
Theory of active suspensions

David Saintillan and Michael J. Shelley

Abstract Active suspensions, of which a bath of swimming microorganisms is a
paradigmatic example, denote large collections of individual particles or macro-
molecules capable of converting fuel into mechanical work and microstructural
stresses. Such systems, which have excited much research in the last decade, exhibit
complex dynamical behaviors such as large-scale correlated motions and pattern for-
mation due to hydrodynamic interactions. In this chapter, we summarize efforts to
model these systems using particle simulations and continuum kinetic theories. Af-
ter reviewing results from experiments and simulations, we present a general kinetic
model for a suspension of self-propelled rod-like particles and discuss its stability
and nonlinear dynamics. We then address extensions of this model that capture the
effect of steric interactions in concentrated systems, the impact of confinement and
interactions with boundaries, and the effect of the suspending medium rheology.
Finally, we discuss new active systems such as those that involve the interactions
of biopolymers with immersed motor proteins, and surface-bound suspensions of
chemically-powered particles.

1 Background

The emerging field of soft active matter has excited much research in the last decade
in areas as diverse as biophysics, colloidal science, fluid mechanics, and statistical
physics (Ramaswamy, 2010; Marchetti et al, 2013; Saintillan and Shelley, 2013).
Broadly speaking, an active matter system consists of a large collection of individ-
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ual agents, such as particles or macromolecules, that convert some form of energy
(typically chemical) into mechanical work. This work, in turn, leads to microstruc-
tural changes in the system, either via direct contact interactions or through long-
ranged nonlocal interactions mediated by a suspending medium. Dramatic mani-
festations of these interactions include spontaneous unsteady flows on mesoscopic
length scales, the formation of complex spatiotemporal patterns, and the emergence
of directed collective motion. A wide variety of biological and physical systems
fall into this broad definition, including (see Fig. 1): suspensions of self-propelled
microorganisms such as motile bacteria and microscopic algae (Dombrowski et al,
2004; Cisneros et al, 2011; Dunkel et al, 2013b), the cell cytoskeleton and cyto-
plasm (Köhler et al, 2011; Shinar et al, 2011; Woodhouse and Goldstein, 2013),
solutions of motor proteins and biological filaments such as actin (Schaller et al,
2010) and microtubules (Nedelec et al, 1997; Sanchez et al, 2012; Sumino et al,
2012), reactive and driven colloidal suspensions (Paxton et al, 2004; Howse et al,
2007; Ebbens and Howse, 2010; Takagi et al, 2013; Bricard et al, 2013), reactive
emulsions (Thutupalli et al, 2011), and shaken granular materials (Kudrolli et al,
2008; Deseigne et al, 2010). A central question in all of these systems is the relation
between the mechanics and interactions on the scale of individual particles and the
ensuing self-organization and collective dynamics on the system scale (Vicsek and
Zafeiris, 2012).

(a) (b) (c) 

(d) (f) (e) 

Fig. 1 Examples of soft active systems: (a) Collective motion in a suspension of swimming Bacil-
lus subtilis (Aranson, 2013); (b) Dynamic clusters in bacterial swarms (Zhang et al, 2010); (c)
Spontaneous motion in suspension of microtubules and kinesin motors (Sanchez et al, 2012); (d)
Polar patterns in actin-myosin beds (Schaller et al, 2010); (e) Swarming of self-propelling liquid
droplets (Thutupalli et al, 2011); (e) Long-range order of vibrated polar disks (Weber et al, 2013).
(Reproduced with permission)
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Of particular interest to us here are so-called wet active systems, or active suspen-
sions, in which the active particles are suspended in a viscous fluid and long-ranged
hydrodynamic interactions are important. Numerous experiments have focused on
the dynamics in suspensions of swimming bacteria. Some of the observations that
have been made on this system include: the emergence of complex chaotic flows
on length scales much greater than the particle dimensions and characterized by
unsteady whirls and jets (Mendelson et al, 1999; Dombrowski et al, 2004; Tuval
et al, 2005; Cisneros et al, 2011; Dunkel et al, 2013b), enhanced particle veloci-
ties (Dombrowski et al, 2004), a transition to collective motion when the bacterial
density exceeds a certain threshold (Cisneros et al, 2011), local polar ordering (Cis-
neros et al, 2011), complex patterns and density fluctuations (Sokolov et al, 2009),
enhanced swimmer and passive tracer diffusion (Wu and Libchaber, 2000; Leptos
et al, 2009; Miño et al, 2013; Orozco et al, 2014), efficient fluid mixing (Kim and
Breuer, 2007; Sokolov et al, 2009; Kurtuldu et al, 2011), and bizarre rheologies cre-
ated by particle activity (Sokolov and Aranson, 2009; Giomi et al, 2010; Saintillan,
2010; Gachelin et al, 2013).

The key ingredient to understanding how hydrodynamic interactions can yield
such phenomena is the fluid flow set up by an isolated swimming particle. Because
of their small sizes and the highly viscous environments in which they live, biologi-
cal swimmers such as bacteria and microphytes move in the realm of low Reynolds
numbers, where inertial forces are negligible and viscous stresses dominate (Lauga
and Powers, 2009). In this regime, typical macroscopic mechanisms for locomo-
tion are inefficient (or even inoperative) and novel strategies have evolved that are
based on so-called non-reciprocal shape deformations (Purcell, 1977). Common lo-
comotion mechanisms are based on the beating or rotation of flagellar appendages,
or the propagation of metachronal waves on the surface of ciliated cells (Brennen
and Winet, 1977; Lauga and Powers, 2009). In the case of flagellar propulsion,
which is the typical mode of locomotion in motile bacteria such as Bacillus sub-
tilis and Escherichia coli as well as certain types of micro-algae including Chlamy-
domonas reinhardtii, the cyclic non-reciprocal deformation of the flagella imparts
a net propulsive thrust Fp on the surrounding fluid in the direction opposite the net
swimming motion, which we henceforth characterize in terms of a unit vector p. As
microorganisms are typically neutrally buoyant, or nearly so, the net force on the
particle must be zero in the limit of zero Reynolds number, and therefore an equal
and opposite viscous drag force Fd = −Fp is also exerted on the fluid by the other
parts of the organism (typically the cell body). This simple description of the forces
on a microorganism suggests that their net effect on the suspending fluid is a force
dipole, which drives a long-ranged flow with slow 1/r2 spatial decay in three di-
mensions, where r is the distance from the particle center. In the far-field, the fluid
velocity at relative position r from the particle can be expressed as

ud(r|p) = S(p) : ∇J(r) (1)

in terms of the fundamental solution J(r) = (1/8πη)(I+ r̂r̂)/r of the Stokes equa-
tions, or response to a localized point force (Kim and Karrila, 2005). In Eq. (1), η
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(c) 

(a)  Pusher  (e.g. E. coli) (b)  Puller  (e.g. C. reinhardtii) 

from out-of-focus particles. This allows detailed observa-
tion of the cells (mean speed U0 ¼ 134 !m=s) for
up to about 8 s at 50 fps. Using high-speed imaging
(500 fps), oscillations of the cell body, UðtÞ, become
evident [Fig. 1 (inset)]. The peak forward velocity is
4 times the mean value and can be negative during the
recovery stroke. The probability density function (PDF) of
the beat frequency f for 170 cell tracks is shown in Fig. 1.
The oscillations have a fairly narrow distribution with a
mean frequency !f ¼ 53$ 5 Hz corresponding to a beat
cycle period T ¼ 1= !f ¼ 18:9 ms.

By simultaneously tracking swimming cells and passive
tracer particles (see video [15]), we measure the velocity
field induced by the cells by translating and rotating the
instantaneous tracer particle measurements to a common
coordinate system based on cellular orientation. Swimmer
trajectory segments with large curvature or irregular beat
frequencies are excluded [19]. The beat-cycle averaged
velocity field is measured by imaging the cells at a frame
rate comparable to the cell beat frequency (50 fps), thus
capturing the net motion over a cycle. The velocity field
resulting from 560 cell tracks is shown in Fig. 2(a), where
the swimmer motion is to the right and solid lines are
instantaneous streamlines [20].

While the general shape of the flow field has some
qualitative similarities to a force dipole (‘‘stresslet’’) ap-
proximation [1], several unexpected features are apparent
[6]. The location of the hyperbolic stagnation point far
away from the anterior of the cell is surprising, since it
typically is thought to be located between the centers of
drag (body) and thrust (flagella). Two strong vortices are
visible lateral to the organism (associated with the fla-
gella), while two weaker vortices appear far from the cell
body beyond the separatrix of the hyperbolic point.

The fluid-air interfaces of the liquid film are nearly
stress-free, which minimizes velocity gradients transverse

to the film. This effect along with comparability of the film
thickness and cell size (h=2R% 2) creates a quasi-2D
environment [21], where we expect longer-range hydro-
dynamic disturbances compared to 3D flows. Fluid veloc-
ity magnitude normalized by the mean swimmer speed,
u=U0, where u ¼ juj, is shown in Fig. 2(b) as a function of
radial distance from the organism, r=R, in various direc-
tions. Toward the posterior, fluid speed scales nearly as u%
r&1 up to 20 cell radii away, similar to a force dipole in 2D
[22], with slight deviations from u% r&1 likely due to
minor 3D effects. These results are consistent with similar
measurements in 3D that show the expected u% r&2 scal-
ing [6]. In the lateral direction, the velocity magnitude
passes through a local minimum when traversing the para-
bolic stagnation points (vortex), before recovering u% r&1

scaling in the far field. Similarly, in front of the cell, fluid

FIG. 1 (color online). Probability density function (PDF) of
flagellar beat frequencies, f, measured from unicellular alga
(C. reinhardtii) swimming in quasi-2D liquid films ( !f ¼ 53$
5 Hz). Inset: velocity oscillations of a single swimming cell
measured at 500 fps (red circle), where the maximum velocity
is 4 times the mean value (solid blue line, 134 !m=s).

FIG. 2 (color online). (a) The beat-cycle averaged velocity
field around a swimming C. reinhardtii (black disc) in the lab
frame, where the direction of travel is to the right toward the
hyperbolic stagnation point (green diamond). Solid (red) lines
are instantaneous streamlines and velocity vectors are shown on
a log scale [20]. (b) The fluid velocity magnitude in various
directions away from the cell demonstrates the predicted u%
r&1 scaling for a force dipole in 2D. Local minima correspond to
stagnation points encountered in some directions.
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Fig. 2 (a)-(b) Schematic diagrams of pusher and puller particles, of which E. coli and C. reinhardtii
are paradigmatic examples. The swimming direction is indicated by p, and the red arrows show
the direction of the induced fluid flow. (c) Experimental measurement of the flow field near an
individual E. coli, showing good agreement with an extensile dipole flow (Drescher et al, 2011).
(d) Experimental measurement of the time-averaged flow field near an individual C. reinhardtii,
showing a complex flow in the near field and good agreement with a contractile dipole flow in the
far field (Guasto et al, 2010). (Parts (c) and (d) reproduced with permission)

denotes the viscosity of the fluid, and the second-order tensor S, called the stresslet,
is the symmetric first moment of the stresses exerted by the particle on the fluid and
can be obtained as S(p) = σ0pp. Its magnitude is given by σ0 = ±|Fp|`, where `
is the distance between the points of application of the thrust and drag forces and
scales with the particle length. The sign of σ0 depends on the position of the thrust
and drag forces relative to the swimming direction: σ0 < 0 for a pusher particle that
exerts a thrust with its tail (such as B. subtilis and E. coli), whereas σ0 > 0 for a
head-actuated puller particle (such as C. reinhardtii). A simple force balance on the
cell body and based on Stokes drag also shows that the stresslet is linearly related to
the swimming speed Vs of the particle as σ0 ∝ Vsη`2. Schematic diagrams of pusher
and puller particles and their flows are shown in Figs. 2(a)–(b).

The elementary description of a swimming particle in terms of a force dipole
has been tested experimentally with relative success. As illustrated in Fig. 2(c),
Drescher et al (2011) used particle-image velocimetry to measure the flow field
around isolated E. coli cells, and found good agreement with the flow field predicted
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by Eq. (1) with a negative stresslet, although strong noisy fluctuations were reported
in the far-field where the velocity field is the weakest. Similarly, Guasto et al (2010)
and Drescher et al (2010) observed the flow field driven by C. reinhardtii: they un-
covered a complex near-field flow structure that is best captured by a set of three
off-centered point forces (corresponding to the cell body and two anterior flagella),
but confirmed that the far-field flow can again be modeled as a dipole flow with a net
positive stresslet. Guasto et al (2010) also noted that the flow around C. reinhardtii
is time-periodic, with period equal to the duration of a swimming stroke, and in
fact even reverses direction over the course of one stroke: we will not consider such
time-dependence in the following discussion and only focus on the effect of the net
time-averaged flow. Recent theoretical models, however, have suggested that such
unsteady dynamics can lead to synchronization and novel instabilities as a result of
hydrodynamic interactions (Fürthauer and Ramaswamy, 2013; Leoni and Liverpool,
2014).

Knowledge of the velocity field driven by an isolated particle forms the basis for
the modeling and study of hydrodynamic interactions between swimmers. While
this description has been used to consider pair interactions (Ishikawa et al, 2006;
Liao et al, 2007; Gyrya et al, 2010), it can also be deployed to model large-scale
suspensions. Hernández-Ortiz et al (2005) developed a minimal swimmer model
in which a self-propelled microorganism is represented as a rigid bead-rod dumb-
bell. Propulsion arises as a result of a “phantom flagellum” exerting a force on the
fluid at an off-centered point along the swimmer axis, causing the translation of the
dumbbell at a velocity Vs = |Fp|/2ζ , where ζ = 6πηa is the drag coefficient of
each bead of radius a, and where hydrodynamic interactions between the two beads
have been neglected. Because the propulsive force exerted by the flagellum is ex-
actly balanced by the total drag on the dumbbell, the leading effect on the fluid is
again that of a force dipole. This model was applied to simulate confined suspen-
sions of many swimmers (Hernández-Ortiz et al, 2005, 2009), where it was shown to
capture many qualitative features observed in experiments on bacterial suspensions,
including enhanced diffusivities and large-scale correlated flows. More elaborate
simulation models have also been developed over the years, though at the cost of in-
creased computational complexity. This includes Pedley and coworkers’ Stokesian
dynamics simulations of spherical “squirmers” (Blake, 1971), which propel as a re-
sult of a prescribed surface slip velocity and are an appropriate model for ciliated
microorganisms: these simulations also showed enhanced motile particle and tracer
diffusion (Ishikawa and Pedley, 2007; Ishikawa et al, 2010), as well as the develop-
ment of large-scale coherent structures (Ishikawa and Pedley, 2008; Ishikawa et al,
2008; Evans et al, 2011). In recent work, we also developed detailed simulations of
active suspensions based on a slender-body model for hydrodynamically interacting
rod-like particles (Saintillan and Shelley, 2007, 2012). In this model, the particles
propel themselves by exerting a prescribed tangential stress on some part of their
surfaces, and both pusher and puller particles can be modeled by an appropriate
choice of the stress distribution. In semi-dilute suspensions of pushers, large-scale
chaotic flows taking place near the system size were observed (Fig. 3), together with
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Fig. 4 Numerical simulation of a semi-dilute suspension of self-propelled slender-rods above the
onset of collective motion (Saintillan and Shelley, 2012): (a) snapshot of the particle distribution,
showing coherent dynamic clusters with local orientation order; (b) hydrodynamic velocity field in
a plane. (Adapted with permission)
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Fig. 3 Numerical simulation of a semi-dilute suspension of self-propelled slender-rods above the
onset of collective motion (Saintillan and Shelley, 2012): (a) snapshot of the particle distribution,
showing coherent dynamic clusters with local orientational order; (b) hydrodynamic velocity field
in a plane. (Adapted with permission)

increased swimming speeds and strong particle diffusion; no such dynamics were
found in suspensions of pullers, which always remained uniform and isotropic.

Such particle simulations are useful for testing models and for detailed compari-
son with experiments, but are often too costly to simulate systems of realistic sizes
and only yield limited analytical insight into the physical mechanisms involved.
Another approach, which circumvents these limitations, consists in modeling the
suspension as a continuum. Several continuum models have been developed for
active suspensions, using a variety of approaches. In a seminal paper, Simha and
Ramaswamy (2002) extended phenomenological models for passive polar liquid
crystals to account for activity. They wrote down an evolution equation for the po-
larization field n(r, t), which will be defined more precisely in Sec. 2.1, in which
terms accounting for self-propulsion, diffusion, and rotation by the mean-field flow
were included. This evolution equation was coupled to the Navier-Stokes equa-
tions for the fluid motion, forced by an active stress term capturing the effect of
the force dipoles on the fluid. Based on this model, they predicted in the Stokesian
limit a long-wave instability of globally aligned suspensions. Other phenomeno-
logical models have been proposed to account for additional effects such as steric
interactions, which are included via ad hoc terms constructed based on symmetries
(Aranson et al, 2007; Wolgemuth, 2008; Mishra et al, 2010; Dunkel et al, 2013a,b;
Marchetti et al, 2013).

In another related approach, which is the focus of this chapter, kinetic equa-
tions are self-consistently derived from a first-principles mean-field description of
interactions between particles using coarse-graining. Such a model was introduced
in our previous work (Saintillan and Shelley, 2008a,b), and is based on a Smolu-
chowski equation for the conservation of the particle probability distribution func-
tion, in which the fluxes describe the linear and angular motions of the particles in
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the mean-field hydrodynamic flow driven by self-propulsion. This flow is obtained
by solution of the Stokes equations forced by a coarse-grained active stress tensor
similar to that used in the model of Simha and Ramaswamy (2002). This coupled
system of partial differential equations can then be analyzed theoretically in the
vicinity of theoretically relevant base states, or integrated numerically to investi-
gate dynamics in the nonlinear regime. Extensions to include more complex effects
such as an external flow (Alizadeh Pahlavan and Saintillan, 2011), chemotaxis in a
chemical field (Ezhilan et al, 2012; Lushi et al, 2012), or steric interactions at high
concentrations (Ezhilan et al, 2013) have also been described.

In this chapter, we review our recent theoretical work on the continuum mod-
eling of active suspensions. We begin in Sec. 2 by deriving a basic kinetic model
for a suspension of slender swimmers interacting via force-dipole hydrodynamic
interactions, where we show that the dynamics can be captured by a Smoluchowski
equation for the particle distribution function, coupled to the Stokes equations for
the fluid velocity in which the effect of the force dipoles on the flow is shown to
amount to an effective active stress. After discussing theoretical and computational
results on this model, a number of extensions are presented in Secs. 3 and 4, and we
conclude in Sec. 5.

2 A simple kinetic model

2.1 Smoluchowski equation

In this section, we present the basic kinetic model introduced in our previous work
(Saintillan and Shelley, 2008a,b), which shares similarities with classic models
for suspensions of passive rod-like particles (Doi and Edwards, 1986; Koch and
Shaqfeh, 1989). A very similar theory for active suspensions was independently
proposed by Subramanian and Koch (2009).

In the present model, we describe the configuration of the suspension at time t
in terms of the probability distribution function Ψ(r,p, t) of finding a particle with
center-of-mass position r and orientation p (with |p|2 = 1). It is normalized as

1
V

∫
V

∫
Ω

Ψ(r,p, t)dpdr = n, (2)

where V is the volume of the system, Ω is the unit sphere of orientations, and n =
N/V is the mean number density in a suspension of N particles. Conservation of
particle number requires that Ψ(r,p, t) satisfy the Smoluchowski equation (Doi and
Edwards, 1986)

∂tΨ +∇r · (ṙΨ)+∇p · (ṗΨ) = 0, (3)

where ∇p = (I− pp) · (∂/∂p) denotes the gradient operator on the unit sphere.
The flux velocities ṙ and ṗ describe the linear and angular motions of the particles
in the suspension. The linear velocity of a particle is expressed as the sum of the
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single-particle swimming velocity Vsp (assumed to be unaffected by interactions)
and the local background fluid velocity u(r, t), and also includes a contribution from
translational diffusion with diffusivity D (assumed to be isotropic):

ṙ =Vsp+u−D∇r lnΨ . (4)

The rotational velocity of a swimmer is modeled as

ṗ = (I−pp) · (βE+W) ·p−d∇p lnΨ . (5)

The first term on the right-hand side captures rotation of an anisotropic particle in the
local flow according to Jeffery’s equation (Jeffery, 1922), where E = (∇u+∇uT )/2
and W = (∇u−∇uT )/2 denote the rate-of-strain and vorticity tensors, respectively.
The parameter β characterizes the shape of the particle, with β = (a2−1)/(a2 +1)
for a spheroid of aspect ratio a, and β ≈ 1 for a slender particle (Bretherton, 1962).
Rotational diffusion is also included with diffusivity d.

Equations (4)–(5), and in particular the contributions from the mean-field flow
u(r, t), are strictly valid for a linear flow field, and provide an accurate estimate of
the velocities if the characteristic length scale of the flow is much greater than the
particle size, a good approximation in a sufficiently dilute suspension. If velocity
variations on the scale of a particle are significant, these can be captured using the
more accurate Faxén laws for a slender body (Batchelor, 1970a) or a spheroidal
particle (Kim and Karrila, 2005).

The physical origin of the diffusive terms in Eqs. (4)–(5) deserves some discus-
sion. While Brownian diffusion due to thermal fluctuations can be significant in
colloidal systems (Howse et al, 2007; Takagi et al, 2013), it is generally negligible
in suspensions of biological swimmers. As demonstrated in experiments (Drescher
et al, 2011; Garcia et al, 2011), diffusion still occurs in biological systems owing
to shape imperfections or noise in the swimming actuation. In a dilute suspension,
these effects can be described in terms of constant diffusion coefficients D0 and
d0. We note, however, that rotational diffusion alone leads to a random walk in
space owing to its coupling with the swimming motion, resulting in enhanced spa-
tial diffusion at long times by a mechanism similar to generalized Taylor dispersion
(Brenner, 1979, 1980), with a net translational diffusivity given by D = D0+V 2

s /6d
in three dimensions (Berg, 1983; Saintillan and Shelley, 2007). In addition to diffu-
sion due to noise, fluid-mediated hydrodynamic interactions between particles can
also result in hydrodynamic diffusion in semi-dilute and concentrated systems. At
fairly low concentrations (n`3 . 1), a simple argument based on pair interactions
suggests that d ∝ n`3, from which D ∝ (n`3)−1 (Underhill et al, 2008; Subramanian
and Koch, 2009), and such scalings have indeed been verified in particle simulations
(Saintillan and Shelley, 2007).

While the distribution function Ψ(r,p, t) fully characterizes the configuration of
the particles in the suspension, it is often useful to consider its orientational mo-
ments, which have easy physical interpretations. Of particular interest are the ze-
roeth, first and second moments, which correspond respectively to the concentra-
tion field c(r, t), polar order parameter n(r, t), and nematic order parameter Q(r, t).
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These are defined as

c(r, t) = 〈1〉, n(r, t) =
〈p〉

c(r, t)
, Q(r, t) =

〈pp− I/3〉
c(r, t)

, (6)

where 〈·〉 denotes the orientational average:

〈h(p)〉=
∫

Ω
h(p)Ψ(r,p, t)dp. (7)

Evolution equations for c, n, and Q can be obtained by taking moments of the
Smoluchowski equation (3):

Dtc =−Vs∇ · (cn)+D∇
2c, (8)

Dt(cn) =−Vs [∇ · (cQ)+(1/3)∇c]+D∇
2(cn)

+(cIn−〈ppp〉) : (βE+W)−2dcn,
(9)

Dt(cQ) =−Vs[∇ · 〈ppp〉− (I/3)∇ · (cn)]+D∇
2(cQ)

+βc[E · (Q+ I/3)+(Q+ I/3) ·E]
+ c[W ·Q−Q ·W]−2β 〈pppp〉 : E−6dcQ,

(10)

where Dt ≡ ∂t +u ·∇ is the material derivative. Unsurprisingly perhaps, these equa-
tions involve the third and fourth moments 〈ppp〉 and 〈pppp〉 of the distribution
function, and can therefore only be used together with a closure model, unlike the
more general and self-contained description in terms of Ψ(r,p, t). Several closure
models have been proposed in the past, usually based on various approximations
such as weak or strong flow or near isotropy (see references in Saintillan and Shel-
ley, 2013), or by interpolating between such states (Hinch and Leal, 1976).

2.2 Mean-field flow and active stress tensor

Evolution of the Smoluchowski equation requires knowledge of the mean-field hy-
drodynamic velocity in the suspension. While this velocity could include a contribu-
tion from an external flow (Alizadeh Pahlavan and Saintillan, 2011), we are primar-
ily interested in the flow driven by the suspended particles themselves as they propel
through the fluid. In a dilute suspension, the velocity u(r, t) can then be obtained as
the superposition of all the point dipole flows induced by individual particles. For
a given distribution Ψ(r,p, t), the velocity at point r is therefore expressed as a
convolution:

u(r, t) =
∫

V

∫
Ω

ud(r− r0|p)Ψ(r0,p, t)dpdr0, (11)

where ud(r|p) is the single-particle dipolar flow given in Eq. (1). This single-particle
flow can be shown to satisfy the Stokes equations forced by a dipole singularity as
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−η∇
2ud(r)+∇qd(r) = σ0pp ·∇δ (r), ∇ ·ud(r) = 0, (12)

where δ (r) is the three-dimensional Dirac delta function and qd denotes the pres-
sure. By combining Eqs. (11) and (12), it is straightforward to show that the mean-
field velocity u(r, t) and its associated pressure field q(r, t) satisfy

−η∇
2u(r, t)+∇q(r, t) =

∫
V

∫
Ω

σ0pp ·∇δ (r− r0)Ψ(r0,p, t)dpdr0, (13)

together with the incompressibility condition ∇ · u(r, t) = 0. After manipulations,
this can be rewritten

−η∇
2u(r, t)+∇q(r, t) = ∇ · 〈σ0pp〉. (14)

The second-order tensor inside the divergence on the right-hand side is the local
configurational average of the particle stresslet: 〈σ0pp〉= 〈S(p)〉. Following classic
theories for the stress in particle suspensions (Irving and Kirkwood, 1950; Batche-
lor, 1970b), it can be interpreted as an extra stress induced by the particles, which
we term active stress and define more precisely as

ΣΣΣ a(r, t) = 〈σ0(pp− I/3)〉. (15)

We have made the tensor traceless by removing an isotropic tensor that only modi-
fies the pressure but has no effect on the flow. It can be seen that the active stress is
related to the nematic order parameter as: ΣΣΣ a(r, t) = σ0c(r, t)Q(r, t), implying that
active stresses vanish in the isotropic state and are caused by the nematic alignment
of the swimmers. We also note that the active stress has the same tensorial form as
the Brownian stress ΣΣΣ b(r, t) = 〈3kT (pp− I/3)〉 in suspensions of passive rod-like
polymers (Doi and Edwards, 1986). One significant difference, however, lies in the
sign of the stresslet strength σ0, which can be negative for pusher particles. Note
also that the expression for the active stress tensor (15), which we derived here for a
distribution of point dipoles, is in fact more general and can be used for a suspension
of finite-sized axisymmetric particles such as swimming rods (Saintillan and Shel-
ley, 2013), though these more detailed derivations yield additional contributions of
higher-order in volume concentration (Hohenegger and Shelley, 2011; Ezhilan et al,
2013).

In the following, we find it useful to non-dimensionalize lengths by the charac-
teristic scale lc = `/ν , where ν = N`3/L3 = n`3 is an effective volume fraction, and
time by tc = Vs/lc. The distribution function Ψ is also scaled by the mean number
density n. Upon these scalings, the dipole strength σ0 appearing in the active stress
tensor is replaced by a dimensionless signed coefficient α = σ0/Vsη`2.

To recapitulate, the nondimensional kinetic system – which we term Model A –
is given by
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∂tΨ + ∇r · (ṙΨ)+∇p · (ṗΨ) = 0, (16)
ṙ = p+u−D∇r lnΨ , (17)
ṗ = (I−pp) · (βE+W) ·p−d∇p lnΨ , (18)

−∇
2u + ∇q = ∇ · 〈αpp〉 and ∇ ·u = 0, (19)

whose nondimensional coefficients, aside from the shape factor β , are the signed
O(1) parameter α , and the rescaled diffusion coefficients D and d.

Model A is very similar structurally to those developed by Doi and coworkers to
describe the dynamics of passive rod suspensions (Doi and Edwards, 1978, 1986).
The primary differences are the additional contribution (i.e., p) to Eq. (17) for ṙ
coming from locomotion, and that α > 0 for the dipolar extra stress in passive rod
suspensions. That said, the origins of the dipolar stress are very different in the two
cases. For active suspensions it arises from the swimming of pushers or pullers,
while in the passive case it arises from rotational thermodynamic fluctuations which
we have neglected here. For both passive and active systems, the existence of global
“entropy solutions” has recently been proved by Chen and Liu (2013).

2.3 The conformational entropy

Much insight can be gained into the differences between pusher and puller sus-
pensions by consideration of the system’s conformational entropy (Saintillan and
Shelley, 2008b), which we define in terms of the distribution function as

S (t) =
∫

V

∫
Ω

Ψ
Ψ0

ln
(

Ψ
Ψ0

)
dpdr, (20)

where Ψ0 = 1/4π denotes the constant value of Ψ for a uniform isotropic suspen-
sion. It is straightforward to show that the entropy is a positive quantity and that
it reaches its minimum of zero only for Ψ ≡Ψ0. The entropy S (t) therefore pro-
vides a global measure of the level of fluctuations in the system, both orientational
and spatial. When linearized about the uniform isotropic state Ψ0, it reduces to the
squared L2 norm in r and p. Using the kinetic equations above, one can derive an
expression for its rate of change:

4π
d
dt

S (t) =− 6
α

∫
V

E : Edr−
∫

V

∫
Ω

[
D|∇r lnΨ |2 +d|∇p lnΨ |2

]
Ψ dpdr. (21)

The last term in Eq. (21), which is always negative, arises due to diffusive processes
which tend to homogenize the suspension and decrease the entropy. However, the
first term on the right-hand side, which arises from active stresses in the fluid, can
be either positive or negative depending on the sign of α . In a suspension of pullers
(α > 0), this term is negative definite and drives the system towards equilibrium. In
the case of pushers (α < 0), however, the active stress term becomes positive and
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Fig. 4 (a) Real and imaginary parts of the complex growth rate l for a plane-wave perturbation
with respect to the uniform isotropic state as function of wavenumber k in the absence of diffusion.
(b) Evolution of the concentration field c(r, t) in a three-dimensional periodic simulation of a
suspension of pushers, starting near the state of uniform isotropy.

2.4 Stability of the uniform isotropic state

Re(l )

n`2Vs

The uniform isotropic state Y ⌘ Y0 = 1/4p is an exact steady solution of the
above continuum model, whose stability can be investigated. Perturbing Y0 by a
plane wave of the form Ỹ(p,k)exp(ik · r+l t) and linearizing the governing equa-
tions yields an eigenvalue problem for the growth rate l and eigenmode Ỹ that can
be solved numerically (Saintillan and Shelley, 2008a,b). In agreement with the anal-
ysis on the configurational entropy in Sec. 2.3, solutions of the eigenvalue problem
reveal fundamentally different dynamics in suspensions of rear- and front-actuated
swimmers. In puller suspensions, the real growth rate Re(l ) is found to be negative
at all wavenumbers, indicating that the uniform isotropic state is stable to infinitesi-
mal perturbations. This is indeed borne out by particle simulations in the dilute and
semi-dilute regimes (Saintillan and Shelley, 2012), which never show the emergence
of collective motion. On the other hand, the solution of the eigenvalue problem for
a suspension of pushers, which is shown in Fig. 4(a)–(b), shows a positive growth
rate at low wavenumbers, suggesting that long-wavelength fluctuations can amplify
as a result of hydrodynamic interactions. Moreover, Fig. 4(a) shows that the fastest
growing linear modes occur near k = 0, yielding that linear does not yield a domi-
nant length-scale independent of system size.

Consideration of the eigenmodes demonstrate that this linear instability is not
associated with the growth of concentration fluctuations (c̃ = 0), but rather with the
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Fig. 4 (a) Real and imaginary parts of the complex growth rate l for a plane-wave perturbation
with respect to the uniform isotropic state as function of wavenumber k in the absence of diffusion.
(b) Evolution of the concentration field c(r, t) in a three-dimensional periodic simulation of a
suspension of pushers, starting near the state of uniform isotropy.
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The uniform isotropic state Y ⌘ Y0 = 1/4p is an exact steady solution of the
above continuum model, whose stability can be investigated. Perturbing Y0 by a
plane wave of the form Ỹ(p,k)exp(ik · r+l t) and linearizing the governing equa-
tions yields an eigenvalue problem for the growth rate l and eigenmode Ỹ that can
be solved numerically (Saintillan and Shelley, 2008a,b). In agreement with the anal-
ysis on the configurational entropy in Sec. 2.3, solutions of the eigenvalue problem
reveal fundamentally different dynamics in suspensions of rear- and front-actuated
swimmers. In puller suspensions, the real growth rate Re(l ) is found to be negative
at all wavenumbers, indicating that the uniform isotropic state is stable to infinitesi-
mal perturbations. This is indeed borne out by particle simulations in the dilute and
semi-dilute regimes (Saintillan and Shelley, 2012), which never show the emergence
of collective motion. On the other hand, the solution of the eigenvalue problem for
a suspension of pushers, which is shown in Fig. 4(a)–(b), shows a positive growth
rate at low wavenumbers, suggesting that long-wavelength fluctuations can amplify
as a result of hydrodynamic interactions. Moreover, Fig. 4(a) shows that the fastest
growing linear modes occur near k = 0, yielding that linear does not yield a domi-
nant length-scale independent of system size.

Consideration of the eigenmodes demonstrate that this linear instability is not
associated with the growth of concentration fluctuations (c̃ = 0), but rather with the

Fig. 4 (a) Real and imaginary parts of the complex growth rate λ for a plane-wave perturbation
with respect to the uniform isotropic state as function of wavenumber k in the absence of diffusion.
(b) Evolution of the concentration field c(r, t) in a three-dimensional periodic simulation of a
suspension of pushers, starting near the state of uniform isotropy.

can increase fluctuations in the system by driving S away from zero. This suggests
that pusher suspensions may be subject to the spontaneous growth of fluctuations
whereas pullers are not, and this fundamental difference between the role of active
stresses in pusher and puller suspensions is further examined by a more detailed
stability analysis as described next.

2.4 Stability of the uniform isotropic state

The uniform isotropic state Ψ ≡Ψ0 = 1/4π is an exact steady solution of the above
continuum model, whose stability can be investigated. Perturbing Ψ0 by a plane
wave of the form Ψ̃(p,k)exp(ik · r+ λ t) and linearizing the governing equations
yields an eigenvalue problem for the growth rate λ and eigenmode Ψ̃ that can be
solved numerically (Saintillan and Shelley, 2008a,b). In agreement with the analy-
sis on the configurational entropy in Sec. 2.3, solutions of the eigenvalue problem
reveal fundamentally different dynamics in suspensions of rear- and front-actuated
swimmers. In puller suspensions, the real growth rate Re(λ ) is found to be negative
at all wavenumbers, indicating that the uniform isotropic state is stable to infinitesi-
mal perturbations. This is indeed borne out by particle simulations in the dilute and
semi-dilute regimes (Saintillan and Shelley, 2012), which never show the emergence
of collective motion. On the other hand, the solution of the eigenvalue problem for
a suspension of pushers, which is shown in Fig. 4(a), shows a positive growth rate
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at low wavenumbers, suggesting that long-wavelength fluctuations can amplify as
a result of hydrodynamic interactions. Moreover, Fig. 4(a) shows that the fastest
growing linear modes occur near k = 0, implying that the linear analysis does not
yield a dominant length scale independent of system size.

Consideration of the eigenmodes demonstrates that this linear instability is not
associated with the growth of concentration fluctuations (c̃ = 0), but rather with the
local nematic alignment of the particles. More precisely, the nematic order tensor
parameter for the unstable eigenfunctions can be shown to be of the form

Q̃(k) = k̂k̂⊥+ k̂⊥k̂, (22)

where k̂ denotes the wave direction, and k̂⊥ is any direction orthogonal to k̂. In the
language of liquid crystals, such spatial fluctuations of the nematic order parameter
correspond to “bend” modes, as also predicted in other studies based on moment
equations (Baskaran and Marchetti, 2009), and such bend modes are indeed visible
in particle simulations such as that of Fig. 3(a).

An important result also shown in Fig. 4(a) is the decay of the growth rate with
increasing wavenumber, which even results in stabilization at high k. As discussed
by Hohenegger and Shelley (2010), this indicates that there exists a critical system
size above which pusher suspensions become unstable. In dimensional variables,
this criterion is written more specifically as

Lν
`
≥ 2π

kc
, (23)

where kc is the dimensionless wavenumber for which λ (kc) = 0 and is a function of
α and of the diffusion coefficients. The condition (23) states that instability occurs
either in dense systems (large ν) or in large systems (large L/`), and this criterion
was systematically tested and confirmed in our previous particle simulations (Sain-
tillan and Shelley, 2012), where good agreement was found for the value of kc.

Another interesting interpretation for this instability involves the active power
input generated by the swimming particles in the fluid. The global power input P(t)
was introduced in our previous work (Saintillan and Shelley, 2008b), where we also
used an energy balance on the momentum equation (19) to show that it equates the
rate of viscous dissipation in the fluid:

P(t) =−α
∫

V

∫
Ω
[E(r, t) ::: pp]Ψ(r,p, t)dpdr =

∫
V

2E(r, t) ::: E(r, t)dr. (24)

Assuming a cubic periodic domain of unit length L, a simple application of Parse-
val’s identity allows one to rewrite P(t) in terms of the Fourier coefficients Ẽ(k, t)
of the rate-of-strain tensor, which themselves can be related to the Fourier coeffi-
cients Q̃(k, t) of the nematic order tensor parameter:

P(t) = L3
∑
k
|Ẽ(k, t)|2 ≈ L3α2

2 ∑
k
|(I− k̂k̂) · Q̃(k, t) · k̂|2, (25)
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Fig. 5 (a) Real and imaginary parts of the complex growth rate l for a plane-wave perturbation
with respect to the uniform isotropic state as function of wavenumber k in the absence of diffusion.
(b) Evolution of the concentration field c(r, t) in a three-dimensional periodic simulation of a
suspension of pushers, starting near the state of uniform isotropy.

fore provides a direct measure of instability in simulations. Its evolution in particle
simulations was considered in our previous work and is shown in Fig. ??

P(t)
N

(19)

Fig. 5 Time evolution of the active power input per particle in direct numerical simulations of
pushers and pullers in a cubic periodic box of size L = 10` at various volume fractions ν . (Adapted
with permission from Saintillan and Shelley, 2012)

where the last term was obtained assuming that c(r, t)≈ 1, a valid approximation in
the linear regime. From the form of the right-hand side, it is clear that only Fourier
modes of the form of (22) will contribute to the power input, which can be inter-
preted as the total energy of the unstable bend modes in the system. The growth
of P(t) therefore provides a direct measure of instability. Its evolution in particle
simulations was considered in our previous work (Saintillan and Shelley, 2012) and
is shown in Fig. 5 for suspensions of pushers and pullers at various concentrations.
In agreement with the theoretical prediction, the power only grows in sufficiently
concentrated suspensions of pushers. In suspensions of pullers, it decreases below
the dilute value corresponding to isolated swimmers, suggesting that particles in fact
reorganize in a subtle way so as to suppress bend modes in the system.

After the initial transient growth, a statistical steady-state is reached as a result
of diffusive processes, which counteract the instability as expected from Eq. (21).
No steady solution is observed in simulations, which instead show unsteady chaotic
dynamics with the formation of dense and nematically aligned particles clusters
that quasi-periodically form and break up over time as shown in Fig. 4(b). As we
argued above, the growth of concentration fluctuations is not predicted by the linear
analysis, but it can be explained as a result of nonlinearities. Equation (8) for the
concentration field, which is written in dimensionless variables as

∂tc+u ·∇c−D∇
2c =−∇ · (cn), (26)

shows that concentration fluctuations can only grow through the source term on the
right-hand side, which arises from self-propulsion. The mechanism can be under-
stood as follows (Saintillan and Shelley, 2008b): (i) the linear instability for the
nematic order parameter first causes local alignment of the particles, which is pri-
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marily nematic but also generally involves some weak polarity due to random fluc-
tuations in the initial condition; (ii) this net polarity then leads to concentration of
particles as a result of self-propulsion in regions where ∇ · (cn) < 0. Interestingly,
this also suggests that no concentration fluctuations would arise in a suspension of
either apolar or non-self-propelled active particles (so-called “shakers”), for which
the source term on the right-hand side of Eq. (26) is strictly zero.

As a side note, the case of non-motile shakers is particularly revealing as to the
linear structure of an active suspension. A shaker suspension is simply an ensemble
of immotile force dipoles that are moved by whatever velocity field they produce by
their collective flows (i.e., set Vs = 0 in Eq. (4) while retaining the active stress in
the momentum equation). Such a suspension is a model for the dynamics produced
by microtubule bundles that extend in length due to motor-protein activity (Sanchez
et al, 2012). Immotile force dipoles could also be produced by elaborations of the
synthesis process that produces the motile chemically-powered motors discussed in
Sec. 4.2. This simple model again satisfies the entropy equality (21). Betterton et al
(2014) further showed that in this case the linearized model simplifies remarkably
by introducing a vector streamfunction ΦΦΦ and the vorticity ωωω . Then we have

∇
2ΦΦΦ = ωωω and ∇

2ωωω = h, (27)

where Betterton et al (2014) showed that h satisfies the simple dynamics

∂th =−
(α

5
+6d

)
h+D∇

2h. (28)

For plane-wave perturbations, this equation has the simple growth-rate relation
λ (k) = −(α/5 + 6d)−Dk2, and hence can show instability only if particle ex-
tensile flows are sufficiently strong to overcome rotational diffusion, that is, when
α <−30d. More to the point though, Eq. (28) shows that an active suspension has a
very elementary underlying linear structure of a simple exponential growth, driven
by activity and damped by rotational diffusion, and regularized by spatial diffusion.
Note that unlike the motile case (Hohenegger and Shelley, 2010), there is no loss of
solutions, at a finite k, to the plane-wave eigenvalue problem when d = 0.

3 Extensions and applications

3.1 Concentrated suspensions

Model A described above is based on a dilute assumption and only includes mean-
field hydrodynamic interactions between particles. While this approximation is valid
at sufficiently low volume fractions (Saintillan and Shelley, 2012), it is likely to
break down in concentrated systems in which particle-particle contact interactions
become significant. Including such interactions is important to accurately capture
dynamics in bacterial suspensions, as the onset of collective motion in experiments
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is typically observed at high densities (Cisneros et al, 2011); in fact, it has some-
times even been suggested that contacts may be the dominant effect leading to col-
lective dynamics. While accounting for contacts in particle simulations is feasible
(Butler and Shaqfeh, 2002; Saintillan and Shelley, 2007), albeit at a high compu-
tational cost, it is not as straightforward within the context of our kinetic theory as
such interactions are discrete and pairwise. Aranson et al (2007) proposed a contin-
uum model to account for steric interactions based on a collision operator having
the effect of aligning contacting particles, in qualitative agreement with experimen-
tal observations. To correctly account for collisions, however, their model requires
knowledge of the pair distribution function in the suspension, which was approxi-
mated as the product of two singlet distributions. Similarly, Baskaran and Marchetti
(2010) developed a kinetic theory for self-propelled hard rods in two dimensions
accounting for pairwise collisions. They were able to show that the leading effect
of collisions is to modify the orientational flux by addition of an aligning torque of
the same form as the classic Onsager potential for excluded volume interactions in
passive rod-like polymer suspensions (Onsager, 1949).

Based on this observation, Ezhilan et al (2013) adapted the kinetic model dis-
cussed in Sec. 2 to account for contact interactions in a mean-field framework simi-
lar to that used in classic theories for passive rods. Specifically, following the work
of Doi and Edwards (1978), we account for contacts by including an effective steric
torque derived from a potential U :

U(r,p, t) =
∫

Ω
Ψ(r,p′, t)K(p,p′)dp′, (29)

where the interaction kernel is taken to be the phenomenological Maier-Saupe ker-
nel: K(p,p′) = −U0(p · p′)2 with strength constant U0 (Maier and Saupe, 1958).
Inserting the expression for K into Eq. (29) and taking the orientational gradient
yields a new expression for the rotational velocity:

ṗ = (I−pp) · (βE+W+2U0cQ) ·p−d∇p lnΨ , (30)

where it can be seen that the new term causes alignment of p along the principal
axes of the nematic order tensor parameter Q associated with positive eigenvalues,
i.e., along the local preferred directions of nematic alignment.

The first effect of this additional torque is to allow for non-isotropic nematic base
states as volume concentration increases. As shown by Ezhilan et al (2013), the
transition from isotropy to nematic alignment, which is the same as that occurring
in liquid crystalline systems, is governed by the dimensionless group ξ = 2U0ν/d
representing the ratio of the steric alignment torque to rotational diffusion. All spa-
tially uniform base states can be shown to be axisymmetric and of the Boltzmann
form

Ψ(r,p, t) =Ψ0(θ) =
exp(δ cos2θ)

2π
∫ π

0 exp(δ cos2θ ′)dθ ′
, (31)

where θ denotes the angle between p and the direction of nematic alignment, which
must be specified. Here, the parameter δ governs the shape of the orientation distri-
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bution and is a zero of the function

g(δ ) = δ −
∫ π

0 sinθ(3cos2 θ −1)exp(δ cos2θ)dθ∫ π
0 sinθ exp(δ cos2θ)dθ

. (32)

It is easy to see that δ = 0 is a solution, which corresponds to the isotropic base
state. However, when ξ ≥ ξc ≈ 13.46, there exist two other zeroes corresponding
to nematic orientation distributions, as illustrated in Fig. 6(a) showing the three
branches of the function δ (ξ ). Positive values of δ are achieved on branch 2, which
corresponds to the strongest nematic alignment; negative values are also possible
along branch 3 and indicate a preferential alignment in the plane normal to the
axis of symmetry. A simple consideration of the total steric interaction energy on
each branch suggests that above ξc the energy is minimized on branch 2, which is
consistent with the concept of an isotropic-to-nematic transition as concentration
increases.

This energy argument, however, does not imply that such base states are hydro-
dynamically stable. To investigate the stability of these branches, the kinetic model
of Sec. 2 must also be modified to account for additional stresses that arise at finite
concentrations: first, passive viscous stresses due to the interactions of the particles
with the local flow (Hinch and Leal, 1976) have to be included and lead to an ef-
fective increase in the viscosity of the suspension, unlike active stresses that tend to
decrease it in suspensions of pushers (Saintillan, 2010). Second, steric interactions
also lead to an additional stress contribution which was previously calculated for
slender particles (Doi and Edwards, 1986; Ezhilan et al, 2013). Using this model,
Ezhilan et al (2013) numerically studied the stability of the various base states, and
results are summarized in Figs. 6(b)–(c) for both pusher and puller particles. In the
case of pushers, the isotropic base state (branch 1) becomes unstable with increas-
ing concentration before the isotropic-to-nematic transition occurs: this instability
is of hydrodynamic origin and simply corresponds to the basic instability described
in Sec. 2.4. The case of pullers, however, is more interesting. It is found that the
isotropic base state loses stability at ξ = 15 when branch 1 intersects branch 3 as
a result of steric interactions only. Branch 3, however, is always unstable. Branch
2, which has the lowest steric interaction energy, is stable at first but eventually
also loses stability when ξ increases as result of hydrodynamic modes. This high-
concentration instability of puller suspensions is quite surprising and is corroborated
by numerical simulations. To our knowledge it has never been observed in experi-
ments, perhaps because biological pullers are scarce and the few species that exist,
including Chlamydomonas, have nearly spherical bodies and are therefore unlikely
to undergo the isotropic-to-nematic transition.

While the model described above provides a qualitative understanding of the ef-
fect of collisions on the dynamics, it is based on a number of strong approximations
and on a phenomenological mean-field description of steric interactions in terms of
the Maier-Saupe potential. First, the validity of this description can be questioned
and should ideally be tested using particle simulations. These are quite expensive
in the concentrated regime even for passive rods (Cobb and Butler, 2005) and have
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Fig. 6 (a) Isotropic-to-nematic transition in a concentrated suspension as the parameter ξ =
2U0ν/d is increased. Branch 1 is isotropic, whereas branches 2 and 3 are nematic. (b)–(c) Sta-
bility diagrams for pusher and puller suspensions, showing the stability of the three branches in
each case. (Adapted with permission from Ezhilan et al, 2013)

yet to be developed for self-propelled particles in three dimensions. Second, the de-
scription of the stresses typically used in the kinetic models such as those discussed
herein is based on a dilute assumption, resulting in stresses that depend linearly or
quadratically on density; a more accurate description of these stresses should ac-
count for multiple reflections between particles as well as multi-body interactions,
though models of this type have been limited to passive rod suspensions (Shaqfeh
and Fredrickson, 1990). Finally, the kinetic theory outlined above used a single ve-
locity field u to describe the transport of the fluid and particle phases. This is a good
approximation in the dilute limit but is likely to break down at high volume concen-
trations, where a two-fluid approach would be more appropriate (Wolgemuth, 2008;
Nott et al, 2011).



Theory of active suspensions 19

3.2 Confinement

Experimental evidence suggests that interactions with rigid boundaries in confined
environments can be highly complex and play an important role in the dynamics
and transport properties. Some examples of the complex effects that have been re-
ported under confinement include: accumulation of particles at boundaries (Berke
et al, 2008; Li and Tang, 2009; Gachelin et al, 2013), upstream swimming in chan-
nel flows (Hill et al, 2007), unexpected scattering dynamics (Kantsler et al, 2013;
Altshuler et al, 2013), modified diffusivities (Miño et al, 2011), circular swim-
ming trajectories (Lauga et al, 2006), and spontaneous flow transitions (Woodhouse
and Goldstein, 2012; Wioland et al, 2013). Modeling efforts on the role of bound-
aries and the effects of confinement, however, have been relatively scarce. Analyt-
ical models and numerical simulations indeed predict concentration at boundaries
(Hernández-Ortiz et al, 2005, 2009; Costanzo et al, 2012; Chilukuri et al, 2014),
both as a result of hydrodynamic interactions (Spagnolie and Lauga, 2012) and be-
cause of particle self-propulsion, though models for collision rules are often chosen
in an ad hoc manner.

The modeling of wall interactions in continuum theories has also been relatively
limited. In phenomenological theories for active liquid crystals, boundary condi-
tions are often formulated in terms of anchoring conditions for the nematic order
parameter (Voituriez et al, 2005; Edwards and Yeomans, 2009; Ravnik and Yeo-
mans, 2013), which are borrowed from classic liquid crystal theories but do not
account for the unique nature of wall interactions due to self-propulsion. Within the
context of the kinetic model of Sec. 2, a natural boundary condition to enforce at im-
penetrable walls consists in prescribing zero net translational flux in the wall-normal
direction (with unit normal N): N · ṙ = 0. Inserting Eq. (17) for the flux velocity, this
translates into a Robin boundary condition

Vs(p ·N)Ψ = DN ·∇rΨ , (33)

which expresses the balance between the swimming flux towards the wall and the
diffusive flux away from it, and this simple boundary condition has been shown to
capture many features observed in experiments. As a simple example, Ezhilan and
Saintillan (2014) analyzed the case of a suspension confined between two parallel
flat plates separated by a gap 2H in the limit of infinite dilution where hydrodynamic
interactions can be entirely neglected. Assuming the Taylor dispersion relation D =
V 2

s /6d for the translational diffusivity, the dimensionless Smoluchowski equation
(16) reduces to a simple partial differential equation expressing the balance of self-
propulsion, translational and rotational diffusion:

Pe cosθ ∂zΨ − 1
3 Pe2 ∂zzΨ = 1

2 ∇
2
pΨ . (34)

Here, z ∈ [−1,1] is the wall-normal coordinate, θ = cos−1(p ·N) is the polar an-
gle measured with respect to the wall-normal direction, and we have introduced a
swimming Péclet number comparing the relative magnitude of self-propulsion to
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Fig. 7 (a) Concentration profile, and (b) wall-normal polarization at steady state in a dilute suspen-
sion of particles confined between two parallel flat plates separated by H. Profiles were obtained by
numerical solution of Eqs. (34)–(35) for various values of Pe =Vs/2Hd. (Adapted with permission
from Ezhilan and Saintillan, 2014)

rotational diffusion: Pe = Vs/2Hd. Equation (34) should be solved subject to the
boundary condition (33), which simplifies to

Ψ cosθ − 1
3 Pe∂zΨ = 0 at z =±1. (35)

A numerical solution of Eqs. (34)–(35) was obtained by Ezhilan and Saintillan
(2014) and is shown in Fig. 7, where both the concentration c(z) and wall-normal
polarization mz(z) = c(z)nz(z) are plotted. A net accumulation of particles is ob-
served near both boundaries, in agreement with experiments (Berke et al, 2008) and
simulations (Hernández-Ortiz et al, 2005; Chilukuri et al, 2014). This accumula-
tion is accompanied by a net polarization towards the boundaries, and both effects
are found to become stronger as Pe decreases, which corresponds to an effective
decrease in translational diffusivity owing to the Taylor dispersion scaling. This ac-
cumulation and corresponding polarization are easily understood physically: any
particle inside the channel will tend to swim to the wall towards which it points and
accumulate there until rotational diffusion causes it to reverse polarity. Note that
this accumulation is not a result of hydrodynamic interactions with the boundaries,
though it has been suggested that hydrodynamic interactions can reinforce migra-
tion in pusher suspensions due to the reflection of the dipolar flow driven by the
swimmers (Berke et al, 2008). One interesting consequence of this net polarization
occurs when a pressure-driven flow is applied between the two plates: particles near
the walls rotate under the flow in such a way that they preferentially point upstream,
causing them to swim against the flow. This curious prediction is consistent with
experimental observations using bacteria in microfluidic devices (Hill et al, 2007;
Kaya and Koser, 2012; Shen et al, 2012), and has also been observed in simulations
(Nash et al, 2010; Chilukuri et al, 2014).

The effect of confinement has also been studied theoretically in closed domains.
Woodhouse and Goldstein (2012) posited that a suspension of “shakers” (i.e., par-
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while the others follow from symmetry and the traceless-
ness of Q. Equation (2) therefore implies Q0

rr and Q0
r!

each satisfy a (modified) Bessel equation in z ! 2!r,
viz. z2@2zQ

0
r" þ z@zQ

0
r" # ðz2 þ 4ÞQ0

r" ¼ 0, where !2!
dðrÞ=dðsÞ. Thus, Q0

r" / I2ð2!rÞ; since I2 is monotonic, the
boundary conditions imply Q0 ¼ 0 everywhere.

Now, perturb axisymmetrically: letQ ¼ #R, # ' 1, and
write u ¼ #v!̂ and E ¼ #e for the induced flow (which
has no radial component by incompressibility). Seek an
exponentially growing state such that @tR ¼ sR. Then, to
Oð#Þ, the perturbation obeys sR¼dðsÞr2R#4dðrÞRþ 1

2e.
To determine e, we employ the technique of Kruse et al. [9]
and write the Stokes equation as r ( ð# ~"Iþ2e#$0RÞ!
r (!tot¼0. The r component determines ~". The ! com-
ponent reads @r#

tot
r! þ ð2=rÞ#tot

r! ¼ 0, so, for#tot
r! analytic at

r ¼ 0, we find #tot
r! ¼ 0, i.e., er! ¼ ð$0=2ÞRr!. Finally,

err ¼ 0, as there is no radial velocity component. The
perturbation therefore satisfies

dðsÞLRrr ¼ ð4dðrÞ þ sÞRrr; (3)

dðsÞLRr! ¼
!
4dðrÞ þ s# $0

4

"
Rr!; (4)

which are still of Bessel form. When s >#4dðrÞ, Eq. (3)
has a solution in terms of I2, so boundary conditions imply
Rrr ¼ 0. Now, let % ! ð4dðrÞ þ s# $0=4Þ=dðsÞ and write
Eq. (4) as LRr! ¼ %Rr!. For %> 0, this again gives solu-
tions in terms of I2, and so Rr! ¼ 0. However, for %< 0
(i.e., sufficiently large $0), the solution is instead Rr! /
J2ð

ffiffiffiffiffiffiffiffi
#%

p
rÞ. Applying the boundary condition R0

r!ð1=2Þ ¼ 0
yields the eigenvalue % ¼ #4y20 in terms of y0 ) 3:054,
the first positive point satisfying J02ðy0Þ ¼ 0. This implies
that the homogeneous disordered state is unstable to a
spontaneously flowing mode when $> $*, where (in
physical units)

$* ’ 16&

c0

!
9:33

DðsÞ

L2 þDðrÞ
"
; (5)

which we verified numerically by simulations of Eq. (2).
Stability analysis in the unbounded case elicits instabil-

ity of a long-wavelength band when $0 > 16dðrÞ (see also
[17]), compatible with the L ! 1 limit of Eq. (5). This
illustrates the action of confinement as a strong constraint
on the available excitation modes, allowing for selection of
a single circulation mode as opposed to a band of wave
numbers. Similar spontaneous flows have been observed in
active nematic models under periodic conditions [13], but
the excited modes exhibit ‘‘laning’’ flows, as opposed to
the circulation seen here. To lend perspective, we consider
typical values of the material properties. The stress ampli-
tude can be expressed as $ ¼ f‘, where f is the (typically
pN) force exerted by motors and ‘ is the (typically &m)
separation of the opposing forces of the stresslet. For
micron-size rods, we expect DðrÞ + 0:01 s#1 and DðsÞ +

10#9 cm2=s, so, for system sizes L * 10 &m, rotational
diffusion dominates in Eq. (2). Then, for a fluid of the
viscosity of water in an idealized slab geometry, the insta-
bility will set in at c0 * 108 cm#3, corresponding to a
volume fraction well below 10#3.
In order to confirm that the circulating configuration is

steady at long times, wemust turn to simulations of the fully
nonlinear dynamics. In the following numerical studies, we
vary the dipolar activity $0 while fixing the diffusion con-
stants at dðrÞ ¼ dðsÞ ¼ 0:025 and use the eigendecomposi-
tion Q¼Sðnn#I=2Þ, where the order parameter S and
(headless) director n are the degree of local alignment
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FIG. 2 (color online). Numerical results beyond the spontane-
ous circulation threshold. (a),(b),(c) Simulated schlieren textures
of nematic order director n [i.e., density plot of ðnxnyÞ2]. Lighter
shades correspond to diagonally oriented filaments, darker
shades to horizontal or vertical filaments. (a) Steady circulation
with a central spiral defect at low activity (the left overlay shows
order field n), (b) steady central defect separation into a pair of
hyperbolic defects, and (c) snapshot of oscillatory behavior with
widely separated mobile defects. (d) Flow streamlines for low
activity, showing circulation about the system center; darker
streamlines indicate faster flow. (e) Enlargement of the nematic
director field structure in texture (b), showing two hyperbolic
defects. (f) Flow streamlines for high-activity oscillation asso-
ciated with texture (c), exhibiting off-center flow circulation. In
all cases, dðrÞ ¼ dðsÞ ¼ 0:025.
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Fig. 8 (a)–(b) Numerical simulation by Woodhouse and Goldstein (2012) of the spontaneous flow
in a two-dimensional shaker suspension confined in a circular domain and modeled using a closure
approximation: (a) shows Shlieren patterns of the nematic order director, where (b) shows flow
streamlines, with darker streamlines indicating faster flow. (c) Full numerical solution of Model A
for shakers in the same geometry, by Jhang and Shelley (2014). (Adapted with permission)

ticles that exert an active stress but for which Vs = 0) could serve as a basic model
for the dynamics of biopolymers moved by immersed motor-proteins. To simplify
the model, they assumed a uniform particle concentration (which is an allowable
state of the system), and employed a classical moment closure scheme of Hinch
and Leal (1976) to find an approximate dynamical equation for the nematic order
parameter Q. Evolving this equation in a circular two-dimensional domain, they as-
sumed a no-slip boundary condition on the background velocity, and the boundary
condition ∂Q/∂N = 0 for the nematic tensor, which is consistent with Eq. (33) af-
ter setting Vs = 0. Using numerical simulations, they identified the existence of a
bifurcation, with increasing active stress strength α , from an isotropic state with no
flow, to a unipolar vortical flow driven by suspension activity, as shown in Fig. 8(a)–
(b). Higher levels of active stress can lead to successive bifurcations with yet more
complex vortical flows, sometimes oscillatory, and with nematic orientation singu-
larities. Such vortical flows are indeed observed in experiments on confined drops
of cytoskeletal extracts (Woodhouse and Goldstein, 2013), as well as in drops of
confined suspensions (Wioland et al, 2013). Jhang and Shelley (2014) found consis-
tent results using the full unapproximated shaker suspension model, again using the
no-slip condition, and the no-flux boundary condition ∂Ψ/∂N = 0 on the bound-
ary of a circular domain; see Fig. 8(c). They also performed simulations in annular
enclosures.

Not only does confinement affect particle distributions in the dilute regime, but
it also modifies the way particles interact hydrodynamically. This is particularly ap-
parent in the case of strong confinement where the size of the particles is on the
order of the geometric dimensions of the domain, say the gap width in a Hele-Shaw
geometry. This situation was analyzed theoretically by Brotto et al (2013) using a
similar continuum kinetic theory as in Sec. 2 in the case of a two-dimensional mono-
layer of particles confined between two flat plates. As explained in their study, the
leading effects of confinement are two-fold. Firstly, as is well known from studies
on passive suspensions (Liron and Mochon, 1976; Bhattacharya et al, 2006), mo-
mentum screening by the rigid boundaries leads to the rapid decay as 1/r3 of the
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Fig. 9 Particles simulations of two-dimensional swimmer suspensions in a Hele-Shaw geometry,
based on the model of Brotto et al (2013): (a) large-head swimmers (β ′ < 0) form polarized density
waves with splay, whereas (b) large-tail swimmers (β ′ > 0) organize into active lanes circulating
around large-scale vortices. (Adapted with permission from Lefauve and Saintillan, 2014)

flow driven by the force dipole due to self-propulsion. On the other hand, the mo-
tion of the finite-sized swimmers relative to the fluid results in a mass dipole which
now decays as 1/r2 in confinement, as opposed to 1/r3 in bulk systems. On large
length scales, the disturbance flow due to this mass dipole is expected to dominate
interactions and is now expressed in two-dimensions as

um(r|p) = 1
2πr2 (2r̂r̂− I) ·χχχ. (36)

The dipole strength is proportional to the relative velocity between the swimmer
and the suspending fluid: χχχ = χ0[ṙ−u(r)], where the prefactor χ0 now scales as the
particle surface area in the plane of the flow and is independent of the propulsion
mechanism. Secondly, Brotto et al also argue that confinement can modify the way
particles respond to a given flow field: in particular, fore-aft asymmetric particles
(such as much flagellated swimmers) are expected to align not only with the velocity
gradient as in Jeffery’s equation (18) but also with the velocity itself as a result of the
lubricated friction with the neighboring walls. To capture this effect, they derived a
modified equation for the rotational flux velocity to read

ṗ = β (I−pp) ·∇ru ·p+β ′(I−pp) ·u−d∇p lnΨ . (37)

Here, the parameter β ′ depends on particle shape: it is zero for a fore-aft sym-
metric particle, positive for a “large-tail” swimmer that aligns with the flow, and
negative for a “large-head” swimmer that aligns against the flow. Based on these
effects, they derived a kinetic model similar to Model A and analyzed the stability
of the uniform isotropic base state. They uncovered a long-wave instability in sus-
pensions of large-head swimmers (for which β ′ < 0), which pertains to splay com-
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ponents of the nematic tensor above a certain level of activity. Their analysis was
subsequently refined by Lefauve and Saintillan (2014), who also performed direct
numerical simulations of point particles in two-dimensional geometries. Above the
threshold of instability, complex dynamics illustrated in Fig. 9 were observed that
differed significantly from those observed in unconfined suspensions: when β ′ < 0,
particles were found to arrange in longitudinal polarized waves with a net curvature
indicative of splay, whereas for β ′ > 0 they converged into active lanes circulating
around large-scale vortices. Recent numerical work on the same system by Tsang
and Kanso (2014) also predicted the formation of stable clusters when β ′ < 0, and
proposed an interpretation of β ′ in terms of flagellar activity.

3.3 Chemotaxis

The ability of swimming microorganisms to detect and respond to external stimuli
such as chemical fields is critical to biological functions such as nutrient and oxygen
uptake, toxin avoidance, colony growth, and cell-cell communication for gene reg-
ulation or aggregation. The method used by many bacteria to perform chemotaxis
(or directed migration along a chemical gradient) is a modulated run-and-tumble dy-
namics (Berg and Brown, 1972). Here, “runs” of directed bacterial swimming are in-
terspersed with random reorientations, or “tumbles”, resulting from the unbundling
and rebundling of their flagella. These arbitrary changes in swimming direction lead
to a random walk in space (Berg, 1983), which can be biased towards a particular
direction by modulating the frequency λ of tumbles. More specifically, a bacterium
that tumbles less frequently when it swims in the direction of increasing chem-
ical concentration will on average drift towards regions of higher concentration.
Run-and-tumble dynamics can be easily incorporated into the kinetic framework
discussed here. In particular, the Smoluchowski equation of Model A is modified to

∂tΨ +∇r · (ṙΨ)+∇p · (ṗΨ) =−λ (DtC)Ψ +
1

4π

∫
Ω

λ (DtC)K(p,p′)Ψ(r,p′, t)dp′.
(38)

Here λ is the tumbling frequency away from orientation p, and depends upon DtC =
∂tC+(u+Vsp) ·∇C, which is the rate-of-change of the chemical concentration C
along the swimming path. The function K(p,p′) is called the “turning kernel” and
captures correlations between pre- and post-tumbling orientations. One expects K
to be independent of frame orientation and so depend only upon p ·p′. Subramanian
et al (2011) proposed the form K(p,p′) = BeBp·p′/4π sinhB, which yields small
changes in orientation for large values of B, and an uncorrelated, uniform post-
tumble orientation as B→ 0. The fluxes and stresses of Model A are taken to be
unchanged.

Motivated by experiments (Sokolov et al, 2009), recent studies have considered
chemotaxis in an externally imposed gradient of a chemoattractant, say oxygen.
Koch and coworkers (Subramanian et al, 2011; Kasyap and Koch, 2012, 2014) fo-
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The particle velocity ẋ includes swimming at constant speed
(nondimensionalized to unity) in the axis direction p (|p| = 1),
translation by the fluid velocity u. (In the KS model [5],
swimmer speed is linear in the chemical gradient.) The
angular velocity ṗ follows Jeffrey’s equation [15] where
E = (∇xu + ∇xuT )/2 is the rate-of-strain tensor, and W =
(∇xu − ∇xuT )/2 is the vorticity tensor. For rodlike swimmers,
the shape factor is γ ∼ 1.

The fluid velocity u(x,t) produced by the suspension
satisfies the Stokes equations driven by an “active” stress "a

arising from particle locomotion:

−∇2
x u + ∇xq = ∇x · "a, ∇x · u = 0, (4)

"a(x,t) = α

∫
dp$(x,p,t)pp. (5)

The active stress is an orientational average of the force dipoles
αpp the cells exert on the fluid [9], where α is an O(1) constant
by our rescaling. A cell that self-propels by front actuation (a
puller) has stresslet strength α > 0, and a rear-actuated cell
(pusher) has α < 0. The case of “neutral” cells (α = u = 0) is
the closest this model approaches the KS [5] and RT models
[8,12].

We first illustrate the effect hydrodynamics has on aggre-
gation. From nonlinear simulations of Eqs. (1)–(6), Fig. 1
shows the swimmer concentration %(x,t) and mean orientation
n =

∫
dp$/% at late times, having started near uniform

isotropy, for neutral, puller, and pusher suspensions. All
share a dominant self-aggregation instability, but differing
(or no) hydrodynamic interactions. Neutral swimmers show
aggregation and pattern coarsening. Pullers show limited
aggregation into circular spots kept apart by nontrivial fluid

flows. Pushers create complex fluid flows and fragmented
aggregation regions.

These behaviors can be understood through a stability anal-
ysis of uniform isotropic suspensions. For simplicity, consider
rodlike (γ = 1) swimmers and a quasistatic chemoattractant
field Pe−1∇2C − β1C = −β2%, which slaves C to %. The
tumbling frequency is simplified to λ(p) = λ0(1 − χp · ∇C).
A steady state is $0 = 1/4π (% = 1), u = 0, and C0 = β1/β2.
Perturbations of the form ϵ($̃(p,k),C̃(k)) exp(ik · x + σ t)
yield

(σ + λ0 + ik · p)$̃ = λ0

4π

(
ikχβ2(k̂ · p)
β1 + k2Pe−1

+ 1

)

%̃

− 3α

4π
(k̂ · p)p · (I − k̂k̂)"̃pk, (6)

where %̃ =
∫

dp′$̃ ′ and k = kk̂. Since "̃p =
∫

dp′$̃ ′p′p′,
this is a linear eigenvalue problem for $̃ and σ . The first
term on the right-hand side (RHS) is chemotactic (C) and
has unstable dynamics restricted to the zeroth azimuthal mode
on |p| = 1. The second is hydrodynamic (H), with unstable
dynamics restricted to the first azimuthal mode. This yields
uncoupled relations for growth rates σC,H ,

2
λ0

= R

[
2 + aC log

(
aC − 1
aC + 1

)]
− 1

ik
log

(
aC − 1
aC + 1

)
,

4k

3iα
= 2a3

H − 4
3
aH +

(
a4

H − a2
H

)
log

(
aH − 1
aH + 1

)
, (7)

where aC,H = (σC,H + λ0)/ik and R = χβ2/(β1 + k2/Pe).
We refer to these as the chemotactic and hydrodynamic
relations, respectively. The first induces growth in concen-
tration fluctuations, while the second increases orientational

FIG. 1. (Color online) Chemotactic suspensions at large times, t = 3000. Swimmer concentration % (top) and mean direction n (bottom)
for (i) chemotactic neutral swimmers (u = 0), and (ii) % (top), fluid streamlines and velocity field u (bottom) for chemotactic pullers. (iii), (iv)
% (top), streamlines and u (bottom) for chemotactic pushers. Parameters β1 = β2 = 0.25, Pe = 20, γ = 1, DT = DR = 0.025. Parameters λ0

and χ are indicated in Figs. 2(c) and 2(d) for cases (i)–(iii) and are λ0 = 5,χ = 0.6 for case (iv). See Supplemental Material [16] for movies
of swimmer concentration dynamics.
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Fig. 10 (a) Dynamics in films of areotactic bacteria in the continuum simulations of Ezhilan et al
(2012): in thin films (top row), both bacterial and oxygen concentrations reach steady profiles;
as the film thickness is increased (bottom row), a transition to unsteady dynamics is observed,
with the formation of bacterial plumes and enhanced oxygen transport. (b) Structure and dynamics
of swimmer concentration in autochemotactic suspensions in simulations by Lushi et al (2012).
Lower figures show the corresponding flow streamlines and polar order parameter. (Adapted with
permission)

cused on linear stability analyses in the case where the oxygen field is prescribed
and unaffected by the flow. Subramanian et al (2011) considered an infinite sus-
pension of run-and-tumble bacteria in a uniform oxygen gradient, using a model
very similar to the one described here. They showed that run-and-tumble dynamics
yields an anisotropic orientation distribution, with a net polarization in the direction
of the gradient. Performing a linear stability analysis, they found that chemotaxis
has a destabilizing effect and tends to reduce the critical bacterial concentration
for instability that they had previously derived in the absence of the tumbling bias
(Subramanian and Koch, 2009). Kasyap and Koch (2012, 2014) analyzed the stabil-
ity of a confined suspension of run-and-tumble bacteria when the chemoattractant
gradient lies in the direction of confinement, as in the experiments of Sokolov et al
(2009). In this geometry they showed that the base state is one of inhomogeneous
bacterial concentration and stress, both increasing exponentially across the channel.
These inhomogeneous base states allow new couplings within the linearized dynam-
ics. Kasyap and Koch (2012) performed a long-wavelength analysis and showed a
quadratic increase of the perturbation growth rate with wavenumber, and that active
stresses drive flows that tend to reinforce density fluctuations in the plane of the
film. Kasyap and Koch (2014) presented a more complete analysis and showed the
existence of a linear mode of maximal growth, providing quite good quantitative
agreement with the transition to instability observed in the experiments of Sokolov
et al (2009).

The effects of oxygen transport were also modeled in numerical simulations by
Ezhilan et al (2012). They considered the dynamics of aerotactic bacteria confined
to liquid films suspended in an oxygen-rich environment, and swimming towards
sources of oxygen while simultaneously consuming it. The dynamics they observed
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were quite similar to the experiments of Sokolov et al (2009) and are illustrated in
Fig. 10(a): first, bacteria and oxygen concentration approached steady profiles in
thin films, but above a critical film thickness, three-dimensional chaotic dynamics
were observed with dense plumes of bacteria penetrating the bulk. In very thick
films, a dense bacterial layer was also observed near the film centerline, and was
explained by the nearly uniform oxygen concentration in that region, where chemo-
taxis ceases. The onset of instability in these nonlinear simulations compared favor-
ably to the prediction of the linear stability analysis of Kasyap and Koch (2012).

A very different situation arises when the chemoattractant is secreted by the
swimming bacteria themselves, as was recently modeled by Lushi et al (2012) who
were inspired by studies showing bacterial self-concentration as a result of chemo-
tactic focusing (Budrene and Berg, 1991), as well as communication processes in
bacterial colonies via quorum sensing (Bassler, 2002; Park et al, 2003). This situ-
ation has been studied using the celebrated Keller–Segel model (Keller and Segel,
1971) and its many variants, though all neglected the effect of the fluid flow gen-
erated by the swimmers. Lushi et al (2012) coupled the run-and-tumble chemo-
taxis model to a transport equation for the chemoattractant concentration that mod-
eled chemoattractant production, depletion and diffusion. One steady state for this
system is uniform isotropy for the swimmers, with a balance of production and
degradation in the chemoattractant concentration. Linearizing around this state for
a simplified version of the model, Lushi et al (2012) found two uncoupled stability
problems for chemotactically-driven aggregation and alignment-driven large-scale
flows. As a function of tumbling frequency, they identified different regimes where
instabilities to aggregation, or alignment, or both, are dominating. Their nonlinear
simulations showed, for pushers, that chemotactically-driven aggregation was halted
by the eruption of local hydrodynamic instabilities, while for pullers the competition
of aggregation and active stresses yielded steady-state spots of finite size.

3.4 Fluid viscoelasticity

The effect of non-Newtonian fluid response upon microorganismal locomotion has
been studied intensely over the past few years; see, for example, Vélez-Cordero
and Lauga (2013) and the references therein, as well as the chapter by Guy and
Thomases in this volume. The main issue considered has generally been the effect
of fluid viscoelasticity upon single swimmer speeds and efficiencies, while compar-
atively little has as yet been understood on non-Newtonian effects upon collective
behavior. In a first effort, Bozorgi and Underhill (2011, 2013) have extended Model
A by adding a non-Newtonian stress tensor to the momentum equation (19):

−∇
2u+∇q = ∇ · (〈αpp〉+βΣΣΣ e) , (39)

where the stress tensor ΣΣΣ e arises from various viscoelastic constitutive laws, and
where β captures the nondimensional strength of polymer stress coupling to the
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momentum balance. Bozorgi and Underhill analyzed the linear stability of various
viscoelastic fluid models near the state of isotropy and homogeneity.

One model they studied closely is the Oldroyd-B model (Bird et al, 1987), which
is built upon the assumption that polymer coils response as Hookean springs to
distension by the flow. In this case, the polymer stress obeys the upper-convected
evolution equation

DtΣΣΣ e−
(
∇u ·ΣΣΣ e +ΣΣΣ e ·∇uT )=− 1

Wi
(ΣΣΣ e− I) , (40)

where Wi is the Weissenberg number relating the strength of flow forcing to polymer
relaxation. For Oldroyd-B, they use the analytic reduction developed by Hoheneg-
ger and Shelley (2011) and study the linearized dynamics when projected to the
first azimuthal model on the unit sphere of orientations. By expanding in associated
Legendre polynomials, this yields an infinite-dimensional, but essentially tridiago-
nal, eigenfunction/eigenvalue problem for the growth rates. From this, they showed
that rotational diffusion, in confluence with viscoelasticity, fundamentally alters the
nature of collective instabilities, yielding growing oscillations at long wavelengths,
and a biased suppression of growth as a function of k that shifts the maximal growth
rate from k = 0 to intermediate values. One possible weakness of their approach
is that viscoelasticity is only felt by the swimmers through the large-scale stresses
that produce the background velocity field against which the swimmers move. In
particular, viscoelasticity is not introduced in determining the single particles fluxes
of Eqs. (17)–(18), which assume a Newtonian flow on the scale of the particles.

4 Other Active Fluids

While we have focused on suspensions of micro-swimmers, there are other exam-
ples of active fluids where the active stresses devolve from other sources of activity
and microstructural displacement. We discuss two here: suspensions of microtubules
and bound translocating motor proteins, and surface-bound populations of particles
whose chemical activity creates Marangoni stresses.

4.1 Microtubules and motor proteins

Microtubules (MTs; stiff biological polymers composed of tubulin protein subunits)
and motor proteins are the building blocks of self-organized biological structures
such as the mitotic spindle and the centrosomal MT array (Helmke et al, 2013).
They are also the ingredients in liquid-crystalline active fluids powered by ATP, and
driven out of equilibrium by motor-protein activity to display complex flows and
persistent defect dynamics. MTs are polar polymers, typically polymerizing and
depolymerizing from their “plus-end”. The interactions of a motor protein with an
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(a)                 (b) 

Fig. 11 (a) MT-based dynamics in a live single-celled Caenorhabditis elegans embryo: migration
of the male and female pronuclei, pronuclear meeting, centration, and spindle reorientation. (b)
Numerical simulation of MT-based pronuclear translation, showing transport of a passive scalar
(top) and flow streamlines (bottom). (Adapted with permission from Shinar et al, 2011)

MT are also typically polar, with its active motion along the MT being towards
either plus- or minus-ends, depending on the motor type.

Active stresses or forces can be created in such systems by the interaction of MTs
with immersed motor proteins, often bound to cellular organelles or vesicles, or by
motor proteins mechanically coupling together MTs, with their activity inducing
their relative displacement. A possible example of the first is the process of nuclear
migration in early development, where the “pronuclear complex” containing male
and female genetic material, is transported to the center of an embryonic cell as
shown in Figure 11(a). This transport is associated with two dynamic MT arrays
emanating from “centrioles”, and ends with the nuclear complex rotating so that
the centrioles are aligned with the cell’s anterior-posterior axis. This is the so-called
“proper position” of the complex so that cell division may proceed smoothly.

While various models of pronuclear migration have been put forward, including
interactions of the MT array with the cell cortex, one possible contributing mech-
anism is the active transport of organelles along MTs towards the centrosomes by
dynein motor proteins – minus-end directed motor proteins – bound to organelle
surfaces. Inspired by previous modeling work by Kimura and Onami (2005), Shinar
et al (2011) investigated this nuclear positioning model as a fluid-structure interac-
tion problem where active agents within the cytoplasm (the cellular fluidic medium)
exert minus-end directed pulling forces upon immersed MTs. To achieve proper
force balance – motor-proteins can exert no mean-force upon the system – these
pulling forces upon MTs are balanced by oppositely directed forces acting upon the
cytoplasm. Shinar et al (2011) simulated this model using a computational method
related to the immersed boundary method (Peskin, 2002), and Fig. 11(b) shows the
migration and cytoplasmic flows as a model nuclear complex is pulled into the cell
center by immersed motor proteins and is then rotated into proper position. We note
that the observed cytoplasmic flows along MTs are also observed in vivo, and that
experiments of Kimura and Kimura (2011) showed that positioning and cytoplasmic
flows were much slowed by blocking the binding of dynein to organelles. Finally,
in unpublished work using a reduced model, Fang and Shelley have shown that the
rotation can be explained by a stability calculation that shows that “proper position”
is the only mechanically stable orientation for the centriole axis.



28 David Saintillan and Michael J. Shelley

20 40 60

20

40

60

0.06
0.04
0.02
0
-0.02
-0.04
-0.06

00

(a)         (b)                  (c) 

It is well known that with increasing concentration, rod-like mole-
cules undergo a transition to a nematic liquid-crystalline phase. To
explore this regime we created a flat 2D oil–water interface stabilized
with a surfactant, with BANs being dispersed in aqueous phase. Over
time extensile microtubule bundles adsorbed onto the PEG brush
formed by the surfactant molecules, eventually covering the entire
surface with a dense liquid-crystalline monolayer of locally aligned
bundles. The adsorbed 2D layer constituted an active microtubule
liquid-crystalline phase, characterized by fast streaming flows and defect
unbinding (Supplementary Video 6). Further information about the
nature of active microtubule liquid crystals can be garnered by exam-
ining the structure and dynamics of their defects. In general, active liquid
crystals can have either nematic symmetry24,25 (as found in monolayers
of amoeboid cells or vertically shaken monolayers of granular rods26,27)
or polar symmetry (which is found in motility assays at high concentra-
tions5,28). Polar liquid crystals form vortex and aster defects5,29.

In contrast, we found that active microtubule liquid crystals form
disclination defects of charge 1/2 or -1/2, implying the presence of
nematic symmetry (Fig. 3a-c). This is expected because the basic building
blocks of these materials are symmetrically extensile microtubule
bundles. In equilibrium liquid crystals, defects are largely static struc-
tures whose presence is determined by either internal frustrations or
external boundary conditions. In contrast, defects in active micro-
tubule nematics exhibited unique spatiotemporal dynamics. They
were created as uniformly aligned nematic domains extend, buckle
and internally self-fracture (Fig. 3d), similar to the dynamical cascades

of microtubule bundles in 3D active networks. Once created, a fracture
line terminated with a pair of oppositely charged disclination defects.
Eventually, even as the fracture self-healed, the defects remained
unbound and streamed around until eventually annihilating with
oppositely charged defects (Supplementary Video 6). The rates of
defect creation and annihilation were balanced, creating steady-state
streaming dynamics that persisted for many hours. These observa-
tions exemplify how active nematics are fundamentally different from
equilibrium ones, in which fractures, internal streaming flows and
spontaneous unbinding of defect pairs are never observed.

In a biological context, active fluids are frequently confined to the
cytoplasm and it has been proposed that such confinement leads to
emergence of coherent flows that can enhance cellular transport, a
phenomenon known as cytoplasmic streaming30,31. For this reason
we encapsulated BANs in aqueous droplets emulsified in fluorinated
oil. When squeezed between two surfaces, such water-in-oil active
droplets exhibited an unforeseen emergent property: persistent auto-
nomous motility. This motility was highly robust, limited only by the
sample lifetime, which was typically a few days (Fig. 4a, Supplementary
Video 7). Instead of moving along straight lines, the active emulsion
droplets preferentially moved in periodic patterns, with their average
velocities reaching up to ,1mm s21. In comparison, droplets without
any chemical fuel did not exhibit any motion (Fig. 4b).

To elucidate the microscopic mechanism that drives droplet moti-
lity, we imaged the internal microtubule dynamics. For small droplets
(less than 30mm), microtubule bundles extended and pushed against

a d

b

c

Figure 3 | Dynamics of 2D streaming nematics confined to fluid interfaces.
a, Schematic illustrations of the nematic director configuration around
disclination defects of charge 1/2 (left) and 21/2 (right). b, c, Active liquid
crystals exhibit disclinations of both 1/2 (top) and 21/2 (bottom) charge,
indicating the presence of nematic order. Scale bars, 15mm. d, A sequence of
images demonstrates buckling, folding and internal fracture of a nematic
domain. The fracture line terminates with a pair of oppositely charged
disclination defects (red arrow tracks 1/2 disclination; blue arrow tracks 21/2
disclination). After the fracture line self-heals, the disclination pair remains
unbound. Time lapse, 15 s; scale bar, 20mm.

dc

a

c d

b

Figure 4 | Motile water-in-oil emulsion droplets. a, Droplets containing
extensile microtubule bundles exhibit spontaneous autonomous motility when
partially compressed between chamber surfaces. A droplet trajectory taken over
a time interval of 33 min is overlaid onto a bright-field droplet image. Scale bar
for a and b is 80mm. b, In the absence of ATP, passive droplets exert no internal
forces, and the only contribution to their movement is minor drift.
c, Fluorescence image of active microtubule bundles that spontaneously adsorb
onto the oil–water interface. The resulting active liquid crystalline phase
exhibits streaming flows, indicated with blue arrows. The red arrow indicates
the direction of instantaneous droplet velocity. The image is focused on the
droplet surface that is in contact with the coverslip. Scale bar, 100mm. d, Image
of the droplet taken at a midplane indicates that the droplet interior is largely
devoid of microtubule bundles. Scale bar, 100mm.
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Fig. 12 (a) Experiment by Sanchez et al (2012) showing the active nematic state of a suspension
of MTs and kinesin clusters confined at an interface between two fluids, showing the generation
and annihilation of disclination defect pairs. (b)–(c) Two-dimensional continuum simulation by
Gao et al (2014) of a suspensions of MTs and kinesin clusters: (b) velocity field overlaying the
vorticity, and (c) nematic director field and scalar order parameter. (Adapted with permission)

Motor proteins can also mediate interactions between MTs by providing a direct
and active mechanical coupling of MTs by motor complexes of two or more end-
directed motors connected by a molecular tether. Here, the nature of this interaction
will depend strongly on whether an MT pair is polar-aligned or anti-aligned. In the
latter case, the complex’s motors walk in opposite directions on each MT, inducing
a relative sliding of the MTs. This process is called “polarity-sorting”.

The physics of filament sliding and polarity sorting by two-headed molecular
motors has been studied experimentally (Nedelec et al, 1997; Surrey et al, 2001;
Schaller et al, 2010). In early experiments, biofilaments were driven into static self-
organized patterns such as vortices and asters, reminiscent of structures observed
in vivo. Very recently, in experiments of Sanchez et al (2012), active networks were
formed of MTs and synthetic tetrameric kinesin-1 motor complexes with the aid of a
depletant. In the presence of ATP, motor complexes can bind pairs of MTs and walk
along MTs towards their plus-ends. When suspended in bulk, depletion interactions
drove the formation of extended, highly ordered MT bundles characterized by bun-
dle extension and fracture, and correlated with spontaneous large-scale fluid flows.
When MT bundles were adsorbed onto an oil-water interface, they formed a dense,
nematically ordered 2D state and exhibited an active nematic phase characterized
by the spontaneous generation and annihilation of disclination defect pairs.

Gao et al (2014) have developed a multiscale model that identifies the possi-
ble sources of destabilizing active stresses. They first performed detailed Brownian
dynamics–Monte Carlo (BDMC) simulations which incorporate excluded-volume
interactions between model MTs, thermal fluctuations, explicit translocating motors
with binding/unbinding kinetics that satisfy detailed balance, and a force-velocity
relation. These simulations show the generation of activity-driven extensile stresses
from polarity sorting of anti-aligned MTs, and from “crosslink relaxation” of polar-
aligned MTs. It also provides coefficients for polarity-specific active stresses for a
kinetic theory that incorporates polarity sorting and long-range hydrodynamic in-
teractions, using a similar approach to that for Model A (Saintillan and Shelley,
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2008a,b). Roughly, the center-of-mass flux in Eq. (17) of Model A is replaced by

ṙ = (n−p)+u−D∇r lnΨ , (41)

where, again, n is the polar order parameter defined in Eq. (6). This new term cap-
tures the sliding of an MT (at orientation p) relative to a background of MTs of
mixed polarity, and can be derived by considering a cluster of polar-aligned and
anti-aligned MTs coupled together by translocating cross-links. The active stress of
Model A is replaced by

ΣΣΣ a =
αaa

2
c(Q−nn)+

αpa

2
c(Q+nn), (42)

where αaa and αpa are dimensionless stresslet strengths associated with anti-aligned
and polar-aligned interactions, respectively. The BDMC simulations estimate these
as being negative, and hence corresponding to destabilizing dipolar stresses, with
αaa being the larger. The anti-aligned stresses arise from extensional flows, similar
to those for pusher particles, induced by polarity sorting and biases in motor-protein
binding and unbinding. The polar-aligned stresses are also extensile but arise from a
more subtle statistical mechanical effect associated with temporal relaxation of the
motor-protein tether.

Simulations of this polar active nematic model are shown in Fig. 12(b)–(c). Sim-
ulating in regions of flow instability, Gao et al (2014) find persistently unsteady
flows that are correlated with the continual genesis, propagation, and annihilation
of ±1/2 order disclination defect pairs. To wit, Fig. 12(b) shows the background
velocity field u = (u,v) overlaying the vorticity ω . The dynamics are complex and
turbulent, and qualitatively very similar to those reported by Sanchez et al (2012).
Also very similar are the MT orientation dynamics. Fig. 12(c) shows the nematic
director field and scalar order parameter from the tensor order parameter Q. The lo-
cal orientation is highly correlated with the flow structures seen in (b). We see also
that the plane is littered with ±1/2 order defects which propagate freely about the
system. These defects exist in regions of small nematic order and are born as oppos-
ing pairs in elongated low-order regions. These regions are themselves associated
with fluid jets, locally decreasing nematic order, and increasing curvature of director
field lines. The +1/2 order defects propagate away along their central axis and at a
much higher velocity than those of−1/2 order. The relatively higher velocity in the
neighborhood of a +1/2 order defect appears as a localized jet, in the direction of
defect motion, between two oppositely signed vortices.

Gao et al (2014) also identified the characteristic length scales of this model as
those associated with linearized plane-wave models of maximal growth rate, and
posited experimental tests of their model. Related to this work are studies based
upon Q-tensor field theories similar in flavor to that of Woodhouse and Goldstein
(2012); see for instance Giomi et al (2013) and Thampi et al (2013). In these general
models, the precise origins of the active stress driving the system are unidentified,
though they do reproduce elements of the experiments such as defect genesis, mo-
tion, and annihilation.
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(a)       (b)                 (c) 

Fig. 13 (a) Typical trajectories of self-propelled rods on a surface, showing the circular trajectories
caused by shape asymmetry (Takagi et al, 2013). (b) Self-propelled rods moving on a surface are
found to orbit around sedimented spherical colloids (Takagi et al, 2014). (c) Continuum simula-
tions of the model of Masoud and Shelley (2014) for chemotactic collapse of active colloids at an
interface, showing both the velocity field and chemical concentration field in the bulk of the liquid.
(Adapted with permission)

4.2 Chemically active particles

Recent technological advances have enabled the fabrication of synthetic microswim-
mers that convert chemical energy into directional motion (Ebbens and Howse,
2010; Wang, 2013). One widely studied system consists of micron-scale bimetal-
lic gold-platinum rods. When immersed in a hydrogen peroxide solution, the rods
show directed motion along their axes (Paxton et al, 2004). Theoretical studies have
proposed that these rods move through a chemically powered electrophoretic mech-
anism which generates a slip flow along the rod surface from the gold to the plat-
inum portions (Moran et al, 2010). Experimental studies show that such particles
interact with surfaces by flipping and sliding along walls, and being captured into
orbits around sedimented colloids as shown in Fig. 13(a)–(b). Little if any work
has, as yet, studied hydrodynamically mediated collective dynamics. One inhibiting
feature of this system is that oxygen is an end-product of the chemical reactions
driving the rods, and when the rods are at high concentration the dissolved oxygen
comes out of solution, forming large bubbles that disrupt the experiment. Work on
collective behavior in these systems has tended to focus instead on the role of the
fuel concentration field, which diffuses and is consumed by the active particles, and
its relations to chemokinetic behaviors (Hong et al, 2007, 2010).

Chemically active particles were recently considered in a very different setting.
Masoud and Shelley (2014) studied the dynamics of chemically active immotile
particles that are embedded in a gas-fluid interface. The particles’ chemical activity
does not produce any phoretic flows, but does create a spatially diffusing chemi-
cal concentration field C. On the surface, this chemical field changes the local sur-
face tension, and any consequent surface tension gradients will produce “active”
Marangoni shear stresses driving fluid flows that move the particles (Masoud and
Stone, 2014).



Theory of active suspensions 31

Masoud and Shelley (2014) considered the case of a flat interface over a incom-
pressible Stokesian fluid of depth H and viscosity η , assuming that diffusion of the
chemical species was fast compared with advection, and that surface tension de-
pended linearly upon the surface chemical concentration. The surface concentration
Ψ of active particles obeys the advection-diffusion equation

∂tΨ +∇2 · (UΨ) =
1

Pep
∆2Ψ , (43)

where Pep is a Péclet number comparing the particle diffusion time scale to ad-
vection arising from Marangoni stresses, ∇2 = (∂x,∂y) is the 2D surface gradient
operator, ∆2 = ∇2

2, and U is the 2D surface velocity found by solving the 3D Stokes
equations driven by a surface Marangoni stress induced by chemical gradients. Of
particular interest is the case where particle activity raises the surface tension.

Both the 3D quasi-static diffusion equation for chemical concentration and the
3D Stokes equations for the fluid flow can be solved via Fourier transform in (x,y),
and Masoud and Shelley (2014) show that the surface velocity’s Fourier transform
satisfies the relation

Ũ(k, t) = (ik/k2)Ω(kδ )Ψ̃(k, t) , (44)

where k = (kx,ky) is the 2D wave-vector, k = |k|, and δ = H/L is the dimensionless
layer depth where L is a horizontal system length scale. Eq. (44) can be interpreted
as a nonlocal surface integral operator acting upon the density Ψ . Here Ω(λ ) is an
explicit monotonically increasing function for which Ω = 1/4+O(λ 2) for small λ
(shallow layers), and Ω → 1/2 exponentially fast as λ → ∞ (deep layers).

Particularly interesting are the limits of shallow and deep layers where Eq. (44)
reduces to Ũ= ν ik/k2Ψ̃ with ν = 1/4 (shallow) or 1/2 (deep), or U=−ν∆

−1
2 ∇2Ψ .

Hence, in real space we have

∂tΨ −ν∇2 ·
(
[∆−1

2 ∇2Ψ ]Ψ
)
=

1
Pep

∆2Ψ , (45)

and this equation is spatially nonlocal due to the inverse Laplacian.
Very surprisingly, upon rescaling this PDE recovers the iconic 2D parabolic-

elliptic Keller-Segel (KS) model of autotactic aggregation:

∂tφ = ∇ · ([χ∇ρ]φ)+∆φ and ∆ρ = φ , (46)

which was originally conceived as a model for the aggregation of slime-molds
(Keller and Segel, 1971). Here φ is the concentration field of microorganisms that
produces a rapidly-diffusing chemoattactant of concentration ρ . Read as a kinetic
equation for species number conservation, Eq. (46) states that microorganisms move
along gradients of the self-generated chemoattractant with speed χ∇ρ . The KS
model has been the focus of decades of study in PDE analysis (see Horstmann 2003
for a comprehensive review), and a great deal is understood about its dynamics. Es-
pecially interesting is the 2D case, as is relevant here. For instance, given a sufficient
mass of organisms in the plane, the 2D Keller-Segel model suffers chemotactic col-
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lapse in finite time, with a finite mass of organisms concentrating at a point. The
collapse is approximately self-similar, with φ ≈ ζ (t)−2Φ (x/ζ (t)) for some scaling
function Φ and a scale ζ whose dominant algebraic behavior is

√
tc− t where tc is

the collapse time.
Chemotactic collapse describes very well the aggregation dynamics observed for

chemically active particles. Masoud and Shelley (2014) simulated Eqs. (43)–(44)
for mean values of Ψ that are large enough to induce two-dimensional instabilities.
Fig. 13(c) shows the result by plotting the 3D structure of the chemical concentration
field and the fluid velocity field. On the surface there has been a rapid accumulation
of active particles to the centers and corners of the domain, where the initial particle
concentration was peaked. Descriptively, the initial higher concentration of parti-
cles yielded a peak in the chemical surface concentration, and hence higher surface
tensions there. The associated Marangoni stresses created inward flows which con-
centrated yet more active particles there, leading to yet greater surface tension and
stronger flows. Like the KS model, an aggregative finite-time collapse is observed,
and Fig. 13(c) is a snapshot right before the collapse time. The particle density
field Ψ has a similar structure to that of the surface field of C, but is yet sharper as
C is one derivative smoother. In a marked difference from the KS model, here the
surface fluid flows towards the aggregation points are associated with 3D flow struc-
tures, and Fig. 13(c) shows the formation of a downward jet and encircling vortex
ring within the bulk fluid.

The model by Masoud and Shelley (2014) is in search of an experiment, and orig-
inally arose from casual observations of chemically-powered motile rods moving on
a free surface. However, if such a scenario could be realized, then this dynamics of
particle aggregation and 3D flows might prove useful in self-assembly processes
and in droplet locomotion.

5 Outlook

There is tremendous ongoing activity in the field of active matter, of which active
suspensions are a particular subset. One area which we did not discuss here, because
it is yet substantially unformed, is that of flocking or schooling of organisms flying
or swimming at high Reynolds number. A complicating factor is that a flocking or-
ganism is likely responding to both unsteady fluid forces and to sensory information
of multiple modalities (and of course, these are not even well separated). There has
been great progress in understanding how perception and response may influence or-
dering and collective behavior, via Vicsek-type models (Vicsek et al, 1995; Vicsek
and Zafeiris, 2012). However, a particular aspect of high Reynolds flows is that the
“storage” of shed vorticity into the flow yields a history dependence to body-body
interactions that is difficult to capture in a phenomenological model.

Another large area of increasing inquiry is the activity-induced robustness and
self-assembly of cellular structures such as the mitotic spindle and the cellular cy-
toskeleton. Here, theoretical approaches from soft-condensed matter physics, such
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as generalized hydrodynamics, elasticity, liquid crystals, and polymer dynamics
have proven very useful. Most of the activity in these areas has been carried out
by theoretical biophysicists, and relative little by applied mathematicians and engi-
neers. Consequently, tools such as high-performance computing and sophisticated
methods from computational fluid dynamics have not as yet made a substantial im-
pact.

Finally, we have heard it remarked that there are many more theoretical models in
the field of active matter than there are definitive experiments. This seems patently
true, and is partly a reflection of the relative ease of coming up with a model with
some interesting dynamics (usually agent-based) versus the difficulty of performing
experiments using real organisms, or synthesizing active materials. Firmly connect-
ing mathematical models to experiments through principled modeling and thorough
exploration is difficult, and seems best pursued through both many-particle simula-
tions and continuum models.
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Vélez-Cordero JR, Lauga E (2013) Waving transport and propulsion in a generalized
Newtonian fluid. J Non-Newtonian Fluid Mech 199:37–50

Vicsek T, Zafeiris A (2012) Collective motion. Phys Rep 517:71–140
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Long-range ordering of vibrated polar disks. Phys Rev Lett 110:208,001
Wioland H, Woodhouse FG, Dunkel J, Kessler JO, Goldstein RE (2013) Con-

finement stabilizes a bacterial suspension into a spiral vortex. Phys Rev Lett
110:268,102

Wolgemuth C (2008) Collective swimming and the dynamics of bacterial turbu-
lence. Biophys J 95:1564–1574

Woodhouse F, Goldstein RE (2013) Cytoplasmic streaming in plant cells
emerges naturally by microfilament self-organization. Proc Natl Acad Sci USA
110:14,132–14,137

Woodhouse FG, Goldstein RE (2012) Spontaneous circulation of confined active
suspensions. Phys Rev Lett 109:168,105

Wu XL, Libchaber A (2000) Particle diffusion in a quasi-two-dimensional bacterial
bath. Phys Rev Lett 84:3017–3020

Zhang HP, Be’er A, Florin EL, Swinney HL (2010) Collective motion and density
fluctuations in bacterial colonies. Proc Natl Acad Sci USA 107:13,626–13,630


