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The evolution of landscapes, landforms, and other natural struc-
tures involves highly interactive physical and chemical processes
that often lead to intriguing shapes and recurring motifs. Partic-
ularly intricate and fine-scale features characterize the so-called
karst morphologies formed by mineral dissolution into water.
An archetypal form is the tall, slender, and sharply tipped karst
pinnacle or rock spire that appears in multitudes in striking land-
forms called stone forests, but whose formative mechanisms
remain unclear due to complex, fluctuating, and incompletely
understood developmental conditions. Here, we demonstrate
that exceedingly sharp spires also form under the far-simpler
conditions of a solid dissolving into a surrounding liquid. Lab-
oratory experiments on solidified sugars in water show that
needlelike pinnacles, as well as bed-of-nails-like arrays of pinna-
cles, emerge robustly from the dissolution of solids with smooth
initial shapes. Although the liquid is initially quiescent and no
external flow is imposed, persistent flows are generated along
the solid boundary as dense, solute-laden fluid descends under
gravity. We use these observations to motivate a mathematical
model that links such boundary-layer flows to the shape evo-
lution of the solid. Dissolution induces these natural convective
flows that, in turn, enhance dissolution rates, and simulations
show that this feedback drives the shape toward a finite-time
singularity or blow-up of apex curvature that is cut off once
the pinnacle tip reaches microscales. This autogenic mechanism
produces ultra-fine structures as an attracting state or natural
consequence of the coupled processes at work in the closed
solid-fluid system.

geomorphology | fluid–structure interaction | dissolution |
natural convection | stone forest

The tall and pointed rock spires, or pinnacles, of Fig. 1
stand in sharp contrast to the smoothed shapes and shal-

low slopes commonly associated with erosion and weathering.
That pinnacles appear in multitudes in vast arrays called stone
forests (1, 2), and that such landforms are found worldwide (3–
7) suggests robust mechanisms underlying their development.
These structures are examples of karst topographies that form
by mineral dissolution in water (2, 8), but the environmen-
tal and hydrological conditions essential to their formation are
unclear. Geomorphological studies have detailed the rich devel-
opmental histories of stone forests involving, among many other
complexities, periods of complete or partial submersion under
water, burial under loose sediment, and exposure to surface ero-
sion (3–7, 9). While superficial features such as channels and
grooves seem linked to rain runoff (2), it is unclear how much
shape development occurred prior to surface processes. Fur-
ther, stone forests have been discovered buried under loose
sediment (10), suggesting that surface erosion is not essential
to the pinnacle motif. Mineral spires can result from complete
submersion under water followed by drainage (11), though the
degree of shape development during these stages is unclear.
Given the uncertainties regarding which factors are most crit-
ical, the study of pinnacle formation may benefit from labo-
ratory experiments in which conditions can be imposed and

cleanly controlled and the relevant shape developments observed
and measured.

Viewed mathematically and physically, the action of erosion,
dissolution, or melting on stone, soil, sand, ice, and other nat-
ural materials can be categorized as free- or moving-boundary
problems (12, 13). This perspective is especially useful for
understanding fundamental shape-changing mechanisms and
for disentangling the interdependent solid and fluid dynam-
ics that arise when boundaries are carved by flowing air or
water (14–16). The study of shape–flow interactions also benefits
from laboratory experiments, which complement geomorpho-
logical field studies by permitting observation and measure-
ment on tractable length and time scales and under controlled
and reproducible conditions (17). Experiment and mechanis-
tic theory, including mathematical modeling and simulation,
have been usefully applied toward problems ranging from the
growth and form of icicles (18) to landforms such as dunes
(19), large-scale landscapes (20–22), and even global-scale flow–
structure couplings such as continental drift driven by mantle
convection (23, 24).

These past successes motivate the application of the moving-
boundary approach to dissolution and toward understand-
ing karst morphologies and pinnacles specifically. Here, we
show experimentally and theoretically that ultra-sharp pinna-
cles emerge robustly as natural consequences of dissolution in
the presence of gravity. Building on recent work (25–27), we
conduct clean and controlled laboratory experiments aimed at
understanding the minimal conditions needed to form pinna-
cles. Precision measurements allow for close comparison with a
moving-boundary mathematical model that incorporates the rel-
evant flow physics and chemistry of dissolution. Together, these
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Fig. 1. Natural pinnacles and stone forests. (A–C) Photographs showing
limestone structures of different scales in the Tsingy de Bemaraha National
Park in Madagascar. A–C: Image credit: Stephen Alvarez (photographer). (D)
Similar limestone formations in the Gunung Mulu National Park of Malaysia.
D: Image credit: Grant Dixon (photographer).

methods uncover a self-sculpting process by which the flows natu-
rally generated during dissolution also reshape solids into micro-
scopically sharp spikes. Because it is at work under commonplace
conditions, we speculate that this mechanism contributes to the
formation of pinnacles in nature.

Results
Laboratory Experiments. To assess experimentally the develop-
ment of a dissolving solid under idealized and controlled con-
ditions, we consider objects made of solidified sugars cast into

simple initial shapes and submerged into a large tank of water
(Fig. 2A). The relatively high solubility of sugars in compari-
son to natural minerals allows for tractable run times of hours.
The initial form resembles an upright cylinder supported from
below, and its apex is smooth and blunt. This starting shape can
be viewed as analogous to the vertical columns formed between
intersecting planar fissures that are thought to initiate pinnacle
karst (3–7, 9). The choice of a tall column extends the dissolu-
tion process and allows for observation of the long-time shape
dynamics. The object, which is observed to retain axisymmetry,
is photographed over time by two cameras, one of which is fixed
and captures the entire boundary and the other mounted to a
moving stage to follow the apex and capture zoomed-in images.
Additional experimental details are available in Materials and
Methods and SI Appendix.

The overlaid images of Fig. 2B and the corresponding Movie
S1 show a typical trial. The initially rounded column is seen
to sharpen into a needle-like spire as the boundaries recede.
Boundary profiles extracted from photographs are shown in
Fig. 2 C and E, the latter in the frame of the descending tip.
Strikingly, these data indicate that the object becomes ever more
slender and its tip ever sharper throughout the dissolution pro-
cess. These observations are reproducible across trials and for
different initial geometries, as supported by the extended data
figures in SI Appendix.

A critical, but unseen, factor in these shape dynamics is the
role of flow. Although the water is initially quiescent, and no
external flow is imposed throughout our experiments, the fluid
is brought into motion by the dissolution process itself. To visu-
alize these flows, we perform separate experiments in which we
seed the water with microparticles and illuminate from above
with planar laser light. As shown in Fig. 2 G and H, time-exposed
photographs capture pathlines indicative of flows of speeds on
the order of 1 cm/s that descend along the surface. This effect
can be attributed to the fact that the solid is denser than the liq-
uid and that flows are generated along the surface as the dense,
solute-laden fluid descends under gravity.

A Moving-Interface Model. Close inspection of the experimental
shapes of Fig. 2 B and C reveals that the pinnacle tip experi-
ences higher dissolution rate than other locations on the surface,
and yet the apex is not blunted, but, rather, sharpens. Such
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Fig. 2. Emergence of pinnacles in experiment and simulation. (A) Laboratory experiments. An upright object cast from solidified sugars dissolves in a
large tank of water. One camera captures full-view images of the solid as it develops in time, and a second is zoomed in and follows the apex region. (B)
Overlaid full-view images spaced at an interval of 50 min. (C) Solid–liquid boundary profile extracted from full-view images and displayed every 25 min. (D)
Corresponding boundary profiles as computed by the simulation. (E and F) Development of the apex region in experiment (exp.) and simulation (sim.). These
profiles are shown in the moving frame of the apex, revealing a trend toward sharper structures. (G and H) Flow visualization via pathline photography of
microparticles illuminated by a laser sheet. Flows descend along the surface and entrain fluid from the sides at both early and later times.
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paradoxes are best resolved by mathematical treatment as a
free- or moving-boundary problem (12), in which the solid–liquid
interface is viewed as a receding surface whose dynamics are dic-
tated by the physics, chemistry, and fluid dynamics of dissolving
(28, 29). The natural convective flows observed in experiments
are expected to play the important role of transporting solute
along the surface. These flows thus modify the local solute
concentration and the local dissolution rate, which Fick’s law
of diffusion dictates as proportional to the gradient in solute
concentration normal to the surface (28). These effects are incor-
porated into a mathematical model by using boundary-layer
theory (29), which describes the flow and concentration fields
that vary strongly within a thin region of the fluid surrounding the
solid. In this way, we arrive at an evolution equation for the inter-
face in which the local normal velocity is related to the global
shape. The dissolution rate is also subject to the Gibbs–Thomson
effect, which acts to enhance dissolution rates in proportion to
local curvature (30, 31). Complete model derivations, as well as
details of their numerical solution, are given in Materials and
Methods and SI Appendix.

Our model furnishes boundary dynamics in remarkable agree-
ment with experiments, as shown in Fig. 2 D and F and Movie S2.
Notably, we recover the observed tendency toward a sharp pin-
nacle, and this behavior is robust to initial shape and to model
parameters (SI Appendix). Taken together, these results indicate
that pinnacles emerge as the shape attractors for solids dissolving
into fluids in the presence of gravity.

Pinnacle Formation as a Geometric Shock and Curvature Singular-
ity. Further analysis of the shape dynamics in experiment and
theory reveals a common approach to the formation of a sharp
apex. The boundary shape can be represented by revolving a pla-
nar curve γ that is characterized by its tangent angle θ(s, t) as
a function of arclength s and time t , as defined in Fig. 3A. As
shown in the plot of Fig. 3C, curves of θ(s, t) over time for the
simulations of Fig. 2 show an approach to an abrupt drop in the
tangent angle, which is suggestive of a geometric shock (32). As
shown in Fig. 3B, another signature of a shock can be seen in
the converging characteristic curves that represent trajectories of
points propagated normally to the boundary (32). Further, local
curvature is given by κ(s, t) =−∂θ/∂s and plotted in Fig. 3D,

where unbounded growth of curvature quantifies the sharpening
dynamics.

These observations are further elucidated by an analysis of our
model equations showing that, if only hydrodynamic (boundary-
layer flows), but not thermodynamic (Gibbs–Thomson), effects
are included, then the pinnacle evolves to infinite apex curva-
ture κ0(t) =κ(s = 0, t) in finite time. We derive a power law
for this mathematical singularity as κ0(t) =κ0(0)(1− t/ts)

−4/5,
where κ0(0) is the initial tip curvature and ts > 0 is the
time at which the singularity develops (SI Appendix). This
analysis motivates a recasting of the curvature dynamics as
κ̄0(t)−5/4 = [κ0(t)/κ0(0)]−5/4, and, indeed, the experimental
and model data of Fig. 3F follow the expected linear trend until
late times.

In the later stages of dissolution, Fig. 3F shows that the
curvature growth continues, but at a nonsingular pace. This
may be attributed to the Gibbs–Thomson effect, which strongly
enhances the dissolution rate at the apex, blunting the tip and
cutting off the singularity. In experiments, the radius of curvature
of the tip eventually reaches tens of micrometers and approaches
the imaging resolution of our system (Materials and Methods and
SI Appendix). Theory predicts an ultimate fineness on the order
of 10 µm, a value set by material parameters.

Pinnacle Forests from Dissolution of Porous Solids. Returning to
the motivating landforms of Fig. 1, we next ask how dissolu-
tion and the dissolutive sharpening mechanism described above
might produce many spires in parallel. We hypothesize that
the fluid-filled pores or fissures in a porous, soluble material
serve as conduits for the flows produced during dissolution. Ini-
tially small, such cavities expand as their walls are consumed
by the dissolving action and eventually merge or collide into
one another. The interstitial solid regions may be shaped into
pillars by the downward convective flows and then sharpened
into pinnacles by the mechanism studied here. We experimen-
tally test this picture in a highly idealized scenario of a soluble,
solid block seeded with an array of pores and immersed in liq-
uid. Casting molten sugars in a mold containing thin wires, which
are removed after solidification, yields a large block spanned
by vertical pores that are arranged in a square lattice (Materi-
als and Methods). The block is supported on an elevated base
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Fig. 3. Pinnacle formation as a geometric shock or curvature singularity. (A) Schematic defining the model and its variables. A solid of axisymmetric shape
dissolves into surrounding liquid and boundary-layer flows are induced as dense, solute-laden fluid descends under gravity. (B) Shape evolution near the
apex from simulation. The singularity or shock-formation time ts is associated with the intersection of characteristic curves (red). (C) Shape development as
quantified by tangent angle θ versus arclength s. The approach to a step function is a signature of a geometric shock. (D) Shape development as quantified
by curvature κ. The blow-up of the apex curvature is a signature of a mathematical singularity. (E) Unbounded growth of apex curvature in experiment and
simulation. The gray region represents error bars propagated based on the experimental resolution. (F) Power-law behavior of curvature in the lead-up to
the shock or singularity.
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Fig. 4. Bed-of-nails morphology from dissolution of a porous solid. (A) Temporal progression of a dissolving block seeded with vertical pores. The openings
widen and in their interstices develop into rounded hills, which then steepen into pillars. (B) The pillars sharpen to form an array of pinnacles. (C) Experi-
mental schematic. A block of solidified sugar is cast with vertical pores and then immersed in water and imaged. (D) Interpretive schematic showing shape
progression and expected flow structure.

and entirely submerged under water, where it is photographed
over time (Fig. 4C). The pores run the height of the block
and base, allowing fluid to be conveyed downward during the
dissolution process.

As shown in the photographs of Fig. 4 A and B and Movie
S3, the solid undergoes dramatic changes in shape as it dissolves.
At early times, the openings of the pores on the upper surface
widen, and the pores thus take on a fluted sectional profile, as
shown schematically in Fig. 4D. This may be attributed to higher
dissolution rates near the openings as fresh water from above
is drawn downward by natural convective flows. As they widen
further, each set of four neighboring pores in the square lattice
begins to collide or merge near their tops, yielding soft hilltops
in their interstices and, thus, a gently rolling landscape dotted
with sinkholes. The hillslopes then steepen to form distinct pil-
lars, whose rounded tops later sharpen into spires. In this final
stage, each pinnacle in the array may be thought to develop
independently and by the mechanism studied here, as the flows
responsible for sculpting are confined to thin boundary layers.
These events yield a bed-of-nails morphology, here, a square
lattice of spikes that reflects the initial lattice of pores. More ran-
dom seeding of pore locations is expected to generate disordered
arrays of pinnacles of varying girth and height, which may more
closely resemble natural pinnacles and stone forests.

Discussion and Conclusions
The tendency toward sharp structures can be understood qual-
itatively by noting that the entrainment into the surface flows
of fresh fluid from the sides (Fig. 2 G and H) tends to thin
the concentration boundary layer and, thus, enhance dissolu-
tion rates. This mechanism of dissolutive sharpening requires
only the commonplace conditions of a solid dissolving into liq-
uid and the consequent density variations and natural convective
flows. It relies on stably attached boundary layers, which can
be expected of the upper surface of a solid if the solute-laden

fluid is denser than the far-field fluid (29). Gravitationally sta-
ble boundary layers in an inverted situation can be expected for
lower surfaces and low-density, upwardly buoyant flows, as is
expected for the underside of an iceberg melting in cold waters
(17). More generally, one anticipates parallels between melting
and dissolution, with temperature playing a role analogous to
solute concentration (29). For both processes, our model frame-
work is general and versatile enough to address further questions
of shape dynamics.

The conditions studied here are purposefully idealized, per-
mitting clear identification and clean characterization of dissolu-
tive sharpening, its chemophysical mechanism, and mathematical
structure. By showing that pinnacle-like shapes arise sponta-
neously in closed solid–fluid systems, under constant conditions,
and without external forcing beyond that of gravity, this study
reveals a minimal set of ingredients essential to the needle and
bed-of-nails motifs. Our experimental pinnacles are carved by
boundary-layer flows generated by the dissolution process itself,
whereas in nature, the responsible flows may include subsurface
drainage and surface runoff (2, 4, 9, 11). Our pinnacle arrays
form via dissolutive widening of pores, whose initial arrange-
ment set the pattern of pinnacles, and a similar progression
toward stone forests is thought to be initiated by vertical columns
between intersecting fissures (3–7, 9). Ultimately, similar shapes
are observed in both the synthetic and natural systems, the for-
mer being associated with an attractor of the shape dynamics that
emerges as details of the initial form are lost in the approach to
a singularity.

Future work might assess the robustness of pinnacle forma-
tion for differing environmental conditions through laboratory
experiments, models, and simulations of the type presented here.
For example, the effect of precipitation and surface runoff could
be isolated for study by subjecting a soluble body in air to mist-
ing with water droplets or some other form of simulated rain
(2). Corresponding theory should account for dissolution into

23342 | www.pnas.org/cgi/doi/10.1073/pnas.2001524117 Huang et al.
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thin-film flows. Pinnacle formation while buried under loose
sediment could be tested by using sand or other granular mate-
rial saturated with water (11), a model or simulation of which
should account for the Darcy flow conditions in the porous
medium. In such scenarios, the hydrological conditions may be
held constant as in our study, or be subject to time variations,
say, by cyclic draining and immersion. Results from all such
studies would help to tell the origin story of these striking land-
forms, whose ultra-fine features require special conservation
efforts (33–35).

Materials and Methods
Materials and Fabrication. Objects made of solidified sugars are manu-
factured by combining granulated table sugar, corn syrup, and water in
proportion 8 : 3 : 2 by volume. The mixture is stirred continuously and
brought to 150◦C, at which point it is abruptly taken off the heat. The
molten sugars are immediately poured into custom-shaped molds and
allowed to gradually set over 12 h or longer, which permits bubbles to
rise out. This recipe achieves so-called hard-crack candy, which is an amor-
phous solid of about 99% sugar content. Cylindrical molds of about 25-cm
height and diameters between 2 and 6 cm are used to make the pil-
lars in the single-pinnacle experiments. Once removed from the mold, the
solid cylinder is reshaped on a spinning stage by dissolving with warm
water applied with a sponge. This gives an initial form that is axisymmet-
ric with a rounded top and slightly tapered sides. A cubic mold measuring
10× 10× 10 cm in length, width, and height is used for the pinnacle-
array experiments. The bottom of the mold receives metal rods of diameter
0.4 cm that stand upright in a square 7-by-7 array of spacing 1.3 cm. After
casting, the rods are removed to leave an array of pores that vertically
span the block.

Dissolution Experiments and Image Acquisition. The experiments are con-
ducted in a clear acrylic (plexiglass) tank measuring 30× 30× 60 cm in
length, width, and height that is filled with degassed water at room temper-
ature of 23± 1◦C. The depth of the tank allows the dense fluid containing
dissolved sugars to settle at the bottom and far from the test object. Image
acquisition is accomplished by two synchronized Nikon D610 digital cam-
eras capturing photographs at 1-min intervals and directed normally to two
adjacent side walls. Each is backlit with cold light-emitting diode (LED) lights
shone on a diffusive screen. On the screen and on either side of the object
are opaque sheets, whose refraction through the object cause the boundary
to appear dark on the light background. The zoomed-out camera is fixed in
position and captures the overall shape of the dissolving object with res-
olution 11.3 pixels/mm. The zoomed-in camera is fitted with a macro lens
and captures images around the apex at resolution 173 pixels/mm. For the
single-pinnacle experiments, this camera is mounted on a vertical translation
stage so that the apex may be maintained in the center of view throughout
the experiment. For the pinnacle-array experiments, the zoomed-in camera
is mounted on a horizontal stage and panned across the upper surface as
several photographs are taken. These images are later digitally registered
and combined.

Image Processing and Profile Extraction. For the single pinnacles, the contour
of the interface is extracted via a custom-written MATLAB code using the
Image Processing Toolbox. For the zoomed-in images, the contour near the

apex is fit to a fourth-order polynomial, and the spatial distribution of
the tangent angle θ(s, t) and the apex curvature κ0(t) are then computed
from the fit.

Boundary–Layer Theory Model and Shock Formation. The solid–liquid inter-
face recedes with velocity proportional to the normal gradient of con-
centration, Vn∼ n · ∇c, where the prefactor may be calculated from
conservation of mass and Fick’s law of diffusion. The concentration
field c and its gradient at the interface are obtained from boundary-
layer theory, yielding the expression Vn(s, t) =−a[r(s, t) cos θ(s, t)]1/3/

[
∫ s

0 r(s′, t)4/3 cos1/3 θ(s′, t)ds′]1/4 for the local dissolution rate as a function
of the shape, expressed here as the tangent angle θ(s, t) at each location
s and time t. Here, the constant a∼ 10−7 m5/4/s is estimated from mate-
rial properties in experiment. The axisymmetric geometry of the dissolving
object is characterized by revolving a planar curve γ around the z axis, as
shown in Fig. 3A. The evolution of γ is then prescribed by ∂tθ−Vs∂sθ=

∂sVn. The prescription of a tangential velocity Vs does not change the shape,
but is imposed in order to preserve the spacing in arclength so that s and
t remain independent variables. The s-derivative of the θ equation in the
limit as s→ 0 leads to an ordinary differential equation for the apex curva-
ture, dκ0/dt =−∂2

s Vn(0, t)−Vn(0, t)κ2
0∼κ

9/4
0 , whose solution diverges in

finite time.

Gibbs–Thomson Effect. The Gibbs–Thomson effect describes the effect of
curvature on the saturation concentration at a solid–liquid interface: cs* =

cs exp (εκ̂) for a surface of mean curvature κ̂, where cs is associated with a
flat interface (κ̂= 0). Here, ε≈ 10 µm is a material parameter estimated for
our experimental conditions. As compared to a flat interface of dissolution
rate Vn, a curved surface has enhanced saturated concentration and, thus,
enhanced dissolution rate of the form V∗n = Vn(1 + εκ̂). In the θ dynami-
cal equation, this effect manifests as a diffusion term that suppresses high
curvature by enhancing dissolution rate. At the apex, the two principal cur-
vatures are identical and, thus, κ̂(0, t) =κ0(t), and the Gibbs–Thomson effect
becomes significant when 1/κ0≈ ε≈ 10 µm.

Simulation Method and Implementation. A custom-written numerical scheme
employs the θ− L method to solve dynamical equations for the tangent
angle θ and total arclength L (36). The numerical simulations are per-
formed in MATLAB with second-order finite differences in space. In time, a
second-order Adam–Bashforth backward differentiation method mitigates
the stiffness and nonlinearity of the equations. Consistent parameter values
of a = 4.5× 10−7 m5/4/s and ε= 11 µm are used throughout all examples in
this article and the figures in SI Appendix. These values are set by matching
the evolution of tip curvature κ0 and the total arclength L for the experi-
ment in Figs. 2 and 3, and the resulting choice leads to excellent agreement
across all experiments.

Data Availability. Measured shape profiles over time for all four single-
pinnacle experiments, as well as corresponding simulation results, are
available in SI Appendix. Raw images, movies, data files, and analysis codes
will be provided upon request to the authors.
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