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Syllabus

1. Risk Models, Factor Analysis and Correlation Structures

-- Statistical models of stock returns
-- The classics: CAPM, APT
-- Factor analysis
-- Dynamic PCA of correlation matrices
-- Economic significance of eigenvectors & eigenportfolios
-- Exchange-traded Funds (ETFs) 
-- Factor analysis via ETFs
-- Random matrix theory
-- Examples: US equities, NASDAQ, EM bonds, Brazil, China, 

European stocks
-- Risk-functions and dynamic risk-management of equity portfolios



Syllabus

2. Statistical arbitrage for cash equities

-- Long-short market-neutral investment portfolios
-- Leverage & setting ex-ante performance targets
-- Performance measures
-- Back-testing concepts: in-sample/out-of-sample performance, 

survivorship biases
-- Time-series analysis of stock residuals
-- PCA-based residuals
-- ETF-based  residuals
-- Extracting information from trading volume (subordination)



Syllabus

3. Statistical arbitrage in options markets

-- Option markets revisited
-- Volatility and options trading
-- Data issues with option markets, implied dividend
-- Modeling stock-ETF dynamics and  ETF-stock dynamics
-- Weighted Monte-Carlo technique for model calibration
-- Relative-value analysis: options on single stocks
-- Relative-value analysis: options on indices and ETFs
-- Construction of risk-functions for option portfolios
-- Market-neutral option portfolios
-- Dispersion trading 
-- Back-testing option portfolio strategies 



Course Requirements

-- Three projects, or assignments, associated with the different parts
of the course. Projects will be approved by instructor.

-- Projects will deal with real data. They will involve programming
and quantitative financial analysis as well as your
contribution to and interpretation of the theory presented.

-- Programming will involve the management of large (real) datasets, the 
use of Matlab but also other programming languages and software
needed to ``get the job done’’.

-- The grade will be based on the three projects and on class participation.

-- Pre-requisites: knowledge of applied statistics, proficiency in at least one
programming environment, knowledge of basic finance concepts 
(e.g., interest rates,  present value, stocks,  Markowitz,  Black Scholes).

-- Books and notes: provided after each lecture.



Statistical Models of Stock Returns

Consider a stock (e.g IBM). The return R over a specified period is the 
change in price, plus dividend payments, divided by the initial price.

t

tttttt
t S

DSS
R ∆+∆+ +−

= ,

How can we explain or predict stock returns? 

-- Fundamental analysis (earnings, balance sheet, business analysis) 
this will not be considered in this course!

-- ``Trends’’ in the prices. (Not very effective)

-- Explanation of the returns/prices based on statistical factors



Factor models
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Explanatory factors

Factor loadings

Explained, or systematic portion

Residual, or idiosyncratic portion



CAPM: a `minimalist’ approach
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Single explanatory factor: the ``market’’, or ``market portfolio’’

F = usually taken to be the returns of a broad-market index (e.g., S&P 500)

Normative statement: ><>=<>=< FR βε or     0

Argument: if the market is ``efficient’’, or in ``equilibrium’’, investors cannot
make money (systematically) by picking individual stocks and shorting the 
index  or vice-versa (assuming uncorrelated residuals). (Lintner, Sharpe. 1964)

Counter-arguments: (i) the market is not ``efficient’’, (ii) residuals may be
correlated (additional factors are needed). 



Multi-factor models (APT)
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Factors represent industry returns (think sub-indices in different sectors, size,

financial statement variables, etc).

Normative statement (APT): 

Argument: Generalization of CAPM, based again on no-arbitrage. (Ross, 1976)

Counter-arguments: (i) How do we actually define the factors? (ii) Is the number
of factors known? (iii) The structure of the stock market and risk-premia
vary strongly (think pre & post WWW)  (iv) The issue of correlation of residuals 
is intimately related to the number of factors.
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Factor decomposition in practice

-- Putting aside normative theories (how stocks should behave), factor 
analysis can be quite useful in practice.

-- In risk-management: used to measure exposure of a portfolio to
a particular industry of market feature.

-- Dimension-reduction technique for the study a system with a large number
of degrees of freedom

-- Makes Portfolio Theory viable in practice. (Markowitz to Sharpe to Ross!)

-- Useful to analyze stock investments in a relative fashion (buy ABC, sell
XYZ to eliminate exposure to an industry sector, for example).

-- New investment techniques arise from factor analysis. The technique is 
called defactoring (Pole, 2007, Avellaneda and Lee, 2008)



Principal Components Analysis of 
Correlation Data
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Consider a time window t=0,1,2,…,T, (days) a universe of N stocks. The returns
data is represented by a T by N matrix 
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Regularized correlation matrix
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This matrix is a correlation matrix and is positive definite. It is equivalent for
all practical purposes to the original one but is numerically stable for inversion 
and eigenvector analysis (e.g. with Matlab).

Note: this is especially useful when T<<N. 



Eigenvalues, Eigenvectors and 
Eigenportfolios
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eigenvalues

eigenvectors

returns of 
“eigenportfolios”

We use the coefficients of the eigenvectors and the volatilities of 
the stocks to build ``portfolio weights’’. These random variables span the
same linear space as the original returns.



50 largest eigenvalues using the 1400 US 
stocks with cap >1BB cap ( Jan 2007)

N~1400 stocks
T=252 days



Top 50 eigenvalues for S&P 500 index 
components, May 1 2007,T=252 
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Model Selection Problem:
How many EV are significant?

Need to estimate the significant eigenportfolios which can be used as factors.

Assuming that the correlation matrix is invertible (regularize if necessary)
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Karhunen-Loeve Decomposition
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R = vector of random variables with finite second moment, <.,>=correlation

Covariance matrix

Symmetric square root of C 

F has uncorrelated components

Loadings= components of the
square-root of C

Since the eigenvectors vanish or are very small in a real system, the modeling
consists in defining a small number of factors and attribute the rest to ``noise’’



Bai and Ng 2002, Econometrica
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Under reasonable assumptions on the underlying model, Bai and Ng prove
that under PCA estimation,        converges in probability to the true 
number of factors as ∞→TN ,



Connection with eigenvalues of
correlation matrix
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Linear penalty function

For finite samples, we need to adjust the slope g(N,T).
Apparently, Bai and Ng (2002) tend to underestimate the number of factors in
Nasdaq stocks considerably. (2 factors, T=60 monthly returns, N=8000 stocks)



Useful quantities
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Objective function U(m,g)
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Optimal value of U(m,g) for different g
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Implementation of Bai & Ng 
on SP500 Data

g m* Lambda_m* Explained Variance Tail Objective FunctionConvexity

1 117 0.20% 87.88% 12.12% 0.355 -
2 59 0.39% 71.44% 28.56% 0.522 -0.085085
3 29 0.59% 57.11% 42.89% 0.603 -0.041266
4 16 0.76% 48.51% 51.49% 0.643 -0.018110
5 10 0.96% 43.52% 56.48% 0.665 -0.007000
6 7 1.18% 40.43% 59.57% 0.680 -0.003096
7 6 1.22% 39.25% 60.75% 0.691 -0.004872
8 4 1.56% 36.56% 63.44% 0.698 0.001069
9 4 1.56% 36.56% 63.44% 0.706 0.000000

10 4 1.56% 36.56% 63.44% 0.714 0.000000
11 4 1.56% 36.56% 63.44% 0.722 0.000000
12 4 1.56% 36.56% 63.44% 0.730 0.000000
13 4 1.56% 36.56% 63.44% 0.738 -

If we choose the cutoff m* as the one for which the sensitivity to g is zero, then 
m*~5 seems appropriate. 
This would lead to the conclusion that the S&P 500 corresponds to a 5-factor model.
The number is small in relation to industry sectors and to the amount of variance
explained by industry factors.



The density of states: a useful formalism

Spectral theory as seen by physicists – origins in Quantum Mechanics and 
High Energy Physics. 
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One way to think about the DOE is as changing the x-axis for the y-axis,i.e.
counting the number of eigenvalues in a neighborhood of any E, 0<E<1.

Intuition: if N is large, the eigenvalues of the insignificant portion of the 
spectrum will ``bunch up’’ into a continuous distribution f(E).



Integrated DOE
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In the DOE language…
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Dependence of the problem on g
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According to this calculation, the best  cutoff is the level E 
where the DOE vanishes (or nearly vanishes) coming from the right.



A closer look at equities

-- There is information in equities markets related to different activities
of listed companies

-- Industry sectors 

-- Market capitalization

-- Regression on industry sector indexes explain often no more than
50% of returns

-- Since there exist at least 15 distinct sectors that we can identify in
US/ G7 economies, we conclude that we probably require at least
15 factors to explain asset returns.

-- Temporal market fluctuations are important as well. In order for factor
models to be useful, they need to adapt to economic cycles.



Stocks of more than 1BB  cap
in January 2007

Sector ETF Num of Stocks

Market Cap      unit: 1M/usd 
Average Max Min 

Internet HHH 22 10,350 104,500 1,047 

Real Estate IYR 87 4,789 47,030 1,059 

Transportation IYT 46 4,575 49,910 1,089 

Oil Exploration OIH 42 7,059 71,660 1,010 

Regional Banks RKH 69 23,080 271,500 1,037 

Retail RTH 60 13,290 198,200 1,022 

Semiconductors SMH 55 7,303 117,300 1,033 

Utilities UTH 75 7,320 41,890 1,049 

Energy XLE 75 17,800 432,200 1,035 

Financial XLF 210 9,960 187,600 1,000 

Industrial XLI 141 10,770 391,400 1,034 

Technology XLK 158 12,750 293,500 1,008 

Consumer Staples XLP 61 17,730 204,500 1,016 

Healthcare XLV 109 14,390 192,500 1,025 

Consumer discretionary XLY 207 8,204 104,500 1,007 

Total 1417 11,291 432,200 1,000 

January, 2007


