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Midterm, October 18, 2011, with solutions
Linear Algebra I

Cross out what is not meant to be part of your final answer.

1. Let u1, u2 and u3 be three linearly independent elements of a vector
space V and let W be the subspace spanned by these three elements.

Consider the three elements u1 + u2 + u3, u2 + u3 and u3. Do these
three elements always span the same space W ?

Solution: Consider

a1(u1+u2+u3, u2+u3)+a2(u2+u3)+a3u3 = a1u1+(a1+a2)u2+(a1+a2+a3)u3 = 0.

Then, a1 = 0, a1 + a2 = 0 and a1 + a2 + a3 = 0 and therefore
a1 = a2 = a3 = 0.

2. Let P (R) be the space of all polynomials with real coefficients. Con-
sider the mapping T : P (R) → P (R) where

T (p(x)) →

∫ x

0

p(t)dt.

Show that this is a linear transformation and that it is one-to-one but
not onto.

Solution: We need only to check that T (cp1 + p2) = cT (p1) +
T (p2); this is easy. (See p. 65 of text book.)

If T (p1) = T (p2), then
∫ x
0
(p1−p2)dt = 0,∀x and then p1(t) = p2(t).

Therefore, T is one-to-one.

T is not onto since there is no p ∈ P (R) such that T (p) = 1.

3. Find a linear transformation T : R2 → R2 such that range(T ) =
null(T ). Here R2 is the space of vectors with two real components.

Also show that there does not exist any T : R3 → R3, which satisfies
range(T ) =null(T ).

Solution: The simplest example is probably T (x, y) = (0, x).
For R3 no such transformation can exist since by Theorem
2.5 the nullity and the rank would then have to be 1.5.



4. A skew-symmetric matrix A is a square matrix such that aij = −aji, ∀i, j.
Let us assume that all the matrix elements are real numbers.

(a) Show that these matrices form a vector space and determine the
dimension of the space of all n × n skew-symmetric matrices.

Solution: Check that cA1 + A2 is skew-symmetric for any
scalar c and any pair of skew-symmetric matrices A1 and
A2. The dimension of the space equals the number of
elements above the diagonal, i.e., equals n(n − 1)/2. A
basis elements can be chosen to vanish except for position
i, j and j, i where i 6= j. We can choose aij = −aji = 1.

(b) Show that xT Ax = 0, ∀x. Here A is skew-symmetric, x a column
vector with n components, i.e., a matrix of order n × 1, xT its
transpose and xT Ax the product of three matrices.

Solution: The product equals

n∑
i=1

n∑
j=1

aijxixj .

Note that aii = 0 and pair up terms and use that aij+aji =
0.

(c) Assume that xT Ax = 0, ∀x. Can we then conclude that A is
skew-symmetric?

Solution: Note that this formula is assumed to hold for
all x. Use the summation formula above and choose xi =
xj = 1 and all other components of x equal to 0. Then
aij + aji = 0, i.e., A is skew-symmetric.

5. (a) Consider the set of polynomials {Lk(x)}n
0

where

Lk(x) =
n∏

i=0,i6=k

(
x − xi

xk − xi

),

and x0, x1, . . . , xn, n + 1 distinct real numbers.

Show that this set spans the space of all polynomials of degree n
or less.

Solution: These are the polynomials that are featured in
the Lagrange interpolation formula

pn(x) =
n∑

k=0

f(xk)Lk(x)



and which satisfies pn(xk) = f(xk). Now note that if we
choose f(x) = p(x), where p(x) is an arbitrary polynomial
of degree n or less, then the interpolation formula returns
p(x). Therefore, any polynomial can be written as a linear
combination of the Lk(x).

We can also argue that if pn(xk) = 0 for all k then it
vanishes everywhere and the Lk(x) must form a basis.

(b) Consider the two sets of polynomials Hk(x) and Kk(x), 0 ≤ k ≤
n, where

Hk(x) = Lk(x)2(1− 2Lk(xk)(x− xk)), Kk(x) = Lk(x)2(x− xk).

Show that these polynomials span the space of all polynomials of
degree 2n + 1 or less.

Solution: Most unfortunately, there is misprint. The
factor Lk(xk) in the formula for Hk(x) should be replaced
by L′

k(xk), the derivative of Lk at the point in question.
Then, we show that Hk(xi) vanishes for i 6= k, Hk(xk) = 1,
and H ′

k(xi) = 0,∀i. Similarily, Kk(xi) = 0,∀i,K ′
k(xi) = 0, i 6=

k, and K ′
k(xk) = 1. We the aid if these functions we can

match values of f(xk) and f ′(xk) and the n+1 points; this
gives the solution of the Hermite interpolation problem.
We can then argue very much in the same way as in the
first part of this question.

(Hint: It might be helpful to start out by considering the special case
of n = 1.)

6. Let Ax = b be a linear system of algebraic equations with the same
number of equations as unknowns.

(a) Briefly describe Gaussian elimination with partial pivoting.

Solution: See the handout. Note that partial pivoting
involves always choosing the pivot element as the one
which is largest in absolute value of all the candidates.

(b) Suppose that A is not invertible and that we can compute using
exact arithmetic. How does the fact that A is not invertible mani-
fest itself when using Gaussian elimination with partial pivoting?

Solution: We will either get unn = 0, where U is the
upper triangular matrix, or we will encounter a situation



where all potential pivots, in the relevant column of the
transformed matrix, on and below the diagonal vanish.

(c) Show that we can solve an upper triangular system of linear equa-
tions with n unknowns in about n2 arithmetic operations.

Solution: It is easy to see that we will use every element
in the upper triangular matrix exactly once. Therefore,
the number of operations is proportional to n2.

(d) How can we tell if an upper triangular matrix is invertible or not?

Solution: U is invertible if and only if all diagonal ele-
ments differ from 0; try to solve the system and it be-
comes obvious.


