
Computing Gröbner Bases in Python with Buchberger’s
Algorithm

Michael Weiss

October 12, 2010

Abstract

This paper describes the theory of Gröbner bases and the author’s implementation of Buch-
berger’s algorithm used for computing them. We outline the need for a well defined notion of
basis for multivariate polynomial ideals and some of the problems that this theory can solve.
We discuss an implementation in Python of the polynomial arithmetic necessary for computing
Gröbner bases using Buchberger’s algorithm.

Introduction
Gröbner bases, introduced by Bruno Buchberger in his PhD thesis in 1970, are an important tool in
computational algebraic geometry and commutative algebra. Before their discovery, one knew by
the Hilbert Basis Theorem of the existence of a finite generating set for polynomial ideals, but not
always how to construct one. A generating set for a polynomial ideal is a computationally impor-
tant object since it allows us to answer some fundamental questions about polynomial ideals. For
instance we would like to be able to tell when two ideals are equal. Also given an ideal we would
like to be able to determine whether an arbitrary polynomial is a member of that ideal. The latter
problem is called the ideal membership problem and will serve as the motivation for the theory
presented in this paper.

In a univariate polynomial ring the ideal membership problem is easily resolved. Since uni-
variate polynomial rings are principal ideal domains, one can find a single generator for any poly-
nomial ideal. A remainder of zero after division by this generator is a necessary and sufficient
condition for a polynomial’s membership of the ideal. We will see that the division algorithm for
multivariate polynomials is not always unique and thus to formulate a criteria for membership of
an ideal, one needs a particular generating set that guarantees a unique remainder upon division.
Gröbner bases are generating sets with this property. Surprisingly, this problem was not resolved
until 40 years ago with Buchberger’s introduction of Gröbner bases.

To implement Buchberger’s algorithm we used the object-oriented Python programming lan-
guage. We used classes in Python to simulate elements of polynomial rings and coefficient fields
and successfully implemented polynomial arithmetic.

1



2

Monomial Orderings
In a univariate polynomial ring, there is a natural ordering on the monomials:

· · · > xn+1 > xn > · · · > x2 > x > 1

In a multivariate polynomial ring, there are multiple conventions for ordering monomials,
leading to a number of different possible ’orderings’ of monomials. Certainly it is not enough to
compare the total degree of multivariate monomials would leave us unclear as to whether

(1) x3y2z < x3yz2 or (2) x3y2z > x3yz2.

Monomial orderings are a particular concern in computation since the results of certain al-
gorithms, such as the division algorithm, can vary depending on which monomial ordering is
chosen.

Definition. Let k be a field. A monomial ordering on k[x1, x2, . . . , xn] is any relation > on Zn≥0 or
equivalently, any relation on the set of monomials xα, α ∈ Zn≥0, such that:

1. > is a total ordering on Zn≥0

2. If xα > xβ and γ ∈ Zn≥0, then xα+γ > xβ+γ

3. > is a well-ordering on Zn≥0. 1

Note that here Z≥0 denotes the set of positive integers greater than or equal to 0 and Zn≥0 n-
tuples with entries in that set. It is convenient and sometimes simpler to represent monomials of
more than one variable as a tuple, where each entry is the degree of the corresponding variable,
that is, xα = xα1

1 · · ·xαn
n has representation α = (α1, . . . , αn) in Zn≥0. Also note that here the

purpose of the well-ordering condition is to guarantee that the multivariate polynomial division
algorithm, which we will introduce later, will eventually terminate [1].

In this project we considered three monomial orderings: lexicographic, graded-lexicographic,
and graded reverse lexicographic ordering.

Definition. (Lexicographic Ordering)
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Zn≥0. We say α >lex β if, in the difference α− β ∈ Zn,
the leftmost nonzero entry is positive. So we say xα >lex x

β , if α >lex β.

Some examples:

1. xy2 >lex y
5z6 since α− β = (1,−3,−6)

2. x2y3z5 >lex x
2yz5 since α− β = (0, 2, 0)

1Note: a well-ordering on Zn
≥0 is an ordering such that every nonempty subset of Zn

≥0 has a smallest element under
>.



3

Lexicographic ordering is also sometimes referred to as dictionary ordering. The variables in
the monomials are “read” from left to right, that is we first compare the leftmost variables in each
monomial, if they have the same degree then compare the next variable, and so on. There are
many lexicographic orderings depending on the ordering of the variables; typically we choose the
ordering: x1 > x2 > . . . > xn. As can be observed in the examples, the ordering does not take into
account the total degree of the monomial. Thus for any n,m > 0 we will always have x >lex y

nzm.

Definition. (Graded Lexicographic Ordering)
Let α, β ∈ Zn≥0. We say α >grlex β if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi,

or |α| − |β| and α >lex β.

Some examples:

1. xy3z2 >grlex x
4y since |(1, 3, 2)| = 6 > |(4, 1, 0)| = 5

2. xy3z2 >grlex xyz
4 since |(1, 3, 2)| = |(1, 1, 4)| and (1, 3, 2) >lex (1, 1, 4).

Graded lexicographical ordering favors monomials with higher total degree and then uses the
lexicographical ordering when the two monomials have equal degree.

Definition. (Graded Reverse Lexicographic Ordering)
Let α, β ∈ Zn≥0. We say α >grlex β if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi,

or |α| = |β| and the rightmost nonzero entry of α− β ∈ Zn is negative.

Some examples:

1. x4y >grevlex xy
3z since |(1, 3, 1)| = |(4, 1, 0)| and (4, 1, 0)− (1, 3, 1) = (3,−2,−1)

2. xy3z2 >grevlex xyz
4 since |(1, 3, 2)| = |(1, 1, 4)| and (1, 3, 2)− (1, 1, 4) = (0, 2,−2).

Graded lexicographic still has the property of checking the total degree of the monomials but
is the reverse of the graded lexicographic ordering since it looks at the rightmost variable of each
monomial and favors the one with the smaller power.

To see how the different monomial orderings affect the ordering of polynomials, consider the
polynomial f = 5x2y3z2 + 3y5z − 5x3 + 2xy2z3.

1. With respect to the lexicograpical we order the terms of f :

f = −5x3 + 5x2y3z2 + 2xy2z3 + 3y5z



4

2. With respect to the grlex order, we order the terms of f :

f = 5x2y3z2 + 2xy2z3 + 3y5z − 5x3

3. With respect to the grevlex order, we order the terms of f :

f = 5x2y3z2 + 3y5z + 2x2y2z3 − 5x3

Definition. Let f =
∑

α cαx
α be a nonzero polynomial in k[x1, . . . , xn] and let > be a monomial

order.

1. The multidegree of f is

multideg(f) = max(α ∈ Zn≥0 : aα 6= 0)

where the maximum is taken with respect to the monomial ordering >.

2. The leading coefficient of f is

LC(f) = amultideg(f) ∈ k.

3. The leading monomial of f is
LM(f) = xmultideg(f).

4. The leading term of f is
LT(f) = LC(f) · LM(f).

Example. Consider the polynomial: f = 4x2y2z3 + 5xy2z + 2y3z4 with respect to the lex ordering.
Then

multideg(f) = (2, 2, 3),
LC(f) = 4,

LM(f) = x2y2z3,

LT(f) = 4x2y2z3.

Division Algorithm
In the division algorithm for polynomials of one variable, for the input of a divisor and a dividend,
we are guaranteed a unique and well defined output of a quotient and remainder. However, as we
will see for multivariate polynomials, the ”quotients” and remainder depend upon the monomial
ordering and on the order of the divisors in the division.

The division algorithm in the multivariable case allows us to divide f ∈ k[x1, . . . , xn] by
g1, . . . , gs ∈ k[x1, . . . , xn], so that we can express f in the form:

f = q1g1 + . . .+ qsgs + r.

The strategy is to repeatedly cancel the leading term of f by subtracting off an appropriate
multiple of one of the gi. We will see that the result of the division algorithm fails to be unique for
multivariate polynomials because there may be a choice of divisor at each step.



5

Theorem 1. (Division Algorithm in k[x1, . . . , xn]) Fix a monomial order > on Zn≥0, and let G =
(g1, . . . , gs) be an ordered s-tuple of polynomials in k[x1, . . . , xn]. Then every f ∈ k[x1, . . . , xn] can
be written as

f = q1g1 + . . .+ qsgs + r,

where ai, r ∈ k[x1, . . . , xn], and either r = 0 or r is a linear combination, with coefficients in k, of
monomials, none of which is divisble by any of LT(g1), . . . ,LT(gs). We call r a remainder of f on division
by G. Furthermore, if qigi 6= 0, then we have

multideg(f) ≥ multideg(qigi).

Example. Consider the following division using the lex ordering on the monomials. Let

f = x3y2 + xy + x

and our divisors be

g1 = y2 + 1,
g2 = xy + 1.

Observe that LT(g1) = y2 divides LT(f) = x3y2. So we update the quotient, adding x3. Now
update the dividend:

(x3y2 + xy + x)− x3(y2 + 1) = −x3 + xy + x.

Since LT(g1) = y2 does not divide −x3, we look at the next polynomial in the list of divisors and
see that LT(g2) = xy also does not divide it. So proceed to the next term in f , which is xy. As g1
comes first in the list of divisors, we check whether LT(g1) = y2 divides xy; since it does not, we
move on to LT(g2) = xy and notice that it does. So we update the quotient corresponding to g2
by adding 1. Again we update the dividend to obtain:

(−x3 + xy + x)− 1 · (xy + 1) = −x3 + x− 1.

Observe that none of the leading terms of the divisors divides any of the terms of the dividend.
Thus the division is complete and the dividend becomes the remainder.

Collecting everything together we have:

x3y2 + xy + x = x3 · (y2 + 1) + 1 · (xy + 1) + (−x3 + x− 1).

So q1 = x3, q2 = 1 and r = −x3 + x − 1. Note that if we had instead performed the division
with f1 = xy + 1 and f2 = y2 + 1, we would have obtained a different answer:

x3y2 + xy + x = 0 · (y2 + 1) + (x2y − x+ 1) · (xy + 1) + (2x− 1).

The need for a well defined remainder upon division is one of the motivations for the definition
of “Gröbner” bases.



6

Monomial Ideals and Gröbner Bases
In general we do not obtain a uniquely determined remainder from the division algorithm. How-
ever, the subsequent definition of a Gröbner basis will have the quality that the division of f by G
yields the same remainder r no matter how the elements of G are ordered in the division. Since
we will show that every ideal I has a Gröbner basis, we are able to resolve the ideal membership
problem with a necessary and sufficient condition for a polynomial f to be a member of an ideal
I ; namely that division of f by the Gröbner basis of I returns a remainder of 0.

Definition. A monomial ideal is an ideal generated by a set of monomials.

That is, I is a monomial ideal, if there is a subsetA ⊂ Zn≥0 such that I consists of all polynomials
which are finite sums of the form

∑
α∈A hαx

α, where hα ∈ k[x1, . . . , xn]. We write I = 〈xα | α ∈ A〉.
For example I = 〈x5y2z, x2yz2, xy3z2〉 ⊂ k[x, y, z] is a monomial ideal.

For all monomial ideals we have the fact that if xβ lies in I , then xβ is divisible by xα for some
α ∈ A. Furthermore for every polynomial f in a monomial ideal I , we can say that every term of
f lies in I and that f is a k-linear combination of the monomials in I .

Definition. Let I ⊂ k[x1, . . . , xn] be a nonzero ideal.

1. Let LT(I) be the set of leading terms of elements of I .

LT(I) = {cxα | there exists f ∈ I with LT(f) = cxα}

2. We denote by 〈LT(I)〉 the ideal generated by the elements of LT(I).

So for example LT(I) is a monomial ideal. As we will soon see the ideals 〈LT(I)〉 and 〈LT(g1), . . . ,LT(gs)〉
are not always the same. Though we always have 〈LT(g1), . . . ,LT(gs)〉 ⊂ 〈LT(I)〉 there are cases
where the opposite inclusion does not hold. For instance consider the following example:

Example. Let I = 〈f1, f2〉where f1 = x3 − 2xy and f2 = x3y − 2y2 + x, and use lex ordering on
the monomials in k[x, y]. Then:

f3 := y · (x3 − 2xy)− (x3y − 2y2 + x) = −2xy2 + 2y2 − x,

so f3 ∈ I , and LT(f3) = −2xy2 ∈ 〈LT(I)〉, but not in 〈LT(f1),LT(f2)〉 since it is not divisible by
the leading terms of f1 or f2.

Since our goal is to obtain ideals that have the property that 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gs)〉,
we want to eliminate cases like the above by making sure that our basis generates all of 〈LT(I)〉.
This motivates the following definition:

Definition. Let a monomial ordering on k[x1, . . . , xn] be fixed. A finite subset G = {g1, . . . , gt} is
a Gröbner basis if

〈LT(g1), . . . ,LT(gs)〉 = 〈LT(I)〉

As a corollary to the Hilbert Basis Theorem applied to 〈LT(I)〉we have:



7

Corollary 1. Let I be a non zero polynomial ideal, than I has a Gröbner basis.

While this corollary gets us started by proving the existence of a Gröbner basis, it’s proof is not
constructive and offers us little insight as to how to actually obtain one. We would like to obtain
a generating set such that all the leading terms of the polynomials in the set generate the leading
terms of the ideal I . This fails when there is a cancellation of leading terms of the kind in the
previous example.

To better determine when this cancellation occurs we construct a special polynomial that pro-
duces new leading terms.

Definition. Let f, g ∈ k[x1, . . . , xn] be nonzero polynomials.

1. If multidegree(f) = α and multidegree(g) = β, then let γ = (γ1, . . . , γn), where
γi = max(αi, βi) for each i. We call xγ the least common multiple of LT(f) and LT(g),
written xγ = LCM(LM(f),LM(g)).

2. The S-polynomial of f and g is the combination:

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g.

Example. Let f = x4yz + x2y3z + xz and g = 2x2y2z + xy2 + xz3 in Q[x, y, z] with the
lexicographic ordering on the monomials. Then γ = (4, 2, 1) and we have:

S(f, g) =
x4y2z

x4yz
· f − x4y2z

2x2y2z
· g

= y · f − 1
2
x2 · g

= −1
2
x3y2 − 1

2
x3z3 + x2y4z + xyz

Notice the cancellation of the leading terms occured by the construction of the S-polynomial.
Once a basis contains all the possible S-polynomials of the polynomials in the ideal generating
set, there are no extra polynomials in 〈LT(I)〉 that are not in 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gs)〉. This
leads to the very important:

Theorem 2. (Buchberger’s Criterion). Let I be a polynomial ideal. Then a basis G = {g1, . . . , gs} for I
is a Gröbner basis for I if and only if for all pairs i 6= j, the remainder on division of S(gi, gj) by G is zero.

Gröbner Bases and Buchberger’s Algorithm
In the following discussion we will give the formulation of Buchberger’s algorithm and an exam-
ple of its use to calculate a Gröbner basis.

For greater clarity in our discussion, we introduce the following notation:

Definition. We write fG for the remainder on division of f by the list of polynomials
G = {g1, . . . , gs}.



8

For example if G = (x3y2 − y2z, xy2 − yz) using lex order on the monomials, then:

x5y3
G

= yz3

since we have by the division algorithm

x5y3 = (x2y) · (x3y2 − y2z) + (xyz + z2) · (xy2 − yz) + yz3.

Theorem 3. (Buchberger’s Algorithm) Let I = 〈f1, . . . , fs〉 6= (0) be a polynomial ideal. Then a Gröbner
basis for I can be constructed in a finite number of steps.

Buchberger’s algorithm proceeds like this: Let F = (f1, . . . fs) be a list of the polynomials
defining I . For each pair of polynomials fi, fj in F calculate their S-polynomial, S, and divide
it by the polynomials f1, . . . fs in F obtaining S

F . If SF 6= 0, add S
F to F and start again with

F = F ∪ {SF }. Repeat the process until all S-polynomials of polynomials in F have remainder 0
after division by F .

Example.
Consider the ring k[x, y, z] with lex order. Let I = 〈−2xy + x, x3y − 2x2 + y〉. Let
F = (−2xy + x, x3y − 2x2 + y). Since S(f1, f2) = 1

2x
3 − 2x3 + y and

S(f1, f2)
F

= 1
2x

3 − 2x2 + y 6= 0, we add S(f1, f2)
F

to F by adding it as a new generator
f3 = 1

2x
3 − 2x2 + y. And set F = (f1, f2, f3). Computing S polynomials we obtain:

S(f1, f2) =
1
2
x3 − 2x2 + y

S(f1, f2)
F

= 0

S(f1, f3) =
1
2
x3 − 4x2y + 2y2

S(f1, f3)
F

= 2y2 − y

Thus we must add f4 = 2y2 − y to our generating set. Letting F = (f1, f2, f3, f4), compute:

S(f1, f2)
F

= S(f1, f3)
F

= 0

S(f2, f3) = −4x2y + 2x2 + 2y2 − y = 2x · (−2xy + x) + 1 · (2y2 − y)

S(f2, f3)
F

= 0

S(f2, f4) = −1
2
x3y + 2x2y − y2 =

(
1
4
x2 − x

)
· (−2xy + x)− 1

2
·
(

1
2
x3 − 2x2 + y

)
− 1

2
· (2y2 − y)

S(f2, f4)
F

= 0

S(f3, f4) = −1
2
x2y2 − 2y3 =

(
1
4
x2 − 2xy − x

)
· (−2xy + x)− 1

2
·
(

1
2
x3 − 2x2 + y

)
+
(
−y − 1

2

)
· (2y2 − y)

S(f3, f4)
F

= 0

Since S(f1, f4) = 0, we have S(fi, fj)
F

= 0 for all 1 ≤ i ≤ j ≤ 4. By Buchberger’s Criterion, it
follows that F = (f1, f2, f3, f4) = (−2xy + x, x3y − 2x2 + y, 1

2x
3 − 2x2 + y, 2y2 − y) is a Gröbner

basis for I .



9

Implementation
As this was a mostly exploratory project, much of the research time was spent writing a computer
algebra system in the Python language to implement the arithmetic over a multivariate polyno-
mial ring. Though any of the well-known computer algebra systems like Magma, Mathematica,
or Sage already have the ability to output a Gröbner basis from a polynomial ideal – indeed, at a
much faster speed than could be accomplished by a project of this scope – this route was taken for
the sake of a deeper understanding of the algorithms.

Python is a high-level object oriented programming language. In this project we used the
language’s class objects to implement a polynomial ring and elements of rings. In all the im-
plementation was comprised of a hierarchy of four classes: coefficient fields, polynomial rings,
monomials, and polynomials. The structure of this implementation followed the algebraic struc-
ture for polynomials and the class hierarchy was constructed according to this structure.

We used two coefficient fields: the rational field and the prime number field. Since most of
the arithmetic over these fields is already implemented as the arithmetic over the integers, the
main consideration for this portion was to maintain a standard representation of elements. For
this purpose we used the classical algorithms for computing the greatest common divisor, least
common multiple, and the extended euclidean algorithm. The class was written so that the output
of the arithmetic could consistently interface with the other routines.

It contained routines for representing the variables of a polynomial ring and a coercion func-
tion for conversion of objects of different classes to a ’polynomial’ class object. We wrote three
subclasses of the polynomial ring class, each one to implement one of the different monomial or-
derings. The subsequent monomial class contained basic operations for monomial multiplication
and monomial division.

The polynomial class was the largest and the most computationally interesting of the classes.
In this implementation, polynomials were represented as sparse lists of monomials, sorted with
respect to a monomial order > of monomials together with a list of coefficients. Polynomial mul-
tiplication was implemented using a sparse polynomial multiplication algorithm. The algorithm
can be described as follows: let f = a1X1 + . . . anXn and g = b1Y1 + . . . bmYm, with n > m and
monomialsXi and Yj not necessarily in order. Calculate f ·b1Y1, . . . , f ·bnYn and then use a “divide
and conquer” approach to order these terms, that is recursively summing the first n

2 and the last
n
2 terms and then summing. This multiplication algorithm runs in O(mn logm) time [2].

We were successful in implementing Buchberger’s algorithm. While the algorithm imple-
mented did not have an optimal runtime, it was accurate. The results of the algorithm were
crosschecked with the results in Sage for polynomial rings with prime field coefficient fields of
low characteristic.

Conclusion
We have discussed the theory of Gröbner bases and their use in solving certain computational
problems. Gröbner bases provide for a uniquely determined remainder in the division of polyno-
mial algorithms and thus give a solution to the ideal membership problem. Using Python one can
implement polynomial arithmetic and buchberger’s algorithm. We used some of the classical and
best known algorithms for polynomial arithmetic in our implementation. This implementation



REFERENCES 10

could be extended to perform numerous other operations in a polynomial ring and provides a fast
and accessible foundation for further inquiries in algorithms over polynomial rings.

References
[1] Donal O’Shea David Cox, John Little. Ideals, Varieties, and Algorithms. Springer, third edition,

2007.

[2] Stephen C. Johnson. Sparse polynomial arithmetic. SIGSAM Bull., 8(3):63–71, 1974.


