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Abstract: 
 
We study the dynamics of a rigid, symmetric wing that is flapped vertically in a fluid. 
The motion of the wing in the horizontal direction is not constrained. Above a critical 
flapping frequency, forward flight arises as the wing accelerates to a terminal state of 
constant speed. We describe a number of measurements which supplement our 
previous work. These include (a) a study of the initial transition to forward flight near 
the onset of the instability, (b) the separate effects of flapping amplitude and 
frequency, (c) the effect of wing thickness, (d) the effect of asymmetry of the wing 
planform, and (e) the response of the wing to an added resistance. Our results 
emphasize the robustness of the mechanisms determining the forward flight speed as 
observed in our previous study. 
 

Introduction: 
 
The flapping of wings, fins, and other appendages is a common mode of locomotion 
in Nature [1]. As a wing or fin is flapped in one direction, thrust can be generated in 
the perpendicular direction [2]. This thrust will balance resistance as the animal 
reaches a state of steady flight or swimming. Thrust generation from a flapping wing 
was first discussed by Knoller [3] and Betz [4], and has been quantitatively studied in 
the framework of inviscid flow theory [2, 5]. Previous experiments [6-8] have 
focussed on the efficiency of the flapping mechanism for underwater locomotion. In 
these experiments, a wing performs heaving and/or pitching motion with an imposed 
forward speed. The generated thrust is shown to depend strongly on the Strouhal 
number St = fa/U, where f is the flapping frequency, a the peak-to-peak flapping 
amplitude and U the flow speed. It was found from previous experiments that the 
generated thrust is an increasing function of the Strouhal number, at least in the range 
of 0.2 < St < 0.5. Optimal power generation (the ratio between the generated power 
and the power needed to drive the prescribed flapping motion) is reached when St is 
between 0.3 and 0.4 [ref. 8, 9]. In this range of Strouhal number, the wake structure 
associated with the forward flight takes the form of an inverted von Kármán vortex 
street, a flow pattern also observed in the wake of a swimming fish [10, 11]. 
 
In a recent study [12], we examined the question of how flapping flight might emerge 
through the interaction of a simple body with its surrounding fluid. Our experimental 
approach is different from the classical one. Apart from the prescribed flapping 
motion, we neither initiate nor sustain the forward motion of the wing. Instead, the 
wing is allowed to select its own speed as it seeks to balance hydrodynamical and 
external forces. Here, the wing is driven by a prescribed vertical flapping motion but 
is free to move horizontally. At low flapping frequency, because of the dominance of 
fluid drag, we observe a regime with no horizontal motion of the wing. Above a 
critical flapping frequency, however, the wing spontaneously starts to move 
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horizontally, and accelerates until a terminal speed is reached. The wing is fore-apt 
symmetric and forward flight emerges as a result of spontaneous symmetry breaking, 
when the Reynolds number associated with the flapping frequency exceeds a 
threshold [13]. In particular, the critical Reynolds number was found to be 
approximately 10. The results from this experiment are in good agreement with 
observations of flying and swimming organisms [13, 14]. 
 
A consequent numerical study by Alben and Shelley [15] on the dynamics of a two-
dimensional (2D) flapping body in a 2D viscous fluid reproduced many of the 
qualitative aspects of our experiment. They showed that unidirectional locomotion 
resulted from an instability related to that of von Kármán for symmetric wakes behind 
bluff bodies. Typically this instability becomes operative for a frequency based 
Reynolds number on the order of 10. They also studied the wing shape and inertia, 
factors affecting the performance of forward flight. 
 
In the work reported here, we study this basic phenomenon in more detail and 
consider elaborations of the experiment. We show the stochastic nature of the onset 
time to locomotion, and examine the separate effects of flapping amplitude and 
frequency. We are particularly interested in the robustness of flapping flight. To study 
this, we examine factors that influence performance, such as the wing thickness and 
flexibility, and the effect of asymmetry of the wing. Practically, those factors are of 
great importance when flapping locomotion is adapted in the biological world. Finally, 
we study the effect of an external damping on the system, showing again the 
robustness of locomotion to this external factor. 
 
 

 
Figure 1. The experimental setup. A rigid wing is flapped up and down sinusoidally. The wing is 
allowed to rotate freely in the horizontal plane. The total length of the wing (2d) is 25.7 cm, its width 
(chord, c) 1.9 cm, and its thickness 0.16 cm. Both flapping amplitude and frequency can be adjusted to 
study the response of flapping motion of the wing and its surrounding fluid (water). A photo taken 
from the setup is shown on the left and the schematic is shown on the right. 
 

Experimental setup: 
 
The experiment is conducted in a rotational geometry, shown in Fig. 1. A rigid, 
rectangular wing is mounted at the center to a rigid shaft. A serving mechanism 
translates a rotational motion from a motor to a linear sinusoidal motion (shown in the 
photo on the left). The shaft is driven in the vertical direction through two low-friction 
ball bearings. The shaft together with the wing is able to rotate in the horizontal 
direction. Only the vertical motion of the wing is prescribed. Thus the rotation of the 
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wing about the vertical axis is neither imposed nor constrained. If there is any wing 
rotation about the shaft, in either direction, it depends entirely on the interaction 
between the flapped wing and the surrounding fluid. If no vertical driving is imposed, 
any rotation of the wing is damped by viscous forces in the fluid and the wing 
eventually stops. There is also of course some friction in the ball bearings [12], 
opposing the tendency to possible horizontal motion. 
 
The advantage of using a rotational geometry is that the linear distance and thus the 
time needed for the system to reach a steady motion is unlimited. As we shall show, it 
is also relatively easy to apply precise resistance to a rotating wing in order to study 
the amplitude of the generated thrust. Shortcomings of the rotational geometry 
include the lack of precise definition of a linear speed and possible three-dimensional 
effects, which differ from the case of rectilinear translation. However, flow 
visualization reveals that the flow structure is essentially two dimensional due to the 
large aspect ratio of the wing [12]. 
 
The wing used in the experiment is made of 0.16 cm thick (δ) stainless steel plate. It 
is 1.9 cm wide (the chord length, c) and 25.7 cm long (2L). The flapping motion of 
the wing has the form h(t) = (a/2) sin (2πft), where a is the peak-to-peak flapping 
amplitude and f the frequency of flapping. The quantity af gives a measure of the 
flapping speed. Throughout the experiment, we use water as the working fluid. The 
depth of water is 15 cm, confined in a cylindrical tank. The fluid tank is covered with 
a rigid lid that allows the driving shaft to pass through in the middle, so that the 
system has similar boundary conditions at both the top and bottom.  
 
The Reynolds number of the driving is defined through the flapping frequency f and 
amplitude a, as 
 
Ref = afc /ν 
 
where ν is the kinematic viscosity of water. As reported in our earlier work [12], 
above the critical threshold the flapping wing spontaneously sets out in horizontal 
motion, and the resulting rotation of the wing may be referred to the “forward flight.” 
 

Experiments and Observations 
 

1. The general behavior of the forward flight 
 

As we observed previously, the flapping wing shows no sign of rotation when the 
driving Reynolds number Ref is sufficiently small. This regime of Ref is at the lower 
end of the “intermediate” range of the Reynolds number, wherein neither inertial nor 
viscous forces are dominant. It lies above and is an extension of the “Stokesian realm”, 
occurring when Ref is so small that Stokes’ equations offer an accurate description of 
the fluid dynamics. Within the Stokesian realm it is known that forward flight of an 
oscillating wing will not occur [16, 17], and our observations show that this situation 
extends out to a finite value of Ref  within the intermediate regime. 
 
Above a threshold, either by increasing the flapping frequency or the flapping 
amplitude, a spontaneous symmetry breaking bifurcation takes place as the wing 
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starts to rotate in either direction. We review now our observations of this 
spontaneous forward flight. 

 
Figure 2. Relationship between flapping frequency and rotational speed. When the flapping amplitude 
is fixed at 15.7 mm, the resulting forward flight speed DΩ is a linear function of the flapping 
frequency. Hysteresis is seen near the onset, likely due to the finite friction at the shaft. 
 
a. Near the onset: Bifurcation from localized flapping to forward flight 
 
Fig. 2 shows the relationship between the flapping frequency and the resulting 
rotational speed. Both numbers are shown in the form of the driving Reynolds number 
Ref and the rotational Reynolds number ReΩ,. Here, ReΩ = cDΩ/ν, where Ω  is the 
angular speed, DΩ is the representative linear speed of the rotating wing. Distance D 
= 3L/4 is the representative length of the wing. The coefficient 3/4 is obtained 
through a dimensional analysis by normalizing the inertial torque with the viscous 
torque [12]. 

 
Figure 3. Flow visualization around the flapping wing. A vertical light sheet is introduced into the fluid 
tank at position near D. The wake of the flapping wing that is in forward motion exhibits an ‘inverted’ 
von Kármán vortex street. The corresponding illustration of the flow directions is sketched at the 
bottom. 
 
In the neighborhood of D (between 0.5d and 0.9d), the flow pattern around the 
flapping wing seems to be quasi-two-dimensional. Fig. 3 shows a typical flow field 
using micrometer-sized hydrogen bubbles that suspend in water. A thin, vertical light 
sheet is introduced into the fluid tank and intersects the passing-by wing. Digital 
photos with 1/20th of second exposure render flow streaklines around the flapping 
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wing. Within the highly structured wake, all eddies with alternating signs pair up with 
their neighbors to form an “inverted” von Kármán vortex street [10, 11]. The flow 
structure becomes more complicated near wing tips and the shaft. Its influence to the 
flapping wing is arguably negligible due to its limited spatial presence. We also 
observed that the vortical wake diffuses quite fast and losses its coherent structure 
before the opposite side of the wing comes into this region. 
 
The rotational speed depends linearly on the flapping frequency. Well above the 
threshold, once the flapping frequency is fixed, the steady forward-flight speed is 
uniquely determined (modulo the clockwise and counterclockwise symmetry). 
Several time series in Fig. 4a show how the speed is reached after the wing starts to 
flap at time zero. It takes many flapping cycles to reach the steady flight. In particular 
for data taken close to onset (f = 1.6 Hz) the wing spends a long time wandering about 
the stationary position before it settles into forward flight — a dynamic state with an 
apparent basin of attraction. The rotational speed grows smoothly before reaching the 
terminal speed. Well above the onset, at f = 2.5 Hz, the lead time to reach a steady 
forward-motion is greatly reduced. The small-scale oscillations apparent on Fig. 4a 
correspond to the variations of the rotational speed during one driving cycle. 
 
We observe that the wing rotates in either direction with essentially equal probability. 
In one experiment, among 61 trials, 29 led to rotation in one direction, 32 in the other. 
Between adjacent trials, we let the system relax for at least 3 minutes, without the 
wing flapping and without any external disturbance. Fig. 4c shows the distribution of 
time the system takes to reach a speed that is within 15% of its final speed. 
 

 
 

Figure 4. Transition to rotation at a fixed flapping amplitude a = 15.7 mm. (a) Above the onset, as the 
wing starts to flap, the time to reach the terminal flight speed shortens as the flapping frequency is 
increased. (b) One typical time series shows how a flapping wing that is pushed externally to a higher 
speed decays monotonically to its terminal speed. Both measurements show the uniqueness of the 
terminal speed at a fixed driving Reynolds number. (c) At fixed Reynolds number (when 2a = 1.57 cm 
and f = 2.0 Hz), a distribution of times for the wing to reach 85% of the terminal speed.  
 
b. Well above the onset: uniqueness of the forward flight state 
 
Multistable states are frequently observed when a moving object interacts with a flow 
at high Reynolds number. Typical examples include coexisting patterns in a 3-D 
cylinder wake [18] or the fluttering of an elastic structure in a parallel flow [19, 20]. 
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In our experiment, possible multistable states could result in the non-uniqueness of 
the rotational speed. That is, for a given flapping Reynolds number Ref, different 
rotational Reynolds numbers ReΩ could be observed, depending on the initial 
conditions. To check this point, we start a rotational motion by hand while the wing is 
flapped at a fixed frequency. As we show in Fig. 4b, when the wing is launched well 
above the steady forward-flight speed Ω, and then left in unperturbed flapping motion, 
it quickly relaxes to Ω within just a few flapping cycles. We performed several 
similar trials and found that, well above the onset of forward flight, no other stable 
solution is found for the same Reynolds number Ref. The forward flight speed is 
uniquely selected by the driving parameters, modulo the clockwise and 
counterclockwise symmetry. 
 
Close to the onset of the forward flight motion, however, we observe a hysteretic 
behavior or bi-stability between the non-rotating and rotating states. This behavior 
was reported and discussed in our previous paper [12]. It is likely due to the finite 
friction of the ball bearings present in our experiment. Recent numerical simulations 
suggest that, under different conditions, the bifurcation to forward flight of a 
vertically flapping wing may be different from what is depicted here. In a frictionless 
situation, more complex transition scenarios were found, sometimes involving 
intermediate chaotic states [15]. 
 

2. The influence of different parameters on a rigid wing 
 
In this section, we discuss factors that directly affect the performance of the forward 
flight. Those factors are the flapping amplitude, and the thickness of the wing. During 
the flapping motion, the wing remains rigid with no apparent deflection in each case. 

 
Figure 5. The effect of flapping amplitude (shown as Ref) on rotational speed (ReΩ): At a fixed flapping 
frequency, f = 2.5 Hz, the flapping amplitude is adjusted incrementally to change the driving Reynolds 
number Ref. The resulting terminal speed of the forward-flight wing (solid triangles) follow closely the 
data obtained as one changes the frequency only (circles, same data shown in Fig. 2). The amplitude 
changes from 0.73 to 2.54 cm, which is 0.38 to 1.32 chord length. 
 
a: The effect of the flapping amplitude: 
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In the expression of the flapping Reynolds number Ref, the flapping amplitude a and 
the flapping frequency f influence the dynamics as the product af. Amplitude is 
expected to play a similar role to that of frequency. This conjecture needs to be tested, 
since the ratio a/c of amplitude to chord length is an independent parameter of 
possible importance. At fixed flapping frequency, the flapping amplitude is adjusted 
in small steps. We test flapping amplitudes in a range between 0.4 and 1.3 times c. 
We then measure the resultant flight speed. Fig. 5 shows how rotational speed 
changes as a function of flapping amplitude. 
 
It can be argued that the amplitude of the flapping motion should be limited within a 
finite range. Compared to the chord length of the wing, if the amplitude is too small, 
the wing appears to be a large extended plate; the size of the vortices generated on 
both edges, which are crucial for wake formation and thrust generation, would be 
relatively smaller. If the flapping amplitude is far above the chord length, however, 
energy dissipation will primarily take place in the vertical direction. In both situations, 
either with small or large amplitudes, the system would not favor energy transfer to 
the lateral direction, thus preventing effective forward flight. Apparently, the range of 
the flapping amplitude (0.4 to 1.3 chord length) guarantees that the generation of 
lateral thrust maintains the linear relationship. 
 
In addition to being a dimensionless number used to characterize wake dynamics 
behind an obstacle in a moving fluid [21], the Strouhal number is also used to 
characterize animal locomotion such as swimming of fish [22] and flying of birds [23]. 
For effective thrust generation from flapping, the Strouhal number usually falls within 
a small neighborhood of 0.30 [ref. 8]. It should be noted that for a fixed bluff body 
such as a circular cylinder, the corresponding Strouhal number is about 30% smaller, 
St ~ 0.20. The flow structures behind the resistive cylinder and a swimming fish are 
different, on the one hand a typical von Kármán vortex street, and on the other an 
inverted von Kármán wake [2, 10, 11]. This has been observed in previous flapping-
wing experiments [24]. In our study, the Strouhal number is the ratio between Ref and 
ReΩ, St= Ref /ReΩ. Since we observe an offset for ReΩ  (Fig. 2 and Fig. 5), the Strouhal 
number decreases with increasing Ref. However for large values of Ref, the Strouhal 
number converges to a constant value, which is the inverse slope of the straight line 
shown in Fig. 2 and Fig. 5. The Strouhal numbers obtained from both Fig. 2 and Fig. 
5 are between 0.26 and 0.28. It is clear that the effects of amplitude and frequency of 
the flapping on the dynamics of the flapping wing is determined by their product. To 
realize a desired forward-flight speed, one can vary either one of the variables. 
 
b. The effect of the wing thickness 
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Figure 6. Effect of the thickness of the wing. As the thickness is doubled, the rotational speed decreases. 
The inverse slope (the Strouhal number) of the fitted straight lines is about 0.26 for a wing with 
thickness of 1.6 mm and 0.43 for thickness of 3.2 mm. 
 
Changing the wing thickness (δ) has several effects. For a non flapping wing, 
increasing the thickness increases the form drag, and thus the damping of the 
horizontal motion is stronger. The thickness ratio δ/c modifies the geometry at the 
edge of the wing and thus modifies vortex generation. For example, it has been 
observed that the lift of a 2D flapping elliptic airfoil decreases as the thickness ratio 
increases (i.e., when the wing becomes thicker) [25]. Thus, in our experiment, we 
expect to see reduced horizontal speed as the thickness increases because of both of 
these effects. 
 
From Fig. 6, we see that if the thickness is doubled, from 1.6 to 3.2 mm (8.4% to 
16.8% of the chord), the ratio between the flapping Reynolds number and the 
resulting rotational Reynolds number, the Strouhal number, increases from 0.26 to 
0.43, showing that forward flight speed deceases as the wing thickness is increased. 
 
As we increase the wing thickness even further, the two effects mentioned above 
become more pronounced. For a thickness of δ = 4.8 mm, we do not observe forward 
flight. In this case, the thick wing only performs the prescribed vertical flapping 
motion but with very small horizontal excursions, much less than the chord length. 
The resistance of the thick wing prevents the transition to forward flight. 
 

3. The effects of flexibility 
 
In the biological world, bird wings and fish fins are built from supporting bones and 
soft tissues. They are actively driven by groups of muscles in order to achieve a 
prescribed motion. Due to their flexibility, however, fluid forces and the inertia of the 
wing may either reduce or exaggerate the intended flapping motion and thereby affect 
performance in forward flight. 
 
So far, we have explored the effects of parameters such as wing thickness, flapping 
frequency and amplitude. In these experiments, the wing remains rigid. The fluid 
forces are not strong enough to produce significant deformation to the wing. To study 
the dynamics of a flexible wing within our current setup, we use a flexible, plastic 
(ABS) wing to replace the original rigid one (stainless steel). It has the same thickness 
(δ = 0.16 cm), chord (c = 1.9 cm) and length (2d = 25.7 cm), but the Young’s 
modulus E is much lower than that of stainless steels, around 1.9 GPa. The fluid force 
due to flapping is now strong enough to bend the wing. We estimate that the pressure 
that acts on the flapping wing is on the order of p = CDρ(πaf)2/2 at large Reynolds 
numbers, where πaf is the maximal speed of the wing in the vertical direction. The 
drag coefficient CD is here taken to be 1. At f = 6 Hz, a = 1.57 cm, the fluid pressure p 
is in the order of 44 Pa. Now the fluid force would give rise to 12pd4/8Eδ3 = 2.3 mm 
of deformation. Note that dynamical effects are not included in this simple 
computation. In particular, the estimate of the force does not take into account the 
unsteady nature of the flow. The drag coefficient adopted here is a conservative 
estimate: for oscillating wing, CD could typically be of the order of 4 or 5 [ref. 26]. 
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During forward flight, the fluid forces acting on the flexible wing are much harder to 
estimate. We find that the total vertical displacement of the wing tips increased 
progressively with increased flapping frequency. For instance, at f = 6.0 Hz, the wing 
tip amplitude is about 34% higher than the intended flapping amplitude. Fig. 7 shows 
the response of the plastic wing to the flapping motion. There are two sets of data 
presented there. The crosses show the relation between flapping frequency and 
rotational speed, while the flapping amplitude is taken to be 1.57 cm, or 0.83 times 
chord length, which is the intended flapping amplitude. This set of data shows that the 
flexible wing rotates faster than the rigid one. The triangles in the same figure are 
drawn from the same measurement, but the amplitude used to compute the flapping 
Reynolds number Ref is the actual amplitude measured near the wing tips at each 
frequency. For this flapping amplitude, the wing rotation is reduced. We believe that 
the discrepancy between the flexible and the solid wing would become smaller if the 
flapping amplitude were measured between the shaft and the wing tip.  
 

   
Figure 7. The effect of wing flexibility (crosses and triangles). A plastic wing of the same size as the 
one shown in Fig. 1, rotates faster than the rigid wing (circles, data from Fig. 2). The flapping 
amplitude used to calculate Ref is the amplitude at the shaft (crosses, a = 1.57 cm) or the measured 
amplitude at the wing tips (triangles). Due to the flexibility of the plastic wing, the actual flapping 
amplitude is greater than the intended one near the wing tips, yielding faster angular speeds. 
 
Under the same driving, we observe that the rotational speed for a flexible wing 
increases relative to a rigid wing. The tip of the wing moves further due to its 
flexibility and the imposed fluid forces. The increased flapping amplitude yields 
higher speed. 
  

4. A wing with broken symmetry 
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Figure 8. Wing with broken symmetry. Extension plates are added to break the clockwise 
/counterclockwise symmetry. The plates were made of rigid copper (shown as triangles) or of flexible 
Mylar sheets (crosses). The result from the symmetric wing is added for comparison (circles, data from 
Fig. 2). For the two asymmetric wing, ReΩ was computed using the distance from the driving shaft to 
the middle of the wide section (D = 86 mm). The flapping amplitude is fixed at a = 1.57 cm.  
 
We dealt here with wings that are designed with perfect fore-aft symmetry as we 
perform each experiment. Robust, spontaneous symmetry breaking have been 
observed in all cases. It is also of interest to study the dynamics of a wing where 
symmetry is broken in the geometry of the planform. 
  
a. Broken symmetry resulted from a flexible attachment to the rigid wing 
 
For a symmetric wing, its direction of rotation is selected randomly by the system 
with equal probability. We also find that the wing performs equally well in both 
directions, as far as the measurements of flight velocity are concerned. 
 
We now break the symmetry of the system. Fig. 8 shows a schematic of a modified 
wing. On each end of the wing, a flexible extension is mounted so that the planform 
becomes asymmetric (see the shaded part of Fig. 8). The extension is made of 50 
micrometer thick Mylar sheet, having a Young’s modulus of 5 GPa. Each extension is 
85 mm long and 40 mm wide. 
 
We observe that forward flight starting from rest is always counter-clockwise when 
seen from above. If the wing is forced to rotate in the opposite direction, it takes less 
than 10 flaps for the wing to slow down and reverse the direction. In Fig. 8, the 
equivalent wing span D is taken from the shaft to the middle of the wide section. Its 
width (40 mm) is used as the chord to compute the flapping Reynolds number. The 
forward speed is significantly greater than that of the “regular” wing. 
 
b. Effect of a rigid wing with broken symmetry 
 
We next replace the flexible attachment by a rigid copper extension. It has exactly the 
same plan form as the flexible extension, but the thickness is increased to 0.23 mm. 
 
Under driving, the wing quickly starts the same unidirectional motion as in the 
flexible case. Fig. 8 also shows ReΩ as a function of Ref. The rigid asymmetric wing 
behaves essentially the same as the original wing, except that the direction is 
predetermined and the rotation rate is somewhat greater. For this geometry, the linear 
speed is also based on the distance from the shaft to the middle of the attachment. The 
corresponding slope between Ref  and ReΩ  gives a Strouhal number 0.22. 
 

5. Effect of external damping, added as friction 
 
As noted earlier, thrust production by generating eddies is a key element for 
understanding the motion of the wing. We should carefully distinguish the 
hydrodynamical torque that results from interaction between the wing and the 
surrounding fluid, and an external torque applied to the wing. The hydrodynamical 
torque can be positive (thrust production) or negative (drag). External torque 
originates from bearing friction or magnetic damping (see below). If no external 
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torque were present, the observed rotation would be a state with no net 
hydrodynamical torque. In the presence of a resistive (i.e. negative) external torque, 
once the wing finds its terminal-state speed, the hydrodynamical torque has to be 
positive to balance the resistance. We discuss now how much positive 
hydrodynamical torque can be produced by the flapping wing. 

 
Figure 9. In the presence of an external damping, and at fixed flapping amplitude (a = 1.57 cm) and 
frequency (f = 2.5 Hz), we study the response of the system to different external loads. We here show 
the torque (Tres, top figure), and the power produced (TresΩ, bottom figure), vs. the Strouhal number. 
 
To add controlled resistance to the shaft, a horizontal aluminum disk is attached at its 
top (Fig. 1, left). It rotates together with the rotating wing. A magnet is placed facing 
the disk at a constant distance: the disk and the magnet are driven up and down in the 
vertical direction but the magnet does not rotate with the disk. When the disk (with 
the wing) starts to rotate, a torque that opposes the rotation is produced as a result of 
an induced current within the conductive disk [27]. This torque is proportional to the 
rotational speed, Tres = -νmΩ, where νm is a proportionality constant that can be 
adjusted by changing the distance between the magnet and the disk. During the 
experiment, we fix the driving Reynolds number Ref by fixing both the flapping 
amplitude (a = 1.57 cm) and frequency (f = 2.5 Hz). We then change the distance 
between the magnet and the disk incrementally, in order to vary the proportionality 
constant νm. For each νm, the external, resistive torque is measured by recording the 
free decay of the wing rotating in the empty fluid tank (i.e. without hydrodynamical 
torque, air drag being negligible). Then, with the wing mounted and flapped in water, 
we record each terminal speed of the wing after sufficient number of flaps. Fig. 9 
shows the resistive torque Tres and its corresponding power ΩTres as functions of the 
Strouhal number. As the proportionality constant νm increases, the wing slows down 
in rotation, increasing the Strouhal number. For high rotational speed (when St < 0.5), 
the torque first increases and reaches a maximum around St ~ 0.5 as the external 
resistance is increased. As the external damping is further increased, the rotational 
speed keeps on decreasing and the resistive torque reaches a plateau at about 2.2x10-4 

Nm. 
 



 12

It is interesting that at low Strouhal numbers torque can be developed with little 
change in rotational speed, attaining at St ~ 0.5, a state of maximal power output. 
Strouhal numbers as high as 3.7 are observed while the wing slows to maintain 
essentially constant torque. Thereafter, the rotating state is remarkably robust. 
 

Discussion and conclusion: 
 
We have studied the dynamics of a wing that is flapped up and down but is free to 
rotate horizontally. The present work extends the experimental findings reported 
earlier [12]. At a critical flapping Reynolds number, the wing spontaneously starts to 
rotate. The rotational speed is dynamically selected through the balance of fluid and 
external forces. Flapping amplitude and flapping frequency play similar roles. In this 
work, we have studied the effects of the different parameters of the wing affecting the 
rotational speed. Overall, it appears that the mechanism selecting the rotational speed 
is remarkably robust: we obtained the same relation between Ref and ReΩ for various 
flapping amplitudes and frequencies. 
 
The effect of wing thickness is much more critical. With a thick wing (three times the 
original thickness) we did not observe rotation at all. It is likely that a thick wing 
experiences significant edge resistance, and is less effective in the shedding of eddies. 
The elasticity of the wing also affects the dynamics of the wing. In the case of an 
asymmetric wing, wing elasticity also increases forward speed. This effect is 
interesting because in the biological world, wings and fins are indeed flexible. Further 
studies are required to investigate in more detail the role of elasticity.  
 
We have also shown that when an external force is applied, the motion adapts its 
Strouhal number to the excess drag. Slow speed rotations can sustain even when the 
Strouhal number reaches as high as 3.7. We also discussed the power that a wing can 
produce: it appears that the wing produces maximal power at a Strouhal number of 
about 0.5. 
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