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Reasoning by analogy is powerful in physics for students and researchers alike, a case in point

being electronics and hydraulics as analogous studies of electric currents and fluid flows. Around

100 years ago, Nikola Tesla proposed a flow control device intended to operate similarly to an

electronic diode, allowing fluid to pass easily in one direction but providing high resistance in

reverse. Here, we use experimental tests of Tesla’s diode to illustrate principles of the electronic-

hydraulic analogy. We design and construct a differential pressure chamber (akin to a battery) that

is used to measure flow rate (current) and thus resistance of a given pipe or channel (circuit

element). Our results prove the validity of Tesla’s device, whose anisotropic resistance derives

from its asymmetric internal geometry interacting with high-inertia flows, as quantified by the

Reynolds number (here, Re � 103). Through the design and testing of new fluidic diodes, we

explore the limitations of the analogy and the challenges of shape optimization in fluid mechanics.

We also provide materials that may be incorporated into lesson plans for fluid dynamics courses,

laboratory modules, and further research projects. VC 2021 American Association of Physics Teachers.

https://doi.org/10.1119/10.0003395

I. INTRODUCTION

Nikola Tesla is celebrated for his creativity and ingenuity
in electricity and magnetism. Perhaps part of his genius lies
in connecting ideas and concepts that do not at first glance
appear related: Tesla’s writings and record of inventions sug-
gest he reasoned by analogy quite fluidly. While he is best
known for inventing the AC motor—which transforms oscil-
lating electric current into one-way mechanical motion—
Tesla also invented a lesser known device intended to con-
vert oscillating fluid flows into one-way flows. Just around
100 years ago, and while living in New York City not far
from our Applied Math Lab, Tesla patented what he termed
a valvular conduit,1 as shown in Fig. 1. The heart of the
device is a channel through which a fluid such as water or air
can pass, and whose intricate and asymmetric internal geom-
etry is intended to present strongly different resistances to
flow in one direction versus the opposite direction. His writ-
ing in the patent shows that Tesla had a clear purpose for the
device: To transform oscillations or pulsations, driven per-
haps by a vibrating piston, to one-way motion either of the
fluid itself (the whole system thus acting as a pump or com-
pressor) or of a rotating mechanical component (i.e., a rotary
motor).

Whether called pumping, valving, rectification, or AC-to-
DC conversion, this operation is one example of the analogy
between electrodynamics and hydrodynamics. And the
electronic-hydraulic analogy is but one of many such paral-
lels that show up in physics and across all fields of science
and engineering. As emphasized by eminent physicists such
as Maxwell and Feynman, reasoning by analogy is one of the
powerful tools that allow scientists, having understood one
system, to quickly make progress in understanding others.3–5

It is also a valuable tool in teaching challenging scientific
concepts.6 Here, we explore this style of reasoning in the
context of Tesla’s invention, whose operation is analogous
to what we now call an electronic diode. In hydraulic terms,
this device plays the role of a check valve, which typically

involves an internal moving element such as a ball to block
the conduit against flow in the reverse direction. The practi-
cal appeal of Tesla’s diode, in addition to its pedagogical
value,7 is that it involves no moving parts and thus no com-
ponents that wear, fail, or need replacement.1

In exploring the electronic-hydraulic analogy through
Tesla’s diode, we also provide pedagogical materials that
may be incorporated into lesson plans for fluid dynamics
courses and especially laboratory courses. For students of
physics, electricity and electronics are often motivated by
hydraulics,8–12 in which voltage is akin to pressure, current
to flow rate, electrical resistance in a wire to fluidic resis-
tance of a pipe, etc. However, in the modern physics curricu-
lum, electrodynamics quickly outpaces hydrodynamics, and
most students have better intuition for voltage than pressure!
Lesson plans and laboratory modules based on this work
would have the analogy work in reverse, i.e., employ ideas
from electronics to guide reasoning about Tesla’s device,
and thereby learn the basics of fluidics or the control of fluid
flows. As such, we present an experimental protocol for test-
ing Tesla’s diode practically, efficiently and inexpensively
while also emphasizing accuracy of measurements and
reproducibility of results. The feasibility of our protocol is
vetted through the direct participation of undergraduate
(D.H. and E.Z.) and high school (G.R. and C.M.) students in
this research. We also suggest and explore avenues for fur-
ther research, such as designing and testing new types of flu-
idic diodes.

II. TESLA’S DEVICE, PROPOSED MECHANISM,

EFFICACY, AND UTILITY

Tesla’s patent is an engaging account of the motivations
behind the device, its design, proposed mechanism, and
potential uses. In this section, we briefly summarize the pat-
ent and highlight some key points, quoting Tesla’s words
wherever possible.1 The general application is towards a
broad class of machinery in which “fluid impulses are made
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to pass, more or less freely, through suitable channels or con-
duits in one direction while their return is effectively
checked or entirely prevented.” Conventional forms of such
valves rely on “carefully fitted members the precise relative
movements of which are essential” and any mechanical wear
undermines their effectiveness. They also fail “when the
impulses are extremely sudden or rapid in succession and the
fluid is highly heated or corrosive.” Tesla aims to overcome
these shortcomings through a device that carries out
“valvular action… without the use of moving parts.” The
key is an intricate but static internal geometry consisting of
“enlargements, recesses, projections, baffles or buckets
which, while offering virtually no resistance to the passage
of the fluid in one direction, other than surface friction, con-
stitute an almost impassable barrier to its flow in the opposite
sense.” Figure 1(c) is a view of the channel internal geome-
try, where the fluid occupies the central corridor and the 11
“buckets” around the staggered array of solid partitions.

Without making any concrete claims to having investi-
gated its mechanism, Tesla relates the function of the device
to the character of the flows generated within the channel, as
indicated by dashed arrows in Fig. 1(c). In the left-to-right or
forward direction, the flow path is “nearly straight.”
However, if driven in reverse, the flow will “not be smooth
and continuous, but intermittent, the fluid being quickly
deflected and reversed in direction, set in whirling motion,
brought to rest and again accelerated.” The high resistance is
ascribed to these “violent surges and eddies” and especially
the “deviation through an angle of 180

�
” of the flow around

each “bucket” and “another change of 180
�
… in each of the

spaces between two adjacent buckets,” as indicated by the
arrows on the right of Fig. 1(c).

The effectiveness of the device can be quantified as “the
ratio of the two resistances offered to disturbed and undis-
turbed flow.” Without directly stating that he constructed
and tested the device, Tesla repeats a claim about its effi-
cacy: “The theoretical value of this ratio may be 200 or
more”; “a coefficient approximating 200 can be obtained”;
and “the resistance in reverse may be 200 times that in the
normal direction.” The experiments described below will
directly assess this effectiveness or diodicity.13

Much of the remaining portions of Tesla’s patent are
devoted to example uses. The first is towards the
“application of the device to a fluid propelling machine, such
as, a reciprocating pump or compressor.” The second is
intended to drive “a fluid propelled rotary engine or turbine.”
The explanations and accompanying diagrams are quite

involved, and at the end of this paper, we offer our own
applications that we think capture Tesla’s intent in simpler
contexts.

III. EXPERIMENTAL METHOD TO TEST TESLA’S

DIODE

It is unclear whether Tesla ever constructed and tested a
prototype, and this fact is obscured by the vague language
used in the patent.1 In any case, no data are provided. In the
100 years since, there has been much research into modified
versions of Tesla’s conduit14–35 and asymmetric channels
generally for micro- and macro-fluidic applications.13,36–44

However, to our knowledge, there are no studies on conduits
faithful to Tesla’s original geometry. Here, we use modern
rapid prototyping techniques to manufacture such a channel,
and we outline an experimental characterization of its
hydraulic resistance that uses everyday instruments like rul-
ers, beakers, and stopwatches to yield high-precision
measurements.

We start with motivation from the electronic-hydraulic
analogy. Suppose we have a circuit element of unknown and
possibly anisotropic resistance, which we give the symbol of
four arrowheads in Fig. 2(a). To characterize the element, we
wish to impose a voltage difference DV using a battery or
voltage source and measure the resulting current I, perhaps
using an ammeter (not shown). The resistance is then given
by Ohm’s law R ¼ DV=I. Following the usual analogy, we
wish to impose a pressure difference Dp across the conduit,
measure the resulting volume flow rate Q, and thus infer the
resistance R ¼ Dp=Q.

The conduit plays the role of the unknown element and is
readily manufactured thanks to the modern convenience of
rapid prototyping. We first digitize the channel geometry
directly from the patent to arrive at a vector graphics file,
and then we have tested both 3D-printed and laser-cut real-
izations. Having achieved highly reproducible results on the
latter, here we report on a design cut from clear acrylic sheet,
a rendering of which is shown in Fig. 2(b). The channel
tested has height or depth d¼ 1.9 cm, length L¼ 30 cm and
average wetted width w¼ 0.9 cm, and its planform geometry
faithfully reflects Tesla’s design. Gluing a top using acrylic
solvent ensures a waterproof seal. If the desired channel is
deeper than the maximum thickness permitted for a given
laser-cutter, several copies may be cut and bonded together
in a stack. Channels may also be 3D-printed, in which case

Fig. 1. Nikola Tesla’s valvular conduit. (a) The inventor Nikola Tesla (1856–1943). (b) Title to Tesla’s 1920 patent for the valvular conduit (Ref. 1). (c)

Schematic showing the conduit’s internal geometry. The channel is intended to allow fluid to flow from left to right (forward direction) with minimal resistance

while providing large resistance to reverse flow.
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waterproofing can be achieved by painting the interior with
acrylic solvent to seal gaps between printed layers.

What serves the function of a hydraulic battery? We desire
a means for producing a pressure difference across the chan-
nel, thereby driving a flow, and it is natural to employ col-
umns of water as sources of hydrostatic pressure. If the
channel bridges two columns of different heights, water
flows through the channel from the higher to the lower. The
challenge is to achieve an ideal pressure source (akin to an
ideal voltage source) that maintains the heights and thus
pressures even as flows drain from one and into the other.
This is accomplished using overflow mechanisms, as
detailed in the experimental apparatus of Fig. 2(c). Two
water-filled chambers are connected only by the channel
being tested. Each chamber has an internal drain that can be
precisely positioned vertically via a translation stage. The
heights of the drains set the water levels and thus the flow
direction, which can be reversed by switching which drain is
higher. The draining of the high side through the channel is
compensated by a pump that draws from a reservoir; the
pump is always run sufficiently fast so as to just overflow the
chamber and thus maintain its level. The lower side is fed
only by the flow from the channel, and hence the flow
through its drain and out the side to the reservoir represents
the flow through the channel itself. The whole system is
closed and can be run indefinitely.

A sectional view of the apparatus is shown in Fig. 2(d). A
desired difference in water heights Dh can be obtained by
adjusting the drain heights. Considering hydrostatic pressure,

we argue that the pressure difference across the channel is
Dp ¼ qgDh, where q ¼ 1:0 g=cm3 is the density of water
and g ¼ 980 cm=s2 is gravitational acceleration. (We use the
centimeter-gram-second or CGS system of units throughout
this work, as it proves convenient given the experimental
scales.) A more thorough analysis of the pressures is detailed
in Sec. VI. The resulting volume rate Q of water flowing
from high to low through the channel can then be measured
by timing with a stopwatch the filling of a beaker of known
volume that intercepts the flow exiting from the lower cham-
ber. Large vessels and consequently long measurement times
ensure highly accurate results, and measurements may be
repeated to ensure reproducibility. Resistance can then be
calculated as R ¼ Dp=Q. Importantly, the experimental
scales and working fluid are chosen to achieve strongly iner-
tial flows, as quantified by the Reynolds number Re intro-
duced in Sec. V.

IV. RESISTANCE MEASUREMENTS AND THE

LEAKY DIODE

In Fig. 3(a), we present as the markers and curves mea-
surements of flow rate Q for varying height differential Dh.
Here, Dh > 0 corresponds to Q> 0 or flow in the forward or
“easy” direction (filled markers), while the reverse or “hard”
direction corresponds to Dh < 0 and Q< 0 (open markers).
As might be expected, increasing the height differential
yields higher magnitudes of flow rate in both cases. The
absolute flow rate jQj increases monotonically but

Fig. 2. Experimental apparatus for testing Tesla’s diode. (a) Circuit analogs. The resistance of an unknown component is characterized by imposing a voltage

difference and measuring current. A “leaky” diode may be represented in terms of resistors and ideal diodes. (b) Rendering of Tesla’s conduit that can be 3D

printed or laser cut. Relevant dimensions include total length L, depth or height d, and average wetted width w (c) Perspective view of experimental apparatus.

Two upper chambers are connected only via the conduit to be tested, and both overflow through internal drains to a lower reservoir. The water level of the

higher is maintained by an overspill mechanism with a pump. Flow through the channel into the lower chamber induces overflow into the reservoir. (d)

Schematic of pressure source chamber. The height difference Dh is set by variable-height drains, and the resulting volume flow rate Q is measured.
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nonlinearly with jDhj for flow in both directions. More impor-
tant but more subtle is that, for the same jDhj, the values of jQj
differ for forward versus reverse, the former being greater than
the latter across all values jDhj. This anisotropy is more clearly
seen in Fig. 3(b), where the resistance R ¼ Dp=Q is plotted ver-
sus jQj for the forward and reverse cases. Across all values of
jQj explored here, the resistance in the reverse direction is
higher than that of the forward direction.

A note about errors: The flow rate Q is determined by trig-
gering a stopwatch when a given volume of liquid is col-
lected, and so errors are set by the human visual reaction
time (�0:3 s). Relative errors under 1% are achieved simply
with long collection times (>30 s). The differential height
Dh is determined by visually reading the water column
heights on vertical rulers in each chamber, and so errors are
set by the height of the meniscus (�1 mm). For a typical
jDhj of 10 cm, the errors are about 1%. We suppress error
bars in Fig. 3 and elsewhere when they are smaller than the
symbol size.

The data of Fig. 3 provide direct experimental validation
for Tesla’s main claim of anisotropic resistance. But, at least
for the conditions studied here, the ratio of hard to easy resis-
tances is far less than that reported in Tesla’s patent, being
closer to two times rather than 200 times. This factor is quan-
tified and compared against other channel designs in Sec.
VIII, and we discuss possible reasons for this discrepancy in
Sec. IX.

Returning to the electronic-hydraulic analogy, our results
suggest that the conduit acts as a leaky diode. To appreciate
this term, it is useful to compare our results against the per-
formance of ideal and real electronic diodes, as shown in
Fig. 3(a). An ideal diode offers no resistance in the forward
direction and thus Q is infinite for all Dh > 0. It has infinite
resistance in reverse and thus Q¼ 0 for all Dh < 0. A real
electronic diode typically requires a finite voltage to “turn
on” in the forward direction, has some small leakage current
in reverse, and breaks down for very large reverse voltages.
Our measurements indicate that Tesla’s conduit deviates in
all such features, but a common trait is the leakage in
reverse, which is quite substantial for the conditions studied
here.

These results can be summarized by the representation of
the leaky diode as shown in Fig. 2(a). Symbolized as four
arrowheads, it is equivalent to a parallel pair of resistors and

ideal diodes, themselves arranged in series within each pair.
Positive voltages drive current through a forward resistance
R1, and negative voltages drive lower current through a
higher reverse resistance R2 > R1. The analogy is made
more exact if the resistance values are functions of current.

V. IRREVERSIBILITY OF HIGH REYNOLDS

NUMBER FLOWS

The fundamental characteristic of Tesla’s device borne out
by the above measurements is that, when the applied pressures
are reversed, the flows do not simply follow suit by reversing
as well. Rather, substantially different flow rates result, and
presumably all details of the forward versus reverse flows
through the conduit differ as well. This is a manifestation of
irreversibility, a property that arises more generally in many
physical contexts.45,46 Flow irreversibility was anticipated by
Tesla, whose drawing reproduced in Fig. 1(c) shows a rather
straight trajectory (dashed line and arrow) down the central
corridor for the forward direction and a more circuitous route
around the islands for the reverse direction. This outcome
could be viewed as unsurprising; after all, the channel is
clearly asymmetric or directional. For those new to fluid
mechanics, it may be counter-intuitive that there exist condi-
tions for which flows are exactly reversible even for asymmet-
ric geometries, implying equality of the forward and reverse
resistance values. (Tesla may not have been aware of this.)
Fluid dynamical or kinematic (ir)reversibility—which is dis-
tinct from the thermodynamic (ir)reversibility of a process—
can be derived from the governing Navier-Stokes equation of
fluid dynamics, an analysis taken up elsewhere.47,48 Its central
importance to the function of Tesla’s device warrants a brief
overview of known results.

While other forces may participate in various situations,
three effects are intrinsic to fluid motion: Pressure, inertia,
and viscosity. It is useful to think of flows as being generated
by pressure differences overcoming the inertia of the dense
medium and its viscous resistance. In well-known results for
laminar flows that can be found in fluid mechanics text-
books,2 the inertial pressure scales as qU2 and the viscous
stress as lU=‘, where q is the fluid density, l its viscosity, U
is a typical velocity, and ‘ is a relevant length scale. The rel-
ative importance of inertia to viscosity can be assessed by
their ratio, which is the dimensionless Reynolds number

Fig. 3. Experimental tests of Tesla’s conduit. (a) Curves with markers (color online) indicate measured flow rate Q across varying differences in water column

heights Dh and thus differential pressure Dp. The forward direction (filled symbols) permits greater flow rates for the same Dh / Dp. Curves are also shown

for the behavior of an ideal diode (dark gray) and a typical real electronic diode (light gray). (b) Inferred resistance R ¼ Dp=Q versus jQj for flow in both direc-

tions. The conduit acts as a leaky diode with higher but finite resistance in the reverse direction. Error bars are smaller than the symbol size.
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Re ¼ qU2=ðlU=‘Þ ¼ qU‘=l. In the low Reynolds number
regime of Re� 1, inertial effects can be ignored, and the
resulting linear Stokes equation is reversible.2,48

Qualitatively, viscosity causes flows to stick to solid bound-
aries and conform to identical paths for forward and reverse
directions. This general property of viscous flows has many
important consequences and is beautifully demonstrated by
stirring a viscous fluid and then “unstirring” with precisely
reversed motions, causing a dispersed dye to recollect into
its original form.49,50 When Re is not small, inertial effects
participate and flows are governed by the full Navier-Stokes
equation, whose nonlinearity leads to irreversibility.2

Qualitatively, inertia allows flows to depart or separate from
solid surfaces, this tendency being sensitive to geometry and
thus directionality. Among many other phenomena, this
relates to the observation that one can blow out but not suck
out a candle, the flows being markedly different under the
reversal of pressures.

For computing Reynolds numbers for pipe flows, it is cus-
tomary to set U as the average flow speed and to use the
diameter D (or a corresponding dimension for non-circular
conduits) as the length scale. Saving a deeper discussion of
these quantities for Sec. VII, the parameters in our experi-
ments yield Re ¼ qUD=l � 102–104, as reported on the
upper axis of Fig. 3(b). Such high values of Re indicate that
the flows are strongly inertial and thus irreversible, which is
consistent with the different forward versus reverse resis-
tance values reported here. The directional dependence of
high-Re flows has been observed previously in computa-
tional fluid dynamics simulations for modified forms of
Tesla’s channel.19,20,22,24,29 For low Re, flow reversibility
has been confirmed by experimental visualization,48 and
future work should verify the symmetric resistance expected
in this regime.

VI. ANALYSIS OF PRESSURES IN TWO-CHAMBER

SYSTEM

In the above analysis of the experimental data, we have
assumed that our two-chamber apparatus imposes Dp
¼ qgDh across the channel. This formula strictly represents
the gravitational hydrostatic pressure difference between
liquid columns, whereas the fluid is in motion throughout
our system, so what justifies its application here? The short
answer is that the flows in the chambers outside of the chan-
nel are “slow enough” to safely ignore velocity-dependent
pressures. The long answer is provided in this section, where
we analyze the contributing pressures in the system via
Bernoulli’s law. This analysis also sets up Sec. VII by show-
ing that Bernoulli’s law is violated in the channel itself,
requiring a characterization of friction or dissipation.

Bernoulli’s law is a statement of conservation of energy
for steady flows of an inviscid (zero-viscosity) fluid.2 Of
course, real fluids like water have finite viscosity, and later
we discuss the validity of this approximation for the flows in
the chambers. Following streamlines of the flow, the pres-
sure, the gravitational potential energy density (i.e., energy
per unit volume), and the kinetic energy density must each
change in a way such that their sum (total energy density) is
unchanged: H ¼ pþ qgzþ ð1=2ÞqU2 is constant. Here, p is
the pressure, which can be thought of as a measure of inter-
nal energy density, z is the vertical coordinate, U is the speed
at any location along a streamline, and H is the total energy
density.

In Fig. 4(a), we examine a hypothetical streamline
assumed to originate at the surface of the high-level cham-
ber, descend to the channel opening, transit through the
channel and out into the low-level chamber, and finally up to
the surface. In its descent from the point marked A at the
free surface to the point B somewhat upstream of the channel
inlet, it is reasonable to assume that flow speed remains
always small U � 0 and so too does the kinetic energy (more
on this approximation later). In this case, the primary energy
exchange involves a drop in the gravitational term qgz and a
consequent rise in p, as shown in the segment A–B in Fig.
4(b), which tracks the terms of Bernoulli’s law with hypo-
thetical data.

A similar exchange occurs for the end segment B0–A0.
Because the free surface points A and A0 are both at atmo-
spheric pressure p0, we conclude that pressure difference
between points B and B0 is qgDh. The regions B–C just
before the inlet and C0–B0 just after the outlet are approxi-
mated as horizontal and so involve exchanges of pressure
with kinetic energy only. The flow becomes faster from B–C
as it is constricted and becomes slower C0–B0 as it spreads
out, and these changes in speed U must come with changes
in pressure. However, the increase in speed from B–C would
seem to be matched by the decrease from C0–B0, and so the
pressure drop B–C is matched by the rise C0–B0. If true, then
indeed the pressure drop across the channel C–C0 is
Dp ¼ qgDh.

This conclusion rests on the assumptions that the fluid has
negligibly small viscosity (so that Bernoulli’s law may be

Fig. 4. An analysis of the two-chamber system guided by Bernoulli’s law.

(a) Chambers of high and low water levels are connected only by a channel

at some depth. A flow streamline ABCC0B0A0 starts at the surface of the

higher column, enters the channel, and emerges in the lower column where

it meets the surface. (b) Hypothetical data showing how pressure p, gravita-

tional potential energy density qgz, and flow kinetic energy density

ð1=2ÞqU2 and total energy density H ¼ pþ qgzþ ð1=2ÞqU2 vary along the

streamline.
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used) and that the flow speeds outside of the channel are neg-
ligibly slow (so motion-dependent pressures may be
ignored). Such approximations are statements about the rela-
tive strengths of effects, which can be quantified by dimen-
sionless numbers representing ratios of participating forces.2

For the flows in the chambers of our device, we have not
only the intrinsic effects of fluid inertia or kinetic energy and
viscous stresses or dissipation but also gravitational pressure
or potential energy. Following up on the force scales intro-
duced in Sec. V, the associated stresses or energy densities
are qU2; lU=‘, and qg‘, respectively, where q is the fluid
density, l its viscosity, U is a typical velocity, and ‘ is a rele-
vant length scale.2 Concerned only with orders of magnitude,
g � 103 cm=s2; q � 1 g=cm3; and l ¼ 10�2 dyn � s=cm2 for
water, ‘ � 10 cm is the chamber size, and U ¼ Q=‘2 � 0:1
cm/s for the typical flow rates explored here. The gravita-
tional-to-viscous ratio is then qg‘=ðlU=‘Þ ¼ qg‘2=lU
� 108 � 1, which certainly justifies the neglect of viscosity.
(For those familiar with dimensionless numbers in fluid
mechanics, this ratio can be expressed in terms of the
Galileo and Reynolds numbers.) The gravitational-to-kinetic
ratio is qg‘=qU2 ¼ g‘=U2 � 106 � 1, which justifies the
neglect of kinetic effects. (This ratio is related to the Froude
number.) In essence, the pressure is very nearly balanced by
the gravitational hydrostatic pressure throughout the cham-
bers, with all other effects being many orders of magnitude
smaller.

VII. CHARACTERIZING FLUID FRICTION

IN TESLA’S CONDUIT

The above reasoning about pressures in the system indi-
cates that Bernoulli’s law is violated in the channel itself:
The total energy density H ¼ pþ qgzþ ð1=2ÞqU2 shown in
the lowest panel of Fig. 4(b) is not constant over the gray
region C to C0. The gravitational energy density qgz is
unchanged over the horizontal length, and the kinetic energy
density ð1=2ÞqU2 is unchanged due to mass conversation
and thus uniformity of flow speed, so pressure varies without
any variation in potential or kinetic energy. This is expected
since the flow inside the channel is resisted due to viscosity,
which dissipates energy and may trigger turbulence or
unsteady flows, effects which are not accounted for in
Bernoulli’s law. The associated hydraulic resistance or fric-
tion is, of course, well studied in the engineering literature
due to its practical importance, and in this section we apply
established characterizations to our measurements on Tesla’s
channel. We also compare our findings to previous results on
rough-walled pipes, which may serve as a crude (rough?)
way to view Tesla’s channel.

Hydraulic resistance depends on the conduit geometry as
well as the Reynolds number, which assesses the relative
importance of fluid inertia to viscosity. Following the dis-
cussions in Secs. V and VI, internal flows are characterized
by Re ¼ qUD=l, where q and l are the fluid density and
viscosity, and U is the average flow speed, and D is the pipe
diameter or a corresponding dimension in the case of
non-circular cross sections. For our realization of Tesla’s
channel, we use the so-called hydraulic diameter D ¼ 4V=S
¼ 0:8 cm, where V is the total wetted volume of the conduit
and S is its total wetted surface area. (This is a generaliza-
tion of the conventional form D ¼ 4A=P for a conduit
whose cross-section shape is uniform and of wetted area A
and perimeter length P.51) The average flow speed is

U ¼ Q=A ¼ 1–100 cm/s, where A¼wd is the average wet-
ted area of the cross-section. These parameters yield
Re � 102–104, as mentioned in Sec. V and reported on the
upper axis of Fig. 3(b).

A dimensionless measure of hydraulic resistance used
often in engineering is the Darcy friction factor52 fD
¼ ðDp=LÞ= 1

2
qU2=D

� �
, where L is the conduit length and Dp

is the pressure loss along the conduit or, equivalently for our
set-up, the applied pressure difference. This choice of nondi-
mensionalization has been shown to yield values of fD that
vary only weakly with Re for turbulent flow through long
pipes.53,54 The markers and curves of Fig. 5 represent the
measured friction factors versus Reynolds number for for-
ward and reverse flow through Tesla’s channel, and data are
included for two additional diode designs that will be intro-
duced in Sec. VIII. For comparison, we include the so-called
Moody diagram,53,54 which is a log-log plot summarizing
measurements of fDðReÞ for circular pipes of varying degrees
of wall roughness. Here, the relative roughness e=D repre-
sents the ratio of typical surface deviations e to the mean
diameter D. Smooth and rough pipes alike follow a well-
known form of fD ¼ 64=Re in the laminar flow regime of

Re � 2	 103. (This form can be derived from the Hagen-
Poiseuille law for developed, laminar flow in cylindrical

pipes.2) At higher Re � 4	 103, the flow tends to be turbu-
lent, and fD varies weakly with Re but increases with wall
roughness.

Interestingly, the friction factors for flow through
Tesla’s conduit are far higher than those reported for
smooth and rough pipes at comparable Re. This likely
reflects the extreme degree of roughness (e=D � 1, if such
a quantity is at all meaningful) of the channel and conse-
quent disturbances to the flow presented by its baffles and
islands. It is clear that our results do not follow the form
fD ¼ 64=Re for the range Re � 200–2000 explored here,
nor are there any clear feature in the curves that would
indicate a laminar-to-turbulent transition. Making sense of
these observations, and better understanding the hydraulics
of very rough channels generally,55,56 would benefit from

Fig. 5. Fluid friction factor versus Reynolds number (Moody diagram) for

Tesla’s channel and compared to smooth and rough pipes. Friction factors

are plotted for forward and reverse flow through Tesla’s channel as well as

two additional diode designs and circular pipes of different relative rough-

ness e=D.
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further work that varies Re over a wider range and includes
flow visualization.

VIII. ALTERNATIVE DIODE DESIGNS AND

COMPARISON OF DIODICITY

Equipped with the experimental methods and with a grasp
of the basic fluid dynamics involved, we next pose as a chal-
lenge to design a fluidic diode that outperforms Tesla’s val-
vular conduit. In principle, any channel with asymmetric
internal geometry may have asymmetric resistance at appre-
ciably high Re. However, designing a channel with high
resistance ratio is a challenging shape optimization problem,
and the electronic-hydraulic analogy is not informative when
it comes to issues of detailed fluid-structure interactions. In
the absence of any such well-informed strategy for
“intelligent design,” and without the patience for evolution-
ary algorithms that may iteratively and systematically
improve the shape, we borrow Tesla’s use of intuition and
inspiration to arrive at the two alternative diodes shown in
Figs. 6(a) and 6(b), which we then construct and test.

To facilitate direct comparison against Tesla’s design, we
imposed the following criteria on our channels: They must
be periodic with the same number (11) of repeating units and
the same length (30 cm), depth (1.9 cm), and average width
(0.9 cm). The first design of Fig. 6(a) employs a staggered
array of wings or airfoil shapes, whose rounded leading
edges face into the flow in the forward operation of the
diode. The reasoning is that wings, at least when used indi-
vidually in their typical application of forward flight, are
intentionally streamlined for low resistance. Flow in reverse,
however, can trigger flow separation near the thickest portion
of the airfoil section and thus a wide wake. Our second
design shown in Fig. 6(b) replaces Tesla’s ‘buckets’, which

reroute flows in the reverse mode, with dead-end ‘pockets’
formed by sigmoid-shaped baffles.

Repeating the experimental procedures outlined above, we
arrive at curves for QðDhÞ for both designs operating in both
forward and reverse, as shown by the plots of Fig. 6(c). The
corresponding resistance curves R(Q) are shown in Fig. 6(d).
Surprisingly, the wing design is nearly isotropic with the for-
ward and reverse resistances almost equal across all flow
rates tested. Perhaps the similarity in resistance values could
be explained by the suppression of flow separation in both
directions due to the confined geometry of the channel. In
any case, it is clear that not all asymmetric geometries lead
to strongly asymmetric resistances even for high Re flows.
The pocket design fares better, with a resistance in reverse
that is substantially higher than that of the forward
resistance.

To quantitatively compare the performance of all three
diode designs, we define the ratio of reverse resistance R2 to
forward resistance R1 as the diodicity,13 Di ¼ R2=R1.
Specifically, we may evaluate DiðjQjÞ ¼ R2ðjQjÞ=R1ðjQjÞ
¼ Dp2ðjQjÞ=Dp1ðjQjÞ, which is also equivalent to DiðReÞ
¼ f2ðReÞ=f1ðReÞ. Because R1 and R2 are not in general mea-
sured at the same jQj, we fit curves to these data and com-
pute their ratio, resulting in the plots shown for Tesla’s
design and our two diodes in Fig. 7. The shaded regions indi-
cate errors propagated from the raw measurements. The
diodicity of Tesla’s conduit is a weakly increasing function
of flow rate with a typical value of Di � 2 for the conditions
studied here. The wing-array design has weak diodicity near
unity. Interestingly, the pocket-array design has a more
strongly increasing DiðjQjÞ curve than does Tesla’s conduit,
and it significantly outperforms Tesla’s design over most of the
range of Q tested. If the trend continues to higher flow rates
(higher Re), then even greater diodicity values can be expected.

Fig. 6. Two alternative diode designs and measurements of their performance. (a) An array of wing or airfoil sections. The fluid is to occupy the white regions

between the gray regions representing solid material. (b) An array of sigmoidal baffles forms dead-end “pockets” when viewed from the reverse direction. (c)

Characterization of the designs through measurements of volume flow rate Q versus water level height differential Dh or differential pressure Dp. (d)

Resistance R ¼ Dp=Q versus absolute flow rate jQj for forward and reverse operation of both designs.
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IX. DISCUSSION AND CONCLUSIONS

Nikola Tesla’s valvular conduit is an engaging context
to introduce students of all levels to the role played by cre-
ativity in scientific research and specifically the power and
limitations of reasoning by analogy. The information pre-
sented here can be used as a guide for lectures in an intro-
ductory fluid mechanics course, a module in a laboratory
course, or as a springboard for a further research projects
into fluidics and fluidic devices. As such, we have empha-
sized the practicalities of the experiments and their peda-
gogical value. The experimental apparatus can readily be
made from household and standard laboratory items such
as tanks, tubing and pumps, and the measurements may be
accurately and efficiently carried out by students using rul-
ers, beakers and stopwatches. The basic data analysis and
plotting is rather straightforward, but at the same time,
there are ample opportunities for further analysis into
errors and their propagation, curve fitting, dynamic

resistance and differentiation of data, and so on. The fluid
mechanics concepts of channel/pipe flow, hydraulic resis-
tance/friction, Reynolds number, Bernoulli’s law, flow
(ir)reversibility, etc., naturally arise from these investiga-
tions and our discussions are but brief introductions that
may be followed up in depth. An additional project stems
from the challenge to design and test yet better diodes, in
which case our pocket-array design might serve as the new
standard to beat.

Another idea for an additional lesson plan or further direc-
tion for research involves the use of fluidic diodes in practi-
cal applications. In Fig. 8(a), we sketch a type of hand pump
that might be used to transfer liquid from one container to
another. The device is a bifurcating tube with a well-sealed
piston on the upper branch and two diodes oppositely
directed within the lower branches. Reciprocating motions of
the piston may drive liquid up one branch and down the
other. A related version with a single diode might exploit the
rectification effect to “prime” or fill the tube, which then
drains as a siphon if the outlet is held below a tank to be
emptied [Fig. 8(b)]. An analogous but closed system is
shown in Fig. 8(c). This represents a kind of circulatory sys-
tem, in which oscillations are rectified to drive flow around a
loop. This could be used to pump coolant, fuel, lubricant or
any of the other fluids that must be moved within machinery.
The equivalent electronic circuit of Fig. 8(d) involves an
alternating current (AC) source transformed into direct cur-
rent (DC) by the diodes, the whole circuit acting as an AC-
to-DC converter or rectifier.

It is also left for future work to explain the source of the
large discrepancy between our measured diodicity of about 2
for Tesla’s conduit and the “theoretical” and “approximate”
value of 200 stated in his patent.1 In any case, it is a worth-
while goal to enhance diodicity, which could involve modi-
fying not only the conduit geometry but also the form of the
imposed pressures and fluid properties beyond density and
viscosity. Describing the reverse mode, Tesla conjectured
that unsteady motions could be advantageous:1 “[T]he resis-
tance offered to the passage of the medium will be consider-
able even if it be under constant pressure, but the
impediments will be of full effect only when it is supplied in
pulses and, more especially, when the same are extremely
sudden and of high frequency.” He may also have conceived
of using air as the working fluid, for which compressibility

Fig. 8. Potential applications of fluidic diodes. (a) A hand pump in which oscillations of a piston are rectified by diodes to move fluid from one container to

another. (b) A pump that uses a single diode to “prime” or fill a tube, which then drains a container by siphon action. (c) A closed system whereby oscillations

drive one-way circulation. (d) An equivalent electronic circuit with AC source for the application shown in (c).

Fig. 7. Comparing the performance of three channel designs. The diodicity

DiðjQjÞ ¼ R2ðjQjÞ=R1ðjQjÞ of a given channel is the ratio of reverse to forward

resistances at the same magnitude of flow rate. The pocket-array design outper-

forms Tesla’s conduit, while the wing-array is nearly symmetric in resistance.

Each curve for Di is generated from interpolated forms of the R versus jQj data.

Shaded regions reflect standard error of the mean propagated from measurement

errors of Q and Dh.
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effects would become important at extremely high speeds
and pressures.
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