YOUR NAME:

Midterm, October 18, 2011, with solutions Linear Algebra I Cross out what is not meant to be part of your final answer.

1. Let u_1, u_2 and u_3 be three linearly independent elements of a vector space V and let W be the subspace spanned by these three elements.

Consider the three elements $u_1 + u_2 + u_3$, $u_2 + u_3$ and u_3 . Do these three elements always span the same space W?

Solution: Consider

 $a_1(u_1+u_2+u_3, u_2+u_3)+a_2(u_2+u_3)+a_3u_3 = a_1u_1+(a_1+a_2)u_2+(a_1+a_2+a_3)u_3 = 0.$

Then, $a_1 = 0, a_1 + a_2 = 0$ and $a_1 + a_2 + a_3 = 0$ and therefore $a_1 = a_2 = a_3 = 0$.

2. Let P(R) be the space of all polynomials with real coefficients. Consider the mapping $T: P(R) \to P(R)$ where

$$T(p(x)) \to \int_0^x p(t)dt$$

Show that this is a linear transformation and that it is one-to-one but not onto.

Solution: We need only to check that $T(cp_1 + p_2) = cT(p_1) + T(p_2)$; this is easy. (See p. 65 of text book.)

If $T(p_1) = T(p_2)$, then $\int_0^x (p_1 - p_2) dt = 0$, $\forall x$ and then $p_1(t) = p_2(t)$. Therefore, T is one-to-one.

T is not onto since there is no $p \in P(R)$ such that T(p) = 1.

3. Find a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that range $(T) = \operatorname{null}(T)$. Here \mathbb{R}^2 is the space of vectors with two real components.

Also show that there does not exist any $T: \mathbb{R}^3 \to \mathbb{R}^3$, which satisfies range(T) = null(T).

Solution: The simplest example is probably T(x,y) = (0,x). For R^3 no such transformation can exist since by Theorem 2.5 the nullity and the rank would then have to be 1.5.

- 4. A skew-symmetric matrix A is a square matrix such that $a_{ij} = -a_{ji}, \forall i, j$. Let us assume that all the matrix elements are real numbers.
 - (a) Show that these matrices form a vector space and determine the dimension of the space of all $n \times n$ skew-symmetric matrices. Solution: Check that $cA_1 + A_2$ is skew-symmetric for any scalar c and any pair of skew-symmetric matrices A_1 and A_2 . The dimension of the space equals the number of elements above the diagonal, i.e., equals n(n-1)/2. A basis elements can be chosen to vanish except for position i, j and j, i where $i \neq j$. We can choose $a_{ij} = -a_{ji} = 1$.
 - (b) Show that $x^T A x = 0$, $\forall x$. Here A is skew-symmetric, x a column vector with n components, i.e., a matrix of order $n \times 1$, x^T its transpose and $x^T A x$ the product of three matrices. Solution: The product equals

$$\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j.$$

Note that $a_{ii} = 0$ and pair up terms and use that $a_{ij} + a_{ji} = 0$.

(c) Assume that $x^T A x = 0$, $\forall x$. Can we then conclude that A is skew-symmetric?

Solution: Note that this formula is assumed to hold for all x. Use the summation formula above and choose $x_i = x_j = 1$ and all other components of x equal to 0. Then $a_{ij} + a_{ji} = 0$, i.e., A is skew-symmetric.

5. (a) Consider the set of polynomials $\{L_k(x)\}_0^n$ where

$$L_k(x) = \prod_{i=0, i \neq k}^n \left(\frac{x - x_i}{x_k - x_i}\right),$$

and $x_0, x_1, \ldots, x_n, n+1$ distinct real numbers.

Show that this set spans the space of all polynomials of degree n or less.

Solution: These are the polynomials that are featured in the Lagrange interpolation formula

$$p_n(x) = \sum_{k=0}^n f(x_k) L_k(x)$$

and which satisfies $p_n(x_k) = f(x_k)$. Now note that if we choose f(x) = p(x), where p(x) is an arbitrary polynomial of degree n or less, then the interpolation formula returns p(x). Therefore, any polynomial can be written as a linear combination of the $L_k(x)$.

We can also argue that if $p_n(x_k) = 0$ for all k then it vanishes everywhere and the $L_k(x)$ must form a basis.

(b) Consider the two sets of polynomials $H_k(x)$ and $K_k(x)$, $0 \le k \le n$, where

$$H_k(x) = L_k(x)^2 (1 - 2L_k(x_k)(x - x_k)), \quad K_k(x) = L_k(x)^2 (x - x_k).$$

Show that these polynomials span the space of all polynomials of degree 2n + 1 or less.

Solution: Most unfortunately, there is misprint. The factor $L_k(x_k)$ in the formula for $H_k(x)$ should be replaced by $L'_k(x_k)$, the derivative of L_k at the point in question. Then, we show that $H_k(x_i)$ vanishes for $i \neq k$, $H_k(x_k) = 1$, and $H'_k(x_i) = 0, \forall i$. Similarly, $K_k(x_i) = 0, \forall i, K'_k(x_i) = 0, i \neq k$, and $K'_k(x_k) = 1$. We the aid if these functions we can match values of $f(x_k)$ and $f'(x_k)$ and the n+1 points; this gives the solution of the Hermite interpolation problem. We can then argue very much in the same way as in the first part of this question.

(Hint: It might be helpful to start out by considering the special case of n = 1.)

- 6. Let Ax = b be a linear system of algebraic equations with the same number of equations as unknowns.
 - (a) Briefly describe Gaussian elimination with partial pivoting.
 Solution: See the handout. Note that partial pivoting involves always choosing the pivot element as the one which is largest in absolute value of all the candidates.
 - (b) Suppose that A is not invertible and that we can compute using exact arithmetic. How does the fact that A is not invertible manifest itself when using Gaussian elimination with partial pivoting? Solution: We will either get $u_{nn} = 0$, where U is the upper triangular matrix, or we will encounter a situation

where all potential pivots, in the relevant column of the transformed matrix, on and below the diagonal vanish.

- (c) Show that we can solve an upper triangular system of linear equations with n unknowns in about n^2 arithmetic operations. Solution: It is easy to see that we will use every element in the upper triangular matrix exactly once. Therefore, the number of operations is proportional to n^2 .
- (d) How can we tell if an upper triangular matrix is invertible or not? Solution: U is invertible if and only if all diagonal elements differ from 0; try to solve the system and it becomes obvious.