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In micro-swimmer suspensions locomotion necessarily generates fluid motion, and it is known
that such flows can lead to collective behavior from unbiased swimming. We examine the comple-
mentary problem of how chemotaxis is affected by self-generated flows. A kinetic theory coupling
run-and-tumble chemotaxis to the flows of collective swimming shows separate branches of chemo-
tactic and hydrodynamic instabilities for isotropic suspensions, the first driving aggregation, the
second producing increased orientational order in suspensions of “pushers” and maximal disorder in
suspensions of “pullers”. Nonlinear simulations show that hydrodynamic interactions can limit and
modify chemotactically-driven aggregation dynamics. In puller suspensions the dynamics form ag-
gregates that are mutually-repelling due to the non-trivial flows. In pusher suspensions chemotactic
aggregation can lead to destabilizing flows that fragment the regions of aggregation.

PACS numbers: 87.17.Jj, 87.18.Hf, 47.63.Gd, 05.20.Dd

A growing body of experimental work has established
that suspensions of motile microorganisms can develop
complex large-scale patterns of collective swimming at
sufficiently high concentration [1, 2]. This behavior gen-
erally occurs in the absence of directional cues for swim-
ming, purely as a consequence of steric and hydrody-
namic interactions between the cells. Yet, there are many
circumstances in which cells exhibit chemotaxis, directed
motion in response to chemical gradients, and this pro-
cess by itself can lead to complex spatio-temporal pattern
formation [3]. As swimmer-generated flows may also ad-
vect any chemoattractant field, it is natural then to ask
how self-generated fluid flows in suspensions of microor-
ganisms affect modes of communication [4] and aggrega-
tion. Here we present an analysis of this issue and suggest
potential realizations of this pattern-forming system.

Chemotactic focusing of cell concentration has been
studied using the classical Keller-Segel (KS) model [5]
and in theories incorporating the run-and-tumble (RT)
[6] dynamics of bacterial motion [7, 8]. We extend a
well-known kinetic model for modulated RT dynamics
to include flows produced by the active stresses due to
swimming. A simpler version of our model is consid-
ered in [7] to study swimmer transport and rotation in
a given background shear flow. Without RT dynam-
ics, our model reduces to one for active suspensions [9]
which captures the large-scale flows seen in experiments
[1, 10] and illuminates the effect of propulsion mechanism
(pusher vs. puller) on large-scale dynamics and stability.
When swimmers produce a chemoattractant leading to
aggregation, the self-generated flows can have a large ef-
fect; pushers create complex flows that can bound growth
in organism density, while pullers show limited pattern
coarsening and isolated aggreggates repelling due to non-
trivial flows. Merging the RT and active suspension mod-
els is seamless as both are kinetic theories with conforma-
tion variables the particle position and orientation [11].

Consider a suspension of swimmers at local concentra-
tion Φ(x, t), each of which moves at a constant speed
U in a run-and-tumble dynamics. They move in a fluid
of local velocity u(x, t) and produce a chemoattractant
of concentration C(x, t) and molecular diffusivity DC .
We choose rescalings based on the swimmer contribution
to the fluid stress tensor (below), with a characteristic
length ` = l/φ, where l is the swimmer size and φ ≡ l3〈Φ〉
is the effective mean volume fraction in suspension. Scal-
ing time by `/U , C evolves as

Ct + u ·∇C = Pe−1∇2C − β1C + β2Φ , (1)

where β1 and β2 are rate constants for chemoattractant
self-degradation and production, and the Péclet number
Pe = U`/DC measures the strength of diffusion to ad-
vection on the intrinsic scale `. Collective swimming may
generate coherence on larger scales with higher speeds,
increasing the importance of advection. Without advec-
tion this is the KS model [5]. In the case of E. coli [12]
gives U ∼ 25 µm/s, l ∼ 5 µm, φ ∼ 0.1 at a cell concen-
tration of 109 cm−3, so ` ∼ 50 µm. With DC ∼ 5× 10−6

cm2/s we obtain Pe ' 2.5, β1 ' 0.008 and β2 ' 0.004.
For faster-swimming organisms, such as marine bacteria
[13], this intrinsic Péclet number can reach O(10− 20).

The configuration of swimmers is given by a distribu-
tion function Ψ(x,p, t) of the center of mass position x
and orientation p satisfying the Fokker-Planck equation

Ψt =−
[
λ(DtC)Ψ− 1

4π

∫
dp′λ(DtC)Ψ(x,p′, t)

]
−∇x · (Ψẋ)−∇p · (Ψṗ) , (2)

where the local swimmer concentration is Φ(x, t) =∫
dpΨ(x,p, t). The bracketed term in (2) describes the

effect of RT chemotaxis based on a swimming dynamics
of straight runs and modulated reorientations (tumbles)
where λ(DtC) is a tumbling frequency, the probability of
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FIG. 1: (color online). Chemotactic suspensions at large times, t = 3000. Swimmer concentration Φ (top) and mean direction
n (bottom) for (i) chemotactic neutral swimmers (u = 0), and (ii) Φ (top), fluid streamlines and velocity field u (bottom) for
chemotactic pullers. (iii,iv) Φ (top), streamlines and u (bottom) for chemotactic pushers. Parameters β1 = β2 = 0.25, Pe = 20,
γ = 1, DT = DR = 0.025. Parameters λ0 and χ are indicated in Figs. 2c,d for cases (i-iii) and are λ0 = 5, χ = 0.6 for case (iv).
See [16] for movies of swimmer concentration dynamics.

a bacterial tumble event as a function of the chemoat-
tractant temporal gradient DtC = Ct + (p + u) · ∇C
along a swimmer’s path. Experiments [14] show that
when DtC > 0 the tumbling frequency is reduced, and
is otherwise constant, as captured by the biphasic form
λ(DtC) = λ0 max(min(1− χDtC, 1), 0), a linearized ver-
sion of an earlier model [8, 12]. The fluxes in (2) are

ẋ = p + u, ṗ = (I− pp) (γE + W) p. (3)

The particle velocity ẋ includes swimming at constant
speed (non-dimensionalized to unity) in the axis direc-
tion p (|p| = 1), translation by the fluid velocity u. (In
the KS model [5], swimmer speed is linear in the chem-
ical gradient.) The angular velocity ṗ follows Jeffrey’s
equation [15] where E = (∇xu + ∇xuT )/2 is the rate-
of-strain tensor, W = (∇xu −∇xuT )/2 is the vorticity
tensor. For rod-like swimmers, the shape factor is γ ∼ 1.

The fluid velocity u(x, t) produced by the suspension
satisfies the Stokes equations driven by an “active” stress
Σa arising from particle locomotion:

− ∇2
xu + ∇xq = ∇x ·Σa, ∇x · u = 0 (4)

Σa(x, t) = α
∫
dpΨ(x,p, t)pp. (5)

The active stress is an orientational average of the force
dipoles αpp the cells exert on the fluid [9], where α is an
O(1) constant by our rescaling. A cell that self-propels
by front-actuation (a puller) has stresslet strength α > 0,
and a rear-actuated cell (pusher) has α < 0. The case
of “neutral” cells (α = u = 0) is the closest this model
approaches the KS [5] and RT models [8, 12].

We first illustrate the effect hydrodynamics has on
aggregation. From nonlinear simulations of Eqs. (1-6),
Fig. 1 shows the swimmer concentration Φ(x, t) and mean
orientation n =

∫
dpΨ/Φ at late times, having started

near uniform isotropy, for neutral, puller, and pusher
suspensions. All share a dominant self-aggregation in-
stability, but differing (or no) hydrodynamic interactions.
Neutral swimmers show aggregation and pattern coarsen-
ing. Pullers show limited aggregation into circular spots
kept apart by non-trivial fluid flows. Pushers create com-
plex fluid flows and fragmented aggregation regions.

These behaviors can be understood through a stability
analysis of uniform isotropic suspensions. For simplicity,
consider rod-like (γ = 1) swimmers and a quasi-static
chemoattractant field Pe−1∇2C − β1C = −β2Φ, which
slaves C to Φ. The tumbling frequency is simplified to
λ(p) = λ0 (1− χp · ∇C). A steady state is Ψ0 = 1/4π
(Φ = 1), u = 0, and C0 = β1/β2. Perturbations of the
form ε(Ψ̃(p,k), C̃(k)) exp(ik · x + σt), yield

(σ + λ0 + ik · p)Ψ̃ =
λ0
4π

(
ikχβ2(k̂ · p)

β1 + k2Pe−1
+ 1

)
Φ̃

− 3α

4π
(k̂ · p)p · (I− k̂k̂)Σ̃pk , (6)

where Φ̃ =
∫
dp′Ψ̃′ and k = kk̂. Since Σ̃p =

∫
dp′Ψ̃′p′p′,

this is a linear eigenvalue problem for Ψ̃ and σ. The first
term on the RHS is chemotactic (C) and has unstable
dynamics restricted to the zeroeth azimuthal mode on
|p| = 1. The second is hydrodynamic (H), with unstable
dynamics restricted to the first azimuthal mode. This
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FIG. 2: (color online). Linear stability analysis. (a) Branches of the hydrodynamic instability, with and without tumbling,
for pushers. (b) Chemotactic branch for χ = 35, λ0 = 0.25, β1 = β2 = 1/4 and Pe = 20. Regimes diagram for (c) neutral
swimmers and pullers, and (d) pushers. Solid curves give linear stability boundaries for long waves. Dashed lines show shifted
boundaries in nonlinear simulations at finite box size. Encircled labels (i-iii) denote parameters used in simulations (Fig. 1a-c).

yields uncoupled relations for growth rates σC,H ,

2

λ0
= R

[
2 + aC log

(
aC − 1

aC + 1

)]
− 1

ik
log

(
aC − 1

aC + 1

)
4k

3iα
= 2a3H −

4

3
aH + (a4H − a2H) log

(
aH − 1

aH + 1

)
, (7)

where aC,H = (σC,H +λ0)/ik and R = χβ2/(β1+k2/Pe).
We refer to these as the chemotactic and hydrodynamic
relations, respectively. The first induces growth in con-
centration fluctuations, while the second increases orien-
tational order. The two are coupled only through the
basal tumbling rate λ0 which in the hydrodynamic re-
lation only shifts the growth rate. Further, the chemo-
tactic instability gives rise to normal stresses of the form
Σ̃p = k̂k̂ − k̂⊥k̂⊥, while the hydrodynamic instability
gives shear stresses of the form Σ̃p = k̂k̂⊥ + k̂⊥k̂.

For pushers (α < 0) the hydrodynamic instability
has a finite bandwidth (Fig. 2a), though with maxi-
mal growth rates at k = 0. Tumbling shifts down
the Re(σH(k)) branch by λ0 for all k, further stabi-
lizing the system. Long-wave asymptotics of (7) give
two solution branches: σH1 ' −α/5 − λ0 + 15/7αk2

and σH2 ' −λ0 + O(−αk2). There is no hydrody-
namic instability for pullers [9]. Fig. 2b shows the
chemotactic growth rate. Small k asymptotics yields
σC ≈ k2/(3λ0)[(χβ2/β1)λ0 − 1]: for (χβ2/β1) > 1/λ0
there are wavenumbers with Re(σC(k)) > 0, shown in
one case as a finite band of unstable modes whose width
is controlled by chemo-attractant diffusion.

From Fig. 2a, we can obtain a range for λ0 for which
there is a hydrodynamic instability in pusher suspen-
sions. Heuristically, λ0 sets an effective rotational dif-
fusivity, and λ0 ≥ 0.2 turns off the hydrodynamic insta-
bility for any system size. For L = 50 and the diffusion
constants used in simulations, λ0 ≥ 0.09 suffices. This
information is assembled in Fig. 2 c,d as phase diagrams
that relate the parameters to various dynamical regimes.

Numerical studies of the full nonlinear dynamics (1–5)
were done in 2D, with a box size L = 50 large enough to
include several unstable linear modes. Swimmer transla-
tional and rotational diffusions are added in the model to
control the growth of steep gradients over long-times. An
initial random perturbation of the uniform isotropic state
is used: Ψ(x,p, 0) = 1/2π+Σiεi cos(ki·x+ξi)Qi(pi) with
random coefficients |εi| < 0.01, ξi an arbitrary phase and
Qi a low-order polynomial. The initial chemo-attractant
concentration is uniform with C(x, 0) = β1/β2 = 1. Fig-
ure 1 shows long-time swimmer concentration Φ for four
illustrative cases. In each case, concentration C closely
tracks Φ. Cases (i-iii) share the same chemotactic insta-
bility, but differ in swimming actuation: α = 0, 1,−1.

The expected regimes of these three cases are shown in
Figs. 2c,d. For neutral swimmers, aggregation dominates
and the dynamics is typified by the formation of a few
regions of steadily increasing concentration that slowly
coarsen (Fig. 1a). The maximum swimmer concentra-
tion (Fig. 3) shows little sign of the rapid self-focussing
associated with finite-time chemotactic collapse [17] of
the KS model, which here may be due to the fixed swim-
ming speed [18]. While the initial aggregation for pullers
(Fig. 1b) is similar to that for neutral swimmers (Fig.
3) its long-time behavior is very different. Concentration
growth and coarsening cease as the dynamics enters a
near steady-state with circular regions of high concentra-
tion. Active-stress driven flows suppress further coarsen-
ing by pushing nearby peaks apart and apparently main-
tain the few remaining high concentration regions.

For pushers (Fig. 1c), linear theory gives only a chemo-
tactic instability, and the dynamics is indeed initially
dominated by aggregation as is evidenced by the early
rapid growth of normal stresses relative to shear stresses
(not shown). However, aggregation into a regions with
high swimmer concentration creates a destabilizing ac-
tive stress, giving rise to unsteady fluid flows. These
flows fragment the peaks while pushing them around the
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FIG. 3: (color online) Measures of growth: maximum swim-
mer concentration for cases (i-iii) in Fig. 1.

domain. The dynamics is one of constant aggregation
and flow instability, which apparently suppresses further
growth in swimmer concentration (Fig. 3).

Lastly, we examine in Fig. 1(iv) the dynamics that
arises with parameters close to those measured by
Saragosti et al [12] (before our rescaling) in their experi-
ments of E. coli chemotaxis. These parameters lie far to
the right of the aggregation regime of Fig. 2d as λ0 is 20
times higher than at the predicted threshold for suppress-
ing hydrodynamic instabilities. Not surprisingly, the
simulations show chemotactic aggregation into very high
peaks. Once the swimmer concentration in those peaks
is large enough, the active stresses give rise to small-scale
and localized fluid flows (cf. Fig. 1(iii)). These local flows
do appear to be implicated in the slow “wriggling” we ob-
serve of the saturated aggregates (see Supplementary Ma-
terial [16]). The experiments of Saragosti et al [12], which
are performed in confined micro-channels and capillaries,
show instead the development of traveling concentration
waves of chemotactic bacteria. These traveling waves
were initiated in the experiments through an initial con-
centration by centrifugation of the swimmer population
to one end of the channel. We do not observe the spon-
taneous formation of such traveling waves here though
ours is an open system (though confined geometrically
by the assumed periodicity length) and the initial swim-
mer state is un-oriented and nearly homogeneous. The
combined effects of a confining geometry and the initial
concentration of swimmers has yet to be examined in our
theoretical system.

We have shown that the intrinsically generated fluid
flows arising from collective swimming of microorgan-
isms can modify patterns of chemotactic aggregation
and, most importantly, can limit aggregate concentra-
tion. This is unlike chemotactic models that predict
concentration blow-up or include artificial terms to cap
growth. While we have emphasized hydrodynamic ef-
fects in attractive chemotactic dynamics, it is important
to remember that ours is a dilute to semi-dilute theory
that does not capture near-interactions between swim-
mers, hydrodynamic or otherwise. In denser suspensions
swimmer size limits local swimmer density through steric
interactions though as yet well-founded models that com-
bine these with hydrodynamic interactions do not exist.

Nonetheless, we expect similar results when large-scale
coherence is driven by steric effects [10, 19]. On that
note, steric effects with no hydrodynamics may also limit
aggregation of chemotactic random walkers [20].

Finally, these auto-chemotactic effects can be seen as
complementary to the enhanced mixing by swimmers
[11] that has also been explored for microfluidic appli-
cations [21]. Systematic studies of the interplay between
chemotaxis and locomotion-generated fluid flow should
be possible through controlled introduction of exoge-
neous chemoattractants to trigger aggregation, through
the interplay of quorum sensing and chemotaxis [22], and
perhaps by specific genetic engineering of the dynamics
of locomotion and chemosensing [23].

This work was supported in part by NSF grants DMS-
0652775 and DMS-0652795, and DOE grant DEFG02-
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