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Self-propelled particles can exhibit surprising non-equi librium be-
haviors, and how they interact with obstacles or boundaries re-
mains an important open problem. Here we show that chemicall y
propelled micro-rods can be captured, with little change in their
speed, into close orbits around solid spheres resting on or n ear
a horizontal plane. We show that this interaction between sp here
and particle is short-range, occurring even for spheres sma ller
than the particle length, and for a variety of sphere materia ls. We
consider a simple model, based on lubrication theory, of a fo rce-
and torque-free swimmer driven by a surface slip (the phoret ic
propulsion mechanism) and moving near a solid surface. The
model demonstrates capture, or movement towards the surfac e,
and yields speeds independent of distance. This study revea ls
the crucial aspects of activity-driven interactions of sel f-propelled
particles with passive objects, and brings into question th e use
of colloidal tracers as probes of active matter.
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Significance
How autonomous microswimmers interact with their environment
can be strikingly different than for passive particles, andoften give
rise to a wealth of non-equilibrium phenomena. We report surpris-
ing observations of synthetic swimmers being captured by, and then
orbiting, spherical particles until they are kicked out by thermal fluc-
tuations. This complex behavior can be explained in part by asimple
model with the basic ingredients at work: fluid slipping on the swim-
mer surface and fluid coupling with nearby boundaries. Our study
stresses outcomes of activity-driven interactions between swimmers
and other objects that were overlooked in previous studies.Our find-
ings reveal a richer range of possible interactions in active matter, and
impact statistical physics, soft matter, fluid dynamics, and biophysics.

B iological systems demonstrate that the presence of obstacles,
which could be a solid surface or a group of cells, profoundly

affects the autonomous movement of motile microorganisms.Motile
cells can aggregate (1) and move in circles on surfaces (2), reverse
directions when they are spatially constricted (3), and migrate pref-
erentially through an array of V-shaped funnels (4). Bacteria may
enhance the diffusivity of surrounding tracer particles (5, 6), drive
ratchets into rotary motion (7, 8), and form large rotating structures
through collective movements (9). Interactions between bacteria and
the physical environment are widely documented but complicated be-
cause, in addition to possible collisional (10) and hydrodynamic (11)
effects, there are unknown responses associated with behavior.

Recent technological advances have enabled the fabrication of
synthetic microswimmers that convert chemical energy intodirec-
tional motion (12–16). Their movements can collectively drive the
system out of equilibrium and exhibit large-scale phenomena such
as schooling (17) and clustering (18, 19). Studying the dynamics of
self-propelled particles is important because they may have useful en-
semble properties, inspire new designs for smart materials, and find
many applications including microfluidic mixing devices and cargo
transport (20–22).

Synthetic swimmers are arguably simpler than bacteria and offer
insight into the effects of obstacles and confinement on self-propelled

Fig. 1. Sample trajectories of self-propelled rods orbiting around passive
spheres. The spheres have diameter ∼6µm in (A-C), 11 and 14µm in (D),
1µm in (E), and 9µm in (F), and are made of various materials (see main text).
The rod length is 2µm in (A-E) and 4µm in (F). The speed of the rods is on the
order of 20µm/s.

particles. Here we employ a widely studied system consisting of gold-
platinum (Au-Pt) segmented rods immersed in an aqueous hydrogen

Reserved for Publication Footnotes

www.pnas.org — — PNAS Issue Date Volume Issue Number 1–6

http://arxiv.org/abs/1309.5662v1


peroxide solution (H2O2) (12). Previous studies propose that these
rods propel themselvesvia self-electrophoresis, which generates a slip
flow along the rod surface (23, 24). Recent studies show that syn-
thetic swimmers interact with rigid boundaries, say by sliding along
walls (25, 26) and enhancing the diffusivity of tracer particles (27),
but the mechanisms of the interactions remain unclear.

Here we show that self-propelled Au-Pt rods are captured and
orbit closely, with little decrease in their speed, around solid passive
spheres resting on a solid substrate (Fig. 1). We show that this inter-
action between rod and sphere is short range, occurs for spheres of
various materials and sizes, including spheres below the rod length.
While the spheres appear to attract the rods, the Stokesian fluid envi-
ronment precludes any net force or torque being exerted uponthem.
We explain some of these observations using a simple model, based
on lubrication theory, of a swimming particle moving near a wall and
propelled by a surface slip. This is a suitable assumption for modeling
the motion of phoretic swimmers and motile ciliates (28).

Results and Discussions
Experimental system. We fabricate Au-Pt rods with lengthL = 2±
0.2µm and diameter0.39±0.04 µm following the method of electro-
chemical deposition in anodic aluminum oxide membranes (29, 30).
They are immersed in a H2O2 solution with typical concentration
15% containing passive spheres, with diameters of 1 to∼100µm.
Due to gravity, both rods and spheres remain close to, and move
along, the plane of the microscope slide. The positions of the rods
and spheres are tracked using optical microscopy (Nikon Eclipse 80i,
40×), a digital camera (Lumenera Infinity 1-3), and image analysis

Fig. 2. While self-propelled rods are trapped, they move at speeds comparable
to when they are far away from spheres. Symbols and error bars respectively
show the temporal mean and standard deviation in speed of each rod. Solid
and dashed lines have slopes 0.9 ± 0.1. Data collected at different H2O2

concentrations and over many events.

Fig. 3. Image sequence of a solid sphere of diameter ∼ 3µm which hardly
rotates while a 2µm-long self-propelled rod orbits around it. Red arrows point to
a marker on the sphere. Blue dots and arrows show the location and direction of
motion of the orbiting rod.

(ImageJ and Matlab). In the absence of passive spheres, the moving
rods turn, flip, and disperse over time as reported previously (31).

Capture of self-propelled rods by passive spheres. The presence
of passive spheres significantly alters the trajectories ofself-propelled
rods (Fig. 1 and Movie S1). When a self-propelled rod encounters
a sphere, it typically orbits around it (Fig. 1A). The rod canmove
around a succession of spheres and either continue to turn inthe
same sense (Fig. 1B) or switch the handedness of its circularorbit
(Fig. 1C).

This phenomenon of rods orbiting around spheres occurs across
a wide range of materials and sizes (Fig. 1D-F). We have used
rods of different lengths (1, 2, 4µm) and spheres of various di-
ameters (1, 3, 6, 9, 11, 14, 20, 125µm) made of glass, polymer-
ized 3-(trimethoxysilyl)propyl methacrylate (TPM) (32),poly(methyl
methacrylate) (PMMA), and polystyrene. These materials have dif-
ferent surface properties but this does not affect the capture effect.
Self-propelled rods are captured by all spheres that remainclose to
the substrate by gravity, including glass beads as small as 1µm in
diameter (half the rod length in Fig. 1E; see Movie S2). On a sheet of
mica with cleavages which act as nearly vertical walls on a horizontal
surface, the rods are transitorily trapped along the walls in a similar
fashion to what has been reported before (25). This demonstrates that
the rods are captured by confining walls with a variety of shapes and
materials, and suggests that the capture effect may be hydrodynamic
in origin.

Capture phenomenon with no additional drag. Self-propelled rods
nearly maintain their typical speed while they orbit aroundspheres
(Fig. 2A). While a rod is captured, it remains in a narrow fluidregion
between the sphere and the horizontal glass substrate, and shows little
change in speed in this confined space.

Do spheres also rotate while a rod orbits around them? To answer
this we use inert TPM spheres with an embedded piece of hematite
acting as a marker (33). The rotational diffusion of the sphere is slow
compared to the orbiting time of the rod, and the orientationof the
marker remains apparently unchanged (Fig. 3 and Movie S3). A
Fourier frequency analysis of sphere displacements shows that while
the sphere does fluctuate slightly because of Brownian motion, there

Fig. 4. (A) Sketch of a rod orbiting around a sphere on a horizontal surface. (B)
Theoretical configuration of a swimming body near a rigid wall in the reference
frame of the swimmer. The wall approximates the local surface of the sphere
and translates to the right. Dashed lines show the region of fluid slip. (C,D)
Predictions for the swimming speed U , distance h0 away from the wall, and
re-scaled slope m of a swimmer with fluid slipping over (C) −0.8 < x < 1 and
(D) −1 < x < 0.8. Dashed lines show the early-time regime (Eq. 5-7).
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is also an oscillation of the sphere at the same frequency as the rod
orbital motion. However, this effect is quite small.

The nearly constant rod speed and the lack of sphere rotation
suggest that the rods hardly experience any additional dragdespite
moving close to the solid spheres. This direct experimentalevidence
supports the hypothesis that the rods generate a local propulsive flow
along their surface (23,24) as examined in our theory below.

Tentative scenarios of capture. There are several possible mecha-
nisms of trapping. Chemical gradients induced by fuel-consuming
rods may affect rod movement. However, in our system diffusion
quickly restores any local changes in fuel level because thePeclet
numberPe = UL/D ∼ 0.1 is small, whereU ∼ 20µm/s is the typi-
cal speed,L ∼ 6µm the sphere diameter, andD ∼ 103 µm2/s the fuel
diffusivity. The consumption rate of the fuel is negligibleover the typ-
ical duration of our experiments. This is consistent with the swimmers
having little loss in speed when orbiting a sphere. Long-range hy-
drodynamic effects may enable swimmers to approach a solid surface
if they are represented by an extensile force dipole (pusher) (1, 34),
though our rods experience only short-range interactions with spheres
as confirmed below. The rods are slightly curved and tend to move
in curved paths with typical curvatureκ ∼ 0.12µm−1 (31), so they
could slide along flat (35) and curved surfaces with curvature much
less thanκ (36). However, we observe rods orbiting around spheres
with diameter as small as 1µm, which has curvature much greater
thanκ.

In our interpretation, aside from thermal fluctuations, therods
move towards a surface because the local flow field is modified by
its presence. This is demonstrated in a simplified model based on
lubrication theory. Such a motion would not occur for an object
towed by a force parallel to a solid boundary due to the symmetry and
time-reversibility of Stokes flow. The key ingredient in ourmodel is
a prescribed slip on the swimming body, which captures a phoretic
propulsion mechanism.

Short-range hydrodynamic capture
Mathematical model. While our experimental system is three dimen-
sional with curved boundaries (Fig. 4A), for simplicity we con-
sider a two-dimensional swimmer moving above a flat immobilewall
(Fig. 4B). Thermal fluctuations are neglected. We adopt a Cartesian
coordinate system(x, y) in the reference frame that translates with
the swimmer along the wall, wherex is scaled by a half of the length
of the swimming bodyL/2 andy is scaled by a typical distanceH
between the swimmer and the wall. The wall is represented byy = 0
and translates to the right with speedU , where all speeds are scaled
by a typical slip velocityV on the swimmer. The wall-facing surface
of the swimmer is represented byy = h with h = h0(1 + mx),
−1 ≤ x ≤ 1, whereh0 is a re-scaled distance from the wall to the
center of the swimmer andm is a re-scaled slope of the swimmer
relative to the wall. Note thatm = 1 corresponds to the front end of
the swimmer (the left end in Fig. 4B) hitting the wall. Our aimis to
predict howU , h0, andm evolve over time, given a prescribed slip
speedus(x) on the surface of the swimmer.

Lubrication theory describes the fluid flow between the swimmer
and the wall, provided that both the Reynolds number of the flow and
δ = H/L are small. Our approach is similar to that used in modeling
of crawling snails (37). The flow is primarily in thex direction and
governed byd2u/dy2 = dp/dx, whereu is the flow speed,p is the
pressure scaled byµV H/L2, andµ is the dynamic viscosity of the
fluid. The solution is given by

u =
1

2

dp

dx
y(y − h) +

y

h
(us − U) + U, [1]

which satisfies the boundary conditionsu = U on y = 0 and
u = us(x) on y = h. Substituting Eq. (1) into the condition

∂h/∂t + (∂/∂x)
∫ h

0
u dy = 0 that the mass is conserved, we obtain

dp

dx
=

6

h3

[

ḣ0x(2 +mx) + ṁh0x
2 + h(U + us)− 2q0

]

. [2]

Hereq0 is a constant, which is obtained by integrating Eq. (2) with
respect tox and requiring thatp = 0 at the endsx = ±1. Eqs. (1)
and (2) are used to convert the conditions that the swimmer isforce-
and torque-free,

∫

1

−1

du

dy

∣

∣

∣

∣

y=h

dx =

∫

1

−1

p dx =

∫

1

−1

xp dx = 0, [3]

into a system of ordinary differential equations. One consequence is
an expression for the swimming speed

U =
m

ln
(

1+m

1−m

)

∫ 1

−1

us(x) dx

1 +mx
, [4]

which is independent of the distanceh0 between the swimmer and the
wall. In addition, no force is exerted on the wall. These are consistent
with the rods nearly maintaining their speed and exerting little drag
on the spheres in our experiments (Fig. 2,3).

We now consider a simple class of swimmers with constant slip
us = 1 on a portion of their surfacea < x < b and no slipus = 0
elsewhere. This assumption is motivated by the previous hypothesis
that the rods generate a local flow on their surface. At early times,
a swimmer that is initially parallel to the wall withh0 = 1 evolves
according to the asymptotic solutions

U ∼ 1

2
(b− a)− 15

32
(b2 − a2)(b− a− (b3 − a3))t, [5]

h0 ∼ 1− 3

8
(b2 − a2)t, [6]

m ∼ 15

8
(b− a− (b3 − a3))t, [7]

valid to second order in time. Eq. (7) shows that, regardlessof the
exact region of slip, all swimmers with fluid slipping on a majority of
their surface orient towards the wall. Temporal changes inm,h0, and
U are shown for two typical swimmers with slip everywhere except
either near its front or back end of the swimmer (Fig. 4C,D). In both
cases, the swimmer approaches the wall, and its changes in speed can
be related to the relative position of its no-slip region to the wall. This
simple model suggests that self-propelled particles can becaptured
by solid surfaces without applying a mean force or torque.

Fig. 5. (A) Experimental data of the effective density of a suspension of rods,
scaled by the expectation if the rods were distributed uniformly. This is plotted
against the distance from the lowest point of a sphere in units of the sphere
radius, based on over 4000 measurements of the distance over time. Below the
sphere, the density of passive rods falls while the density of self-propelled rods
peaks. The excluded region is where the rods are physically unable to enter.
(B) Normalized histogram of trapping times of self-propelled rods orbiting around
spheres. Inset shows the complementary cumulative distribution function (ccdf)
denoting the probability of rods remaining trapped beyond a specified time. Red
curves are exponential distributions with rate parameter λ = 1.5 s−1. Green
curves are simulated trapping times (see Materials and Methods).
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Consequences of the model. In our experiments there are effectively
two walls: the spherical surface and the underlying substrate. Our
theory would apply not only to the sphere as the wall but also to the
substrate. Lubrication effects may induce self-propelledrods to move
vertically downwards in the same direction as the gravitational force,
which likely reduces the sedimentation height of self-propelled rods
compared to that of diffusive rods (31). As a result the self-propelled
rods orient towards the thin gap between the walls of the sphere and
the substrate, though the effect may be weaker in 3D than in our 2D
model.

To verify experimentally that only short-range interactions oc-
cur between self-propelled rods and passive spheres, we consider the
distribution of rod positions relative to the center of a nearby sphere
(Fig. 5A). This is measured by sampling the distance from a given
rod to the nearest sphere over time, excluding cases where the rod
has multiple spheres within three sphere radii. For passiverods in
water, the density is nearly uniform everywhere except below the
sphere, where the density decreases to zero. Active rods also have
a uniform distribution away from the sphere, but in contrastto pas-
sive rods now show a sharp peak below the sphere. These features
for self-propelled rods are consistent with the hypothesisof capture
through short-range interactions. Further, hydrodynamicinteractions
induced by the rod’s propulsive mechanism enable the spheres to
capture self-propelled rods but not passive ones.

Capture time statistics. While our deterministic model predicts that
swimmers move closer to a solid surface, fluctuations may cause them
to move away or remain at some characteristic distance. In our experi-
ments the trapping is transitory, and we observe that the trapping times
are typically less than 5 seconds and have an exponential distribution
with decay rateλ ∼ 1.5 s−1 (Fig. 5B). The trapping time-scale (λ−1)
is comparable to the time-scales of rotational diffusion and duration
between stochastic flips (∼ 1s) (31) .

In rare instances, the rods remain trapped on the order of minutes.
Highly curved rods that move in small circles tend to either remain
trapped for relatively long times or are hardly trapped, depending on
whether they approach a sphere with the trajectory curving towards
or away from the sphere, respectively. One possible interpretation
of this is that the rods are curved towards the sphere while they are
trapped until thermal fluctuations flip them over (31) and enable them
to escape.

We have developed a numerical model by including thermal fluc-
tuations in the orientational dynamics and defining a critical angle for
escape (see Materials and Methods). This yields a Poisson process
for escape times, and reproduces the exponential distribution found
in Fig. 5B. The relative residence times of trappedvs untrapped parti-

cles would then yield the relative densities in Fig. 5A. While thermal
fluctuations interacting with the capture effect seem to explain the
basic mechanisms at work, a more predictive theory should include
swimmer geometry and detailed chemistry.

Conclusion
Suspensions of self-propelled and passive particles reveal new as-
pects of dynamics in active matter. Swimmers with an effective slip
on a majority of their surface, including phoretic particles (23, 24)
and motile ciliates (28), move without causing much disturbance to
colloidal particles. This suggests that phoretic particles can move
stealthily, with little perturbation to the surrounding fluid and ob-
jects within it. Still, the swimmers themselves are captured by solid
boundaries and can accumulate in spatially constricted regions, un-
like passive particles. This may offer insight into the hydrodynamic
effects in cell adhesion and feeding, as well as suggest strategies to
filter groups of swimmers through the confined spaces of capillaries,
microfluidic devices, and porous media. Our results also bring into
question the use of colloidal tracers as probes in out-of-equilibrium
systems, as for example in measuring the effective temperature of an
active bath (5, 6, 27). The tracers may not fully capture the complex
swimmer movements and enhanced fluid mixing which could emerge
in concentrated suspensions. We speculate that adding a payload to
phoretic swimmers such as studied here would markedly affect how
they interact with the surrounding fluid and with obstacles.
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DMR-0820341, MRI-0821520, DMR-0923251, DMS-0920930), DOE (DE-FG02-
88ER25053), and AFOSR (FA-9550-11-1-0032).

Materials and Methods
Simulation of trapping times. To study the effect of thermal fluctuations on
the trapping time, we carried out simple simulations of our model with the added
effect of rotational Brownian motion. Consider a swimmer with fluid slip over
90% of its body length L = 2µm (a = −0.9, b = 0.9) moving at speed
U = 20µm/s at a typical distance H∼0.2µm from the wall. We simulate the
orientation angle θ of 10000 swimmers which are initially parallel to a wall. The
angle evolves according to the Langevin Equation

θ(t+∆t) = θ(t) + Ω∆t+
√
2Dr∆tX, [ 8 ]

where Ω ∼ 3 /s is the typical rotation rate estimated using Eq. 7, Dr = 1 /s
is the rotational diffusion constant, and X is a random variable with normal dis-
tribution. This shows that the trapping time, defined as the time it takes for the
angle to decrease to a threshold value −π/9, is exponentially distributed in
agreement with our experimental data (Fig. 5B).
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