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a b s t r a c t

To understand observations of low Reynolds number mixing and flow transitions in viscoelastic fluids,
we study numerically the dynamics of the Oldroyd-B viscoelastic fluid model. The fluid is driven by a
simple time-independent forcing that, in the absence of viscoelastic stresses, creates a cellular flow with
extensional stagnation points. We find that at O(1) Weissenberg number, these flows lose their slaving
to the forcing geometry of the background force, become oscillatory with multiple frequencies, and show
continual formation and destruction of small-scale vortices. This drives flow mixing, the details of which
we closely examine. These new flow states are dominated by a single-quadrant vortex, which may be
stationary or cycle persistently from cell to cell.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the past several years, it has come to be appreciated that
in low Reynolds number flow the nonlinearities provided by
non-Newtonian stresses of a complex fluid can provide rich
dynamical behaviors more commonly associated with high
Reynolds number Newtonian flow. For example, experiments
by Steinberg and collaborators have shown that dilute polymer
suspensions being sheared in simple flow geometries can exhibit
highly time-dependent dynamics and efficient mixing [1–3]. The
corresponding experiments using Newtonian fluids do not – and
indeed cannot – show such nontrivial dynamics. One important
constraint on the dynamics of a Stokesian Newtonian fluid is
reversibility [4], which is lost when the fluid is viscoelastic [5,6].

Both mixing and irreversibility are complex phenomena but
even the understanding of elastic instabilities in viscoelastic fluids
is incomplete. Elastic instabilities in low Reynolds number fluids,
where inertia is negligible, have been studied extensively for some
time; see [7–14]. Elastic instabilities are observed at low ormodest
flow rates where inertial forces are negligible but elastic forces are
strong, and have been linked to the creation of secondary vortex
flows [15] and increased flow resistance [16].

Extensional flows, such as the flow in a four-roll mill or flow
in a cross-channel, can be more effective in locally stretching
and aligning polymers than a standard shear flow [17]. As
the macroscopic flow depends on the microscopically generated
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stresses, a flow in an extensional geometry may exhibit an
instability more readily than a flow in a shearing geometry. This
may be due to the fact that a shear flow can be decomposed
into an extensional flow and a rotational flow and the vorticity
in the fluid tends to rotate the fluid microstructure away from
the principal axes of stretching [18,13]. Experiments have shown
that polymer molecules are strongly stretched as they pass near
extensional points in amicro-channel cross flow [19,20]. Schroeder
et al. [19] visualized single-molecule stretching and bistability at
stagnation points. In the work of Arratia et al. [20], molecular
stretching is inferred and two flow instabilities, dependent on
the flow strain rate, are demonstrated. After the onset of the
first instability, the flow becomes deformed and asymmetric but
remains steady; at higher strain rates the velocity field fluctuates
in time and can produce mixing. The first transition appears to be
a forward bifurcation to a bistable steady state; see also [21,22].
In [23], (henceforth TS2009) these instabilities are demonstrated
numerically for a 2D periodic flow, and these results are discussed
in greater detail here. Xi and Graham [24] also found numerically
an oscillatory instability for sufficiently largeWeissenberg number
in an extensional flow geometry, and they suggest a possible
mechanism for the instability due to the concentration of stress
near the extensional point in the flow. In [25], Berti et al. show
numerically that flows with a 2D periodic shearing force can give
rise to non-stationary dynamics.

In this paper, we study computationally a viscoelastic fluid
in an extensional flow. As our flow model, we use the Oldroyd-
B equations with polymer stress diffusion in the zero Reynolds
number (Stokes) limit. The Stokes–Oldroyd-B model is attractive
as it arises from a simple conception of the microscopic origin of
viscoelasticity [26,27]. The bulk fluid is composed of a Newtonian
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(Stokesian) solvent with a dilute concentration of immersed
polymer chains, themselves modeled as Hookean springs. The
polymer stress is proportional to the second moment of the
configuration distribution function. One consequence of modeling
the response of a polymer coil as a linear Hookean spring is that
the Oldroyd-B equations put no limit on the deformed length
of a stretched coil. This yields unphysical infinite viscosities at
finite strain rates for viscometric straining flows [27]. In [28] this
defect in the model was linked to the exponential growth of the
polymer stress at extensional stagnation points in the flow; see
also [29–32].

As part of the calibration of our model we compare it with
the standard Stokes–Oldroyd-B model and the FENE-P model
(a modification of the Oldroyd-B model which enforces a finite
polymer extension length) for 2D periodic extensional flows (see
Appendix B). We show that adding a small amount of polymer
stress diffusion yields structures qualitatively similar to FENE-P
while maintaining a bounded and smooth polymer stress field.
This diffusion term is not added without physical justification,
as some polymer stress diffusion can be justified from kinetic
theory [26] and there aremany other proposedmodels which seek
to incorporate it; see for example [33–35].

In a previous study [28] (henceforth TS2007) Thomases and
Shelley studied the standard Stokes–Oldroyd-B model in two
dimensions. The relevant results from this study will be reviewed
in Section 2. Here we add perturbations to the flows studied
in TS2007 and look at the dynamics that are introduced. Our
main observation is that for sufficiently largeWeissenberg number
the symmetric solutions obtained in TS2007 are not stable
to asymmetric perturbations in the initial data. Rather, these
perturbations induce a symmetry-breaking transition which will
lead to asymmetric states that are qualitatively different in
character from the symmetric solutions found in TS2007 and from
solutions at small Weissenberg number.

Furthermore it is shown that this transition to an asymmetric
state leads to enhanced mixing in the fluid across large regions
of the flow domain. For low Weissenberg number flows the four-
roll mill flow topology is preserved and hence fluid particles near
distinct rollers do not mix. However, when the flow transitions to
the asymmetric state and then to a state with higher-frequency
time-dependent fluctuations there can be significant mixing.

In Section 2, the Stokes–Oldroyd-B equations with diffusion
are described along with some basic properties. The numerical
method used in the simulations is described in Appendix A, and
the choice and calibration of our model is discussed in Appendix B.
We discuss the transitions in Section 3. In Section 3.1 we provide a
detailed look at the first symmetry-breaking transition. Section 3.2
gives results from perturbing the flow with initial data of random
structure. There is a second transition which occurs in the flow
(at higherWeissenberg number) andwe conjecture an explanation
for this second transition in Section 3.3. Section 4 is devoted to a
discussion of mixing in the fluid, including both demonstrations
of the phenomena and measures to quantify the level of mixing.
We discuss the effective diffusion induced by the polymer stress in
Section 4.2 and compute Lyapunov exponents in Section 4.3. Our
conclusions and further directions are discussed in Section 5.

2. Background

The 2d Stokes–Oldroyd-B system with polymer stress diffusion
is given in dimensionless form by:

−∇p + △u = −β∇ · S + f, ∇ · u = 0, (1)

S∇
+ (W i)−1(S − I) = νp△S, (2)

where the upper convected time derivative, S∇ , is defined by

S∇
≡

∂S
∂t

+ u · ∇S − (∇u S + S ∇uT ). (3)

The polymer stress, S, is a symmetric positive definite 2-tensor
and its trace (S11 + S22) represents the mean-squared distension
of polymer coils. The Weissenberg number is given by W i = τp/τf ,
with τp the polymer relaxation time and τf a typical time-scale of
the fluid flow. Here, our external force, f, is used to drive the flow,
and its dimensional scale F is used to set the flow time-scale as
τf = µ/ρLF , where µ is the solvent viscosity, ρ the fluid density,
and L the system size. This sets the dimensionless force, and the
time-scale of transport, to be order one. With the particular choice
here for f, τ−1

f is also the strain rate of extensional stagnation
points in the induced Newtonian flow, which explains our use of
the Weissenberg number rather than the Deborah number for this
discussion.

The parameter β = Gτf /µ measures the relative contribution
of the polymer stress to the momentum balance, where G is
the isotropic stress induced by the polymer field in the absence
of flow. The parameter νp controls the polymer stress diffusion.
Stress diffusion can arise when including the effect of center of
mass diffusion of polymer coils [36]. Here it is added to control
polymer stress gradient growth as Eqs. (1)–(2) otherwise lack a
scale-dependent dissipation (see also [33–35] for other models
incorporating stress diffusion). In the following simulations we
fix νp = 10−3; the calibration of this parameter is discussed in
Appendix B.

The quantity β · W i is the ratio of the polymer viscosity to
solvent viscosity, so that given a particular working fluid the ratio
is fixed independent of experimental conditions. As a useful point
of comparison, from the work of Arratia et al. [20] the solution
viscosity is 1.2 Pa s, while the solvent (97% glycerol/water) is 0.8 Pa
s, yielding β · W i = (1.2 − 0.8)/0.8 = 0.5. We keep the product
β · W i = 0.5 in our simulations.

The Stokes–Oldroyd-B equations with polymer stress diffusion
also have a relative strain energy for the distension of the polymer
field:

E(t) =
1
2


Ω

trace (S − I) dx, (4)

which satisfies

Ė + W i−1E = −D + W, (5)

where

D = β−1


|∇u|
2 dx

is the rate of viscous dissipation and

W = −β−1


f · u dx

is the power input by the forcing. Note that for fixed β , E(t) will
decay (for f ≡ 0) even in the limit of infinite W i owing to the
viscous response of the Newtonian solvent.

The standard Stokes–Oldroyd-B equations are given by Eqs.
(1)–(2) with νp = 0. In this case, the Newtonian Stokes equations
are recovered in the limit W i → 0, in which case the polymer
stress is uniform and isotropic. In TS2007 the 2D Stokes–Oldroyd-
B equations were simulated on a 2π-periodic domain, [−π, π]

2,
with a steady background force of the form

f =


2 sin x cos y

−2 cos x sin y


. (6)

In a Newtonian Stokes flow with doubly periodic boundary
conditions this yields the velocity field u = −

1
2 f, which is a four-

roll mill flow with counter-rotating vortices of equal magnitude.
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Fig. 1. Contour plots of components of velocity and polymer stress evolving from Stokes–Oldroyd-B equations without polymer stress diffusion and isotropic initial data at
t = 6. (a)–(c) Vorticity for W i = 0.3, 0.6, and 5 respectively. (d)–(f) tr S for W i = 0.3, 0.6, and 5 respectively. From TS2007 with permission.

This forcing fixes an extensional stagnation point at the origin
(and (±π, 0), (0, ±π), and (±π, ±π)). The stagnation points are
maintained dynamically if the flow is not perturbed and the initial
stress is isotropic, S(0) = I.

In TS2007 it was observed that for small Weissenberg number,
W i < 0.5, the polymer stress reaches a smooth steady state rapidly
and the velocity field remains slaved to the background force;
see Fig. 1(a). For 0.5 . W i . 1 the polymer stress converges
exponentially in time to a solution which has a singularity in
the first derivative, a cusp; see Fig. 1(e). However, the vorticity
field is qualitatively unchanged by this emerging singularity; see
Fig. 1(b). However, for sufficiently large Weissenberg number,
W i & 1, the polymer stress diverges exponentially in time; see
Fig. 1(f). The vorticity field is shown in Fig. 1(c) where we see that
smaller oppositely signed vortices emerge along the incoming and
outgoing streamlines of the extensional points in the flow.

The singular behavior in the polymer stress, and the critical
values for the transitions, was confirmed by constructing a
dynamical local solution which agrees very well with the
simulations near the extensional point in the flow; see also [37,32].
For W i & 1, tr S concentrates on sets of exponentially decreasing
measure along the streamlines associated with the extensional
stagnation point, which may in part be why the velocity field
appears to reach a steady state where the polymer stress field
is diverging exponentially. With isotropic initial data for S, the
polymer stress and velocity field remain symmetric, in particular,
the S22 field is a rotation and translation of the S11 field, tr S has
4-fold symmetry, and each component of the polymer stress and
the vorticity have 2-fold symmetry.

3. Instabilities

3.1. Symmetry breaking

With isotropic initial data, S(0) = I, Eqs. (1)–(2) are simulated
in a 2D periodic box [−π, π]

2 with steady background force f
given by (6). The system is solved by a pseudo-spectral method
(see Appendix A for details). With n2

= 2562 grid-points, the
high-wavenumber part of the spatial Fourier spectrum isO(10−12)
throughout the simulations, and doubling the spatial resolution
does not change the observed dynamics. For W i ≤ 10 and νp =

10−3 solutions converge to steady states which are reminiscent

of the solutions found in TS2007. The main difference is that the
polymer stress is cut off by diffusion, and now saturates, with
S remaining smooth and bounded. Other features seen in the
solutions from TS2007 (Fig. 1) are quite similar: tr S concentrates
in symmetric ‘‘stress islands’’ along the outgoing streamlines of
the flow. There is a coil-stretch transition which occurs around
W i ≈ 1, beyond which tr S grows rapidly initially and additional
oppositely signed vortices arise along the incoming and outgoing
streamlines of extensional points in the flow, similar to those seen
in Fig. 1(c) and (f).

To investigate the stability of these steady symmetric solutions
we add small perturbations to symmetric steady solutions which
have evolved from S(0) = I. We consider a state to be ‘‘converged’’
if max |S(t + 1) − S(t)| < 10−7. For the symmetric solutions
S11(x, y) is an even function of both x and y, so we introduce
a small perturbation to the first odd Fourier mode in the y
variable. The perturbation is O(.05), and does not depend on the
Weissenberg number or the extra stress diffusion. We focus on the
first symmetry-breaking transition which occurs for W i ≈ 4.8.
Here we try to pinpoint the critical value of W i beyond which
this symmetry breaking will occur and the rate at which it
occurs. We plot the size of the perturbation in this mode as a
function of time for each W i. Fig. 2(a) shows the logarithm of the
perturbation for 0 < t < 200 for W i = 4.5, 4.6, 4.7, 4.8, and 4.9,
while Fig. 2(b) shows the computed perturbation decay/growth
rate. The transition from a decaying perturbation to a growing
perturbation occurs between W i = 4.8 and W i = 4.9. There does
appear to be a local maximum in the growth rate near W i = 9.

Fig. 2(c) and (d) show components of the flow for W i = 5 at
t = 1000, as a result of this initial perturbation. Fig. 2(c) shows
pathlines of the velocity field at a fixed time for somepoints located
near the origin (the dot and dotted lines are at the origin, x = 0,
and y = 0) and we see that the perturbation has caused the central
stagnation point (CSP) to move into the upper half-plane, losing
even symmetry in y. Similarly, Fig. 2(d) shows contour lines of tr S
in the perturbed state, again having lost symmetry in the y-variable
(the dotted lines are at x = 0 and y = 0). When the perturbation
size is doubled or halved, the perturbation decay/growth rate does
not change, nor does it change when the perturbation is made in a
different Fourier mode. The transition W i also does not depend on
the size or location of the perturbation. When the perturbation is
introduced in the x-variable, the CSPmoves into the left half-plane,
along the line x = 0, losing symmetry in this variable.
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Fig. 2. (a) The logarithm of the perturbation over time for W i = 4.5 (lowest curve), 4.6, 4.7, 4.8, and 4.9 (highest curve). The rate switches from decreasing to increasing
between 4.8 and 4.9. (b) The perturbation rate as a function of Weissenberg number for W i ≈ 4 − 10. (c) and (d) Components of the velocity and polymer stress after
evolving with the given perturbation for W i = 5 at t = 1000. (c) Select pathlines of the velocity near (0, 0) (d) Contour lines of tr S near (0, 0)..

3.2. Random initial data

To further investigate the stability of the symmetric solutions
we evolve using initial data with random perturbations from
isotropic initial polymer stress. Consider initial data of the form

S(x, y, 0) = I +

S̃11(x, y) S̃12(x, y)
S̃12(x, y) S̃22(x, y)


. (7)

Each S̃ij (i < j = 1, 2) is a sum of 20 smooth periodic
approximations to Gaussians of the form

S̃ij =

20
k=1

ck(1 + sin(x − xk))mk(1 + sin(y − yk))nk ,

where xk, yk are randomly distributed points in [−π, π],mk, nk are
randomly distributed in [0, 100], and ck = (mk + nk)

−1/22−(mk+nk)

is a scaling factor to keep the size of the perturbation small. This
will add 20 periodic near-Gaussian bumps of varying amplitude,
location, and concentration to the initial polymer stress. The
resultant effect on the velocity field is an O(10−3) perturbation
from the four-roll mill geometry. For an example, a contour plot
of the perturbation tr S̃ is shown in Fig. 3(a) and a contour plot of
the resultant perturbation to the vorticity is given in Fig. 3(b).

Fig. 4 shows the vorticity and polymer stress components both
before and after the onset of a symmetry-breaking transition for
W i = 10. Solutions evolve from the random initial data shown
in Fig. 3. Fig. 4(a) (d) (g) show these flow and stress components
at t = 100 and demonstrate that the initial near-symmetry of
the dynamics is maintained well into the evolution. Note that
tr S is of much greater magnitude than S12. At early times, tr S
concentrates along the incoming and outgoing streamlines of the

extensional stagnation points in the flow, and oppositely signed
vortices arise along these streamlines. At t ≈ 200, a symmetry-
breaking transition occurs, and the CSP, initially at the origin,
migrates into the lower left quadrant. Fig. 4(b, e, h) show the
flow and stress components at t = 700. In Fig. 4(b) we see
that the vortex in the upper right quadrant is now dominant
while the vortices in the remaining quadrants are much weaker.
Fig. 4(e) and (h) show that the polymer stress has also reconfigured
in an asymmetric manner, with the large stress islands in tr S
surrounding the dominant vortex. Fig. 4(c) (f) (i) show the flow and
stress components at t = 1400. Here the flow has become more
complicated with some patches of negative vorticity in the lower
left quadrant. The flow has undergone a second transition which
will be discussed more fully in what follows.

For W i . 4.8 the velocity remains slaved to the background
forcing and perturbations in the initial data do not lead to a
symmetry-breaking transition. Fig. 5(a) shows the velocity at a
point in the flow (here u = u1(π/4, π/4)) over 0 < t < 5000
for W i = 5 (upper curve), W i = 6 (middle curve), and W i = 10
(lower curve). Dynamically, what is observed forW i = 5 is that the
onset of the symmetry-breaking transition is quite slow, with the
CSP slowlymigrating into the upper right quadrant (the simulation
shown here is for a different random initial configuration of the
polymer stress). Fig. 5(c) shows select pathlines of the velocitywell
after the onset of the symmetry-breaking transition at t = 3000.
This new state appears steady. ForW i = 6, the symmetry-breaking
transition occurs more rapidly, with the CSP oscillating back and
forth between the twoupper quadrants. In Fig. 5(d) select pathlines
of the velocity are shown for W i = 6 at t = 4000 as the CSP
settles on the line x = 0 in the upper half-plane. For W i = 10, the
situation is somewhat different. There is a more rapid symmetry-
breaking transition again followed by oscillations in the velocity
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Fig. 3. (a) Contour plot of tr S̃, the perturbation from one random trial (b) Contour plot of the resultant perturbation to the vorticity field.
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Fig. 4. Contour plots of components of vorticity and polymer stress evolving from random initial data for W i = 10. (a)–(c) Vorticity at t = 100, 700 and 1400, respectively.
(d)–(f) tr S at t = 100, 700 and 1400, respectively. (g)–(i) S12 at t = 100, 700, and 1400, respectively.

field, but at t ≈ 1000 a new higher frequency of oscillation arises
as a second transition in the flow occurs. Beyond this time the flow
behaves more erratically, with new smaller vortices being formed
and destroyed in the flow. Pathlines of the flow at t = 2450, are
shown in Fig. 5(e). The transition to these newdynamics appears to
occur as the vestigial vortex center at (π/2, π/2) is first destroyed.
The dynamics of the vortex centers will be considered further in
Section 3.3.

Fig. 5(b) shows the rate of viscous dissipation, D = β−1 
|∇u|

2 dx for W i = 5, 6, and 10 for 0 < t < 2000. These
graphs show that D initially decreases as the solutions go to the
near-symmetric states and increases during the transition to asym-
metry. For W i = 10 (lower curve) we also see that the onset of the
additional flow oscillations is reflected in the viscous dissipation of
the fluid. For W i = 10 both u and D show complicated but near-
periodic temporal behavior. In fact, the temporal Fourier spectrum
of u (orD) is controlled by two dominant frequencies; see Fig. 6(d).
To explain the decrease in D as W i increases we note that as W i

is increased, ∇u ∼
1

W i near extensional points in the flow (as in
TS2007).

In 90 of the 100 random trials (for W i = 10) that were per-
formedwith initial data given by Eq. (7) the behavior of the flow is
as reported above. Namely, after an initial near-symmetric period
(roughly 10 < t < 100) there is a first transition to an asymmet-
ric state with a single-quadrant dominant vortex and at t ≈ 1000
higher-frequency oscillations arise in the flow (though these donot
break the dominance of the single-quadrant vortex). In these tri-
als each of the 4 quadrants contained the preferred vortex with
roughly the same proportion. Fig. 6(a)–(c) shows the velocity at
a point, u(π/4, π/4, t), for 5 random trials in which the lower
left vortex was preferred. Fig. 6(a) shows the initial behavior: on
0 < t < 10 the flow rapidly converges to a near steady state
(similar to that seen in Fig. 4(a), (c), and (e)), between 100 <

t < 200 the flow becomes asymmetric and there are slow oscilla-
tions. Fig. 6(b) shows these slow oscillations for 500 < t < 1000.
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Fig. 5. (a) The first component of the velocity field at a fixed point versus time (u(t) = u1(π/4, π/4, t)) for W i = 5 (upper curve), 6 (middle curve), and 10 (lower curve).
(b) The viscous dissipation versus time for W i = 5 (upper curve), 6 (middle curve), and 10 (lower curve). (c)–(e) Select pathlines of the velocity field at late times for (c)
W i = 5 (d) W i = 6 and (e) W i = 10.
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Fig. 6. (a)–(c) The first component of the velocity field at a fixed point versus time (u(t) = u1(π/4, π/4, t)) for W i = 10 in 5 different trials where lower left vortex is
dominant. Note differences in axes. (d) The temporal spectrum of u(t) forW i = 10 from the 5 trials with the transform taken over late times. Twomain dominant frequencies
ω1 and ω2 are highlighted.

Beyond t & 1000, higher-frequency oscillations emerge, and
Fig. 6(c) shows these oscillations on top of the slow oscillations for
1500 < t < 2000. Fig. 6(d) shows the temporal Fourier trans-
form of u taken over 1000 < t < 2000. The dominant frequen-
cies ω1 and ω2 are marked and all other large activated modes are
sums, differences, and harmonics of these two frequencies. These
frequencies ω1 and ω2 correspond to periods of τ1 ≈ 330 and
τ2 ≈ 55. Similar periods are seen for all of the trials with a single-
quadrant vortex. The simulations indicate that ω1 ≈ 0 for W i = 5
with ω1 increasing in W i. The second frequency ω2 only arises for

W i & 9. These high-frequency oscillations lead to very complicated
dynamics in the flow as can be seen in the late-time plots of the
vorticity and stress, see Fig. 4(c), (f), and (i).

In 10 of the 100 random trials the dominant vortex does not
relax to a single quadrant but instead cycles around the four
quadrants. In these two trials the longer period is now τ1 ≈

750 while the shorter period (still arising as additional higher-
frequency oscillations in the flow) was again τ2 ≈ 55. This cycling
vortex has significant consequences for mixing in the flow, as will
be discussed in Section 4.
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Fig. 7. (a) For W i = 10, plots of the velocity u1(π/2, π/2, t) as a function of time for five random trials, the inset plot is a close-up on 0 < t < 25. (b)–(c) Select pathlines
of the velocity at t = 4, 100, and t = 1000, respectively from one of the random trials. The dotted lines are at x, y = π/2, π/2. Note that at t = 4, the dot is very slightly to
the upper right of the center of the elliptic point of the pathlines, and at t = 100, it has returned to the center.

Changes in background forcing can also cause symmetry-
breaking transitions and can be more predictive than changes in
the initial data. In fact if one modifies f to have a slightly dominant
quadrant (and then evolves the flow from isotropic initial data) the
corresponding vortex will become dominant in the flow evolution.
We did not find a way to predict which quadrant will become
dominant from the random initial data; indeed the cycling vortex
is evidence that prediction is difficult.

3.3. Fixing of elliptic points

The transition to an asymmetric state which occurs as the
hyperbolic stagnation point in the flow moves away from the
origin was discussed in Section 3.1. We now consider the behavior
of the flow at the vortex centers of the background force
located at (±π/2, ±π/2). Fig. 7(a) shows the velocity at u =

u1(π/2, π/2, t) on 0 < t < 1200 for 5 trials evolving from
random initial data andW i = 10. The inset figure shows a close-up
on 0 < t < 25. In each of these trials the velocity at (π/2, π/2)
is not zero initially, due to the effect of the perturbation, but
does converge rapidly toward zero and remains near zero well
into the flow evolution. This ‘‘pinning’’ occurs for all values of the
Weissenberg number (W i ≤ 10 were simulated). For W i . 4.8
the flow remains symmetric while for W i & 4.8 the flow will
eventually become asymmetric. Additionally, beyond W i & 9 the
velocity eventually begins to oscillate beyond some critical time.
Fig. 7(b)–(d) show select pathlines of the velocity at t = 4, 100,
and 1000, respectively for one of the random trials shown in Fig. 7
(a). The dotted lines on each figure are at x, y = π/2, with a
dot at (π/2, π/2). In Fig. 7(b) the center (or elliptic point) of
the vortex is slightly perturbed away from the dot, due to the
initial perturbation given in the polymer stress and the resultant

perturbation to the velocity field. In Fig. 7 (c) the vortex center
coincideswith (π/2, π/2), as prescribed by the steady background
force, i.e. the flow locally becomes slaved to the background
force. However, by t = 1000, in Fig. 7(d) the perturbation has
grown sufficiently to move the center of the vortex away from
(π/2, π/2). The second transition in the flow, which occurs for
W i & 9 and involves the introduction of a higher frequency of
oscillations, appears to coincide with the loss of this pinning of the
vortex centers to the background force. This apparent ‘‘pinning’’
and subsequent loss of pinning is interesting because there are
no obvious symmetries in the equations which account for this
initial preservation of symmetry and pinning of the velocity to the
background force. It may be evidence of an underlying dynamical
structure which ties the behavior of the flow to these components
of the background force.

4. Mixing

Although for 5 . W i . 9 there are time-periodic transient
oscillations, the long-time behavior of the flow is steady. Beyond
W i ≈ 9 the long-time behavior of the flow is time-dependent
and hence we consider how the addition of polymer stress affects
mixing. We focus here on W i = 10 but consider the effect
of increasing W i in Section 4.4. In the following sections we
discuss the mixing between the four quadrants (Section 4.1),
effective diffusion (Section 4.2), and compute Lyapunov exponents
(Section 4.3). In each of these sections we use passive particles in
the flow to quantify mixing.

4.1. Mixing from the four quadrants

Fig. 8 shows how the higher-frequency oscillations in the flow
along with symmetry breaking can produce fluid mixing. In [23]
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Fig. 8. 4-rollmillmixing: panels (a) and the inset figure in panel (b) show Lagrangian particle distributions from the numerical simulations (using 65,536 particles). Solutions
evolve from random initial data, simulation yields stable vortex rotating through all four quadrants. Particles originating in quadrants I (upper right) through IV (lower right)
are colored blue, green, red, and yellow, respectively at t = 2000. Particle distribution for W i = 10 at t = 2150 and t = 3000, respectively. (b) The percentage of particles
of each color in quadrant I over time, 2000 < t < 3200. The dashed line at 1/4 shows the nearly equal representation of all quadrants over long times. τ1 is the slow period.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

particle mixing was discussed, but not quantified, for a simulation
where there was a dominant vortex, and it was shown that outside
the dominant vortex there is some mixing due to the transition
to asymmetry, and after the onset of the higher-frequency
oscillations in the flow the fluid mixes more freely outside the
stable vortex (i.e. in 3 of the 4 quadrants). A more global mixer is
obtained when the dominant vortex cycles in all four quadrants.
Here we consider a simulation where the dominant vortex cycles
through all four quadrants. The particles are introduced into the
flow at t = 2000 in the flow simulation; at this point the symmetry
has been broken and higher-frequency oscillations are present.We
subdivide the 2π-periodic cell into quadrants, label fluid particles
blue, green, red, and yellow (quadrants I through IV, respectively),
and track them in the flow, for t > 2000. In Fig. 8(a) and inset
(b) we see the location of the particle tracers at t = 2150 and
t = 3000 respectively. At t = 2000 the dominant vortex is moving
between quadrants II and I, cycling clockwise with a full cycle in
about 750 time units. Fig. 8(b) shows the percentage of each color
in quadrant I as a function of time.We see that for t & 3000 there is
a roughly equal representation of particles from all four quadrants
in the upper right quadrant.

4.2. Effective diffusivity

A relevant measure of mixing is how good the flow is at
dispersing particles across large length scales. We quantify this
by the effective diffusivity of passive particles. To measure this,
we tile the plane with periodic copies of the flow u and allow
the passive particles to move freely in R2. Next we compute the
mean-square displacement of the particles from the origin over
time. Fig. 9(a) and (c) show the location of the particles in two
different flows at t = 1600 and t = 1000 respectively. Fig. 9(a)
arises from a simulation where the particles evolve in a flow with
a single-quadrant vortex (the lower right one in this case). The
10,000particles are initially distributed randomly in [1, 1.05]2. The
particles avoid the stable vortex which leads to the gaps seen in
the figure. Fig. 9(b) is a plot of the mean-square displacement over
time, where ⟨X2

⟩ = mean(x2+y2). The displacement is eventually
isotropic and the rate of growth of the x displacement is nearly
equal to the rate of growth of the y displacement; the correlation
between x and y shows very little growth. The effective diffusivity
(or rate of growth of ⟨X2

⟩, divided by 4) is approximately 0.025.
Fig. 9(c) shows results from a simulation where the particles

evolve in a flow with a clockwise-cycling dominant vortex. Here
there are no gaps in the particle distribution (as there are no visible

trapping regions in the flow); however the displacement is no
longer isotropic, but rather is much greater along the line y = x.
Fig. 9(d) again displays the mean-square displacement over time
and we see that the correlation ⟨xy⟩ is no longer zero. In this case
the diffusivity tensor D, given by 2Dij = ⟨xixj⟩, is

D =


0.044 0.039
0.039 0.044


.

The eigenvalues of D are 0.083 with eigenvector (0.707 0.707)T ;
and 0.005 with eigenvector (0.707 − 0.707)T . The larger eigen-
value gives the diffusivity along the line y = x, and is larger than
the isotropic value (from Fig. 9(a)) by a factor of nearly four. Thus
large-scale transport is more effective for the type of solution in
Fig. 9(c), but also much more anisotropic.

4.3. Lyapunov exponents and variance decay

4.3.1. Background
The effective diffusivity described in Section 4.2 is useful when

one has an array of rolls and it is desired to measure transport
across large scales. If the system consists of a single four-roll
mill, however, we need to resort to a more refined measure of
mixing quality that is better suited to chaotic mixing [38,39]. It
has long been appreciated that finite-time Lyapunov exponents
characterize mixing in smooth flows. The exponents describe
the rate of separation of nearby trajectories from a given initial
condition. Different initial conditions typically lead to different
finite-time Lyapunov exponents, since they depend on time,
though at large times they all converge to the same value for
a given invariant region. We can then speak of a probability
distribution function (PDF) of finite-time Lyapunov exponents by
starting trajectories at many different points. This PDF is obtained
numerically and averaged as described below to obtain the decay
rate of the variance of a passive scalar field advected by the flow
(see [40–45]).

The connection between Lyapunov exponents andmixing arises
from the stretching nature of chaotic flows: in incompressible
flows stretching necessarily implies compression in another
direction, and this compression amplifies gradients of a passive
scalar. Large gradients cause mixing to proceed at an accelerated
rate, since they greatly amplify the effect of molecular diffusion.

4.3.2. Computing the PDF of Lyapunov exponents
To compute a PDFof Lyapunov exponents,we first need to select

a set of particle trajectories that belong to a single invariant chaotic
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Fig. 9. (a) W i = 10 particle distribution in the plane for simulation with single stable vortex at t = 1600. (b) Mean-square displacement of particles over time. Diffusion is
isotropic (although avoids the stable vortex) and has a diffusion rate ≈ 0.10. (c) W i = 10 particle distribution in the plane for simulation with rotating vortex at t = 1000.
(d) Mean-square displacement of particles over time. Diffusion is much greater along y = x axis.

region. In our case, this region is determined by initializing 10,000
particles randomly distributed in [1, 1.05]2 at t = 2000, i.e. well
into the flow evolution, after the onset of the higher-frequency
oscillations. In the chosen simulation there is a dominant vortex in
the lower right quadrant. The particles are constrained to a single
2π-periodic box and after t = 1100 time units have filled up the
mixing region and lost their initial correlations. Fig. 10(a) shows
the position of these particles at t = 3100.

Next, we obtain the positive finite-time Lyapunov exponent by
evolving a small stencil of points around a reference trajectory.
We then calculate the Cauchy–Green deformation tensor by finite-
differencing the stencil, and use the tensor to find the Lyapunov
exponents [39]. Two exponents are obtained from the rate of
growth or decay of the two eigenvalues of the Cauchy–Green
tensor (by convention, this rate is divided by two). Because of
incompressibility, the exponents always have the samemagnitude
but with opposite signs, so wemay focus on the positive exponent.
Care is taken to ensure that the points in the stencil do not get so
far apart that the linear approximation breaks down.

Fig. 10(b) shows a histogram of the positive finite-time
Lyapunov exponents λ1 after 500 time units from the start of the
trajectories, with a Gaussian fit overlayed. The mean is converging
to λ̄1 ≈ 0.014, as shown in Fig. 10(c). In that figure we show
a large-time fit to λ̄1 + const./

√
t used to estimate the time-

asymptotic value λ̄1 of the mean finite-time Lyapunov exponent,
as in [46,47].

A plot of σ−2 given in Fig. 10(d) shows that σ ∼ t−1/2 for large
times, the form expected for a Gaussian distribution arising from
the additive process that yields the Lyapunov exponents. Note that

we assume that the Gaussian fit of the PDF is sufficient to estimate
the decay rate of variance of the passive scalar field. We do not
have sufficient data to attempt to find a more accurate form for
the Cramér function [40–45].

4.3.3. Decay rate of variance of the passive scalar field
From the mean λ̄1 ≈ 0.014 and standard deviation σ =

(α/t)1/2, we can estimate the decay rate γ of the variance of
a passive tracer stirred by our chaotic flow, following the ‘local
stretching theory’ [40–43,45]. In this theory, which has been
verified to a high degree of accuracy for variance decay [44], the
PDF of finite-time Lyapunov exponents is used to average the decay
of a representative ‘blob’ of passive scalar. The long-time decay rate
is then extracted using the saddle-point method. The ratio λ̄1/α ≈

.467 < 1 indicates that the variance decay rate is dominated by
‘zero stretching’ orbits, which implies that

γ = λ̄2
1/2α ≈ 0.0142/(2 × 0.03) ≈ 0.0033. (8)

(See for instance Eq. (61) in [43]withα = 1.) Thus, variance decays
on time-scales of 1/0.0033 ≈ 300 time units. The variance decay
rate γ ≈ 0.0033 is considerably slower than the infinite-time
Lyapunov exponent λ̄1 ≈ 0.014. This is typical of a ‘fluctuation-
dominated’ system such as this one (with λ̄1/α < 1): orbits with
low stretching values are weighed heavily and come to dominate,
thereby slowing the decay rate. This type of behavior is also
observed in simple micromixers [43].

The process is repeated for a simulation with a cycling vortex.
In this case the particles fill up the entire domain [0, 2π)2. The
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Fig. 10. (a) Initial mixing region containing 10,000 particles which evolved for t = 1100 time units. Particles were initially randomly distributed in [1, 1.05]2. (b) Histogram
of largest eigenvalue after evolving for 500 time units from initial distribution in (a), as well as a Gaussian fit. (c) Plot of λ̄1 the largest eigenvalue over time. (d) Plot of σ the
standard deviation of the distribution of the largest eigenvalue over time: σ ∼ t−1/2 .

mean Lyapunov exponent λ̄1 ≈ 0.0093 is smaller than in the
case of a dominant vortex. For large t the standard deviation is
approximately σ ≈ (α/t)1/2 with α ≈ 0.029. The net decay
rate of variance computed as in (8) is then 0.0015, about half the
value for the fixed vortex above. That the decay rate is smaller,
and thus the flow a slower mixer, for the situation with more
‘global’ chaotic behavior is not too surprising: there is no reason
to expect a faster decay just because the chaos is global. For most
practical applications, it is preferable to adopt the global mixing of
the cycling vortex in spite of the slower decay rate.

4.4. Higher Weissenberg number

The behavior of the flow at higher W i is qualitatively similar
to W i = 10 : there is a preferred vortex which is either stable
in a single quadrant or else it cycles through the four quadrants.
However, there are some differences in the nature of the flow.
Fig. 11(a) shows the velocity u1(3π/8, 3π/8, t) for W i = 10, 12,
15, 20, 30 over 1800 < t < 3000. For W i = 10 the velocity
appears to be quasi-periodic, but forW i = 12, 15 the flow seems to
become periodic. Fig. 11(b) shows the spectrum for the time-series
for W i = 12 which clearly indicates periodic dynamics. Beyond
W i & 20 the flow begins to exhibit more random behavior, as
reflected by amore broad-band spectrum, Fig. 11(c). Computations
of effective diffusivity show that the rate of diffusion decreases in
W i over the range 10 < W i < 30. Fig. 11(d) shows computations
of the finite-time Lyapunov exponents forW i = 10, 12, 15, 20, and
30; the figure shows λ̄1 and the insets show the converged values
for these exponents, fit to a curve λ̄1 + const. 1

√
t
as in Section 4.3. It

is non-monotonic in W i, with W i = 12 having the largest value.
The higher W i dynamics and consequences for mixing require
further study. There is no reason to expect monotonicity in W i in
such flow statistics as effective diffusivity or Lyapunov exponents,
but the transition from quasi-periodic to periodic to aperiodic
dynamics is puzzling and further evidence that this system is very
complicated.

5. Conclusions

The simulations described above are consistent with experi-
ments on viscoelastic instabilities in cross-channel flows [20], and
begin to give some information about the nature of these instabili-
ties. For sufficiently largeWeissenberg number the polymer stress
grows and concentrates along the outgoing streamlines of the ex-
tensional point in the flow. The polymer stress diffusion added in
our simulations both bounds and smooths the polymer stress al-
lowing for long-time simulations. Also along the incoming and out-
going streamlines additional vortices appear in the flow. Given a
small perturbation in the initial data which breaks the symmetry
of the initial four-roll mill structure of the flow, the polymer stress
will eventually begin to reconfigure, leading to asymmetric flow
states. The resulting velocity may have a largest dominant vortex
with the remaining vortices smaller in magnitude. Due to the rear-
rangement there is enhanced fluid mixing in the regions with the
smaller vortices.

During this process there are (up to) three time periods of
interest. The first is the initial phase where the polymer stress
is growing (for W i & 1). According to the local model in TS2007
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Fig. 11. (a) u1(3π/8, 3π/8, t) for W i = 10, 12, 15, 20, 30 over 1800 < t < 3000. Mean velocity is shifted vertically for clarity. (b, c) The temporal spectrum of u(t) for
W i = 12, 20. (d) Plot of λ̄1 over time for W i = 10, 12, 15, 20, 30. Inset plot gives converged value of λ̄1 .

the polymer stress grows exponentially in time at the extensional
points in the flow and will become unbounded, unless there is a
cut-off mechanism such as the finite extensibility of polymer coils
or stress diffusion. The second period of interest (for W i & 4.9)
follows after a period of relatively steady symmetric behavior. The
flow becomes asymmetric with slow oscillations in the velocity
field (with these oscillations increasing in W i) which dampen out
in time for 4.9 . W i . 9 as the flow becomes steady once again,
though in an asymmetric configuration. For W i & 9, the loss of
pinning of a vortex center previously fixed by the background force
coincides with the onset of a new higher frequency of oscillations
in the flow andmore complicated flow behaviors are seenwith the
continual destruction and creation of vortices. This new flow state
leads to significant mixing in the flow. For W i = 10 there is also a
set of stable solutions where the preferred vortex cycles clockwise
(or counter-clockwise) throughout the four quadrants.

The onset of these higher oscillations also leads to significant
mixing in the fluid. The mixing can be quantified by measuring
effective diffusions of particle tracers and Lyapunov exponents.
Increasing W i does not lead in a monotone fashion to more
complicated flow structures or more mixing. In fact there appears
to be a transition from quasi-periodic flow dynamics (for W i =

9, 10) to periodic dynamics (W i = 12, 15) and then aperiodic
dynamics (W i & 20). The higher W i dynamics will be investigated
in future work. Clearly, the full set of possible states for this
system is still largely unknown. We do see a forward bifurcation
to a multi-stable steady state for sufficiently large Weissenberg
number (W i & 4.8), as seen by Arratia et al. in [20]. In our

simulations the particular asymmetry is chosen by the initial data,
although the exact selection mechanism is unclear.

The FENE-P model [48] also shows similar transitions and flow
states. More detailed studies are ongoing. Future work includes
investigations into the origins of the instability via bifurcation
and stability analysis. More complicated behavior is also seen
upon increasing the degrees of freedom by considering a 16-roll
background force; this work is ongoing. Finally, other modes of
instability are available in three dimensions and we anticipate yet
richer behavior there [49].
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Appendix A. Numerical method

We solve the Stokes–Oldroyd-B systemwith polymer stress dif-
fusion, (1) and (2), with a pseudo-spectral method, [50]. The poly-
mer stress S is evolved using a second-order Adams–Bashforth–
Crank–Nicholson method. The initial data (symmetric positive
definite) for S is prescribed, and given S, the Stokes equation,
Eq. (1), is inverted in Fourier space for u. Given u, the nonlinear-
ities of the polymer stress evolution, Eq. (2), are evaluated using a
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smooth filterwhich is applied in Fourier space before the quadratic
terms aremultiplied in real space; see [51] for details. The polymer
stress equation, Eq. (2), is considered in the form

∂tS = νp△S + N(S,u),

where N(S,u) = −u · ∇S + (∇u S + S ∇uT ) −
1

W i (S − I). The
polymer stress is then discretized on the Fourier transform side

Ŝn+1
− Ŝn

△t
= −νp|k|2

Ŝn+1
+ Ŝn

2

+
1
2
[3N̂(Sn,un) − N̂(Sn−1,un−1)].

Note that νp ≡ 0 will yield the typical second-order Adams–
Bashforth scheme.We find that positive definiteness ismaintained
in all of our simulations and the time-steppingwas verified to have
second-order accuracy. For W i ≤ 10, with νp = 10−3 a spatial
discretization of n2

= 2562 is sufficient to resolve the spatial
accuracy to O(10−12), for the long times necessary for this study.
For W i > 10 we scale νp =

.01
W i , and there is some loss of accuracy,

however for W i ≤ 30, the spatial accuracy is still resolved to
O(10−4) with the diffusion scaled as above.

An additional component to our numerical study is the need
to track particles in the flow. We use second-order spatial
interpolation to obtain the velocity field between grid cells, and
update the particles with this velocity using a second-order
method.

Appendix B. Choice and calibration of model

In this studyweuse the Stokes–Oldroyd-B systemwith polymer
stress diffusion given by Eqs. (1) and (2). This model differs
from the standard Stokes–Oldroyd-B model by the addition of
the polymer stress diffusion term νp△S. In the derivation of the
Oldroyd-B model from kinetic theory [26] it is assumed that the
spatial diffusion of the probability density function is quite small
compared with the diffusion in phase space, and hence this term
is usually ignored. It is included here in an approximate form.
In [36] it was shown that a similar modification of the polymer
stress equation can be justified from microscopic principles (at
least for steady solutions) and will yield smooth solutions for the
polymer stress as long as the polymer stress remains bounded. In
our simulations we see that the addition of this term keeps the
polymer stress bounded and smooth dynamically as well, whereas
for νp = 0 the polymer stress will grow at least exponentially at
extensional points in the flow for sufficiently large Weissenberg
number. We choose the size νp to so that the solutions to the
Stokes–Oldroyd-B model with polymer diffusion compare well
with solutions which maintain finite extensibility. These solutions
come from the FENE-P model described below.

FENE (Finitely Extensible Nonlinear Elastic) models are amodel
of viscoelastic fluids which incorporate finite extension of polymer
coils in their derivation. In the FENE model [27] the response of a
polymer coil is no longer a linear Hookean spring, as for Oldroyd-B,
but is given by Warner’s force law [52]

F =
κR

1 − (R2/ℓ2)
,

where κ is the spring constant, R is the end to end vector
representing the polymer coil, and ℓ is the maximum allowed
extension length. This force law penalizes distension of the
polymer coils (given by the end to end vector R). However, unlike
Oldroyd-B, this model does not close under the macroscopic
assumptions and therefore computations of the full FENE model
require a coupling of the microscopic scale, to simulate the
polymers, with themacroscopic flow field. These computations are

prohibitively expensive in general. A simple way to obtain a closed
macroscopic model is via pre-averaging, i.e. choosing a force law
of the form

F =
κR

1 − (⟨R⟩
2 /ℓ2)

,

where the brackets indicate taking the average over the probability
density function of R. This yields the closed macroscopic FENE-P
model [48] which does give a finite extension length. This artificial
cut-off of tr S, however does not smooth the polymer stress
sufficiently to make long-time computations reasonable, [28].

Simulations of FENE-P were done in TS2007 in a 2D periodic
extensional flow with the four-roll mill geometry, to compare di-
rectly with the similar results for the standard Stokes–Oldroyd-
B model. In these simulations tr S remained bounded for all
Weissenberg number. However singularities still arise exponen-
tially in time in the polymer stress gradient for sufficiently large
Weissenberg number. These singularities appeared as either cusps
(1/2 . W i . 1) or corners (W i & 1). Although the FENE-P model
does maintain a finite polymer stress at all time, the singularities
in the polymer stress gradients cause the same numerical difficul-
ties as the Stokes–Oldroyd-B model for long-time simulations of
the dynamic equations, which suggests a potentially non-physical
cut-off mechanism.

We note that the use of νp > 0 does not modify the polymer
stress significantly outside a small region of the extensional points
in the flow. In TS2007 it was observed that in the Oldroyd-Bmodel
for sufficiently large W i the polymer stress is diverging, but it was
also noted that tr S gets large on a set of exponentially shrinking
measure. Outside of this set tr S does reach a steady state. The
width of the divergent region decreases exponentially in time and
the net force from this region also decreases in time. This may
explain why the unsteady region (with νp = 0) has a decreasing
effect on the flow. Given this observation it seemsmore important
that the polymer stress in the modified system (νp > 0) behaves
qualitatively like the polymer stress from the Stokes–Oldroyd-B
system outside a small region near the stagnation point, than that
the exact details of the polymer stress match very close to the
stagnation point.

To demonstrate the effect of the parameter νp on the stress,
in Fig. 12(a) we plot S11(π, x) at t = 10 for W i = 5.0, and for
νp = 10−2, 10−3, 10−4. These simulations used S(0) = I as the
initial condition and the steady background forcing given in Eq.
(6). The polymer stress has reached an approximate steady state
at this time for νp > 0. We see that as the diffusion decreases the
peak of the polymer stress increases and the polymer stress ismore
concentrated at the stagnation point (y = π ).

In Fig. 12(b) we compare S11(π, y) at t = 10 for the case of
no diffusion (νp = 0), νp = 10−3, and FENE-P with length cut-
off ℓ2

= 50. We see that the polymer stress with νp = 10−3

is a nice match to the FENE-P simulation in terms of both the
maximum value and the overall spread of the polymer stress about
the stagnation point at y = π . We note that although there are
similarities in the behavior of the stress with the FENE-P cut-off
and with the numerical diffusion, these are distinct modifications
to the model which arise from different microscopic origins and
have different effects on the flow in general. For example; the FENE
model results in shear-rate-dependence in the normal stresses at
highW i, whereas the numerical diffusivity of the Oldroyd-Bmodel
does not affect the quadratic scaling with W i in homogeneous
flows.

By examining the decay of the Fourier spectrum (not shown)
for Ŝ11(π, k), W i = 5.0 at t = 10, for each level of diffusion with
n = 2562 spatial grid-points, we see that both νp = 10−2 and νp =

10−3 are well resolved at n = 2562, whereas to obtain the same
amount of accuracy for νp = 10−4 one would have to significantly
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Fig. 12. (a) Plot of S11(π, y) at steady state for W i = 5.0 comparing different amounts of diffusion, ranging from νp = 10−2, 10−3, 10−4 . (b) Plot of S11(π, y) at t = 10 for
W i = 5.0 comparing no diffusion (νp = 0), FENE-P (with length cut-off ℓ2

= 50), and diffusion νp = 10−3..

increase n, and hence computation time. The long-time simula-
tionswe are after can be accomplished reasonably using n2

= 2562

and hence the choice of νp = 10−3 is sufficient both for numerical
considerations and for the favorable comparison with FENE-P.
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