matrix in the Broyden method. The itera-
tion typically converges in 10–20 iterations. Forn51024,
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running in Matlab 6 on a Sun Ultra-80, the code requires a
few hours to compute solutions up to the value ofh at which
the solution can no longer be resolved, about 105 for this
choice ofn.

Once ũ is known, we can obtainV everywhere in the
upper half disk using Eq.~21!, and then compute the velocity
and pressure field. Integrating Eq.~17! ~for the Helmholtz
flow! we obtain the physical location of all points in the
upper half disk, including the shape of the free streamlines,
which lie on the real diameter. Integrating the pressure jump
along the fiber determines the drag.

In Fig. 21 we show the convergence ofCDh2/3 for the
mesh sizesn5256,512,1024,2048,4096. Lettinghd be the
value of h at which the drag deviates from then54096
value by a specified factor, we estimate thathd;n3. This
indicates that the minimum grid size needed to resolve the
solution for a particular value ofh scales ash1/3. This hap-
pens to be the inverse length scale of the tip region, giving
further evidence that the tip region controls the flow. In the
same vein, Fig. 21 suggests that a 256-point grid with a
square-root density of points near the tip is approximately as
accurate as then52048 uniform mesh. In addition to resolv-
ing the tip region, it may also be important to resolve the
component of the next-orderh21 term with growing wave
number 21/3h2/3 in s, even as the term decays for largeh.

The methods for the extended models are similar, except
that the control parametersH and Q are used to determine
the free variablesI 0 , gB , and gF as part of the nonlinear
solve ~see Secs. VI A–VI C!. In the wall-bounded cases, the
desingularizedṼ has a square-root behavior near the tip
which precludes high accuracy of the computation~by con-
trast the HelmholtzṼ is apparentlyC2, showing ak23 de-
cay of the Fourier components!. This is dealt with by esti-
mating numerically and then subtracting off the square-root
behavior, and also using a square-root density of points at the
tip for all parts of the computation except the FFT. The FFT
is peformed on a uniform but much finer grid with interpo-
lated values. Thus a higher resolution of the tip is obtained at

each step of the computation while the overall efficiency is
maintained.

The solutions have been compared with symmetric and
asymmetric flows past plates shown in the Appendix of
Birkhoff et al.,17 and with the sail solutions shown by
Dugan.33 In each of these cases agreement was obtained to
the highest precision given by the previous results.

APPENDIX B: ASYMMETRIC FIBER

With a simple modification to our Helmholtz-wake
model~see Sec. V!, obtained by allowing the argument of the
stagnation point in thez-plane to vary fromp/2 ~see Hureau
et al.41!, one may compute asymmetric flows. We have used
this method to compute the shape of a fiber clamped at any
point along its length, held at any orientation relative to the
free stream. We find the symmetric case to be representative
of these cases as far as the asymptotic scaling of shape and
drag. For cases in which the support point is closer to one
end than the other, the two scaling regimes are separated by
an intermediate interval inh in which the longer end exceeds
the bending length but the shorter end does not. In Fig. 22~a!
we show such a case, the fiber clamped at one-quarter length
for h510. In each of these cases of asymmetric clamping,
the numerical solutions again show self-similar behavior
when rescaled by the bending length, but now converge as
h→` to one of a two-parameter family of universal shapes,
parametrized by clamp position and orientation. In Fig. 22~b!
we show the universal shape for the clamp position at 3/5
length, with an orientation of 45° to the oncoming flow.
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