

Evaluation of a contour integral considered in lecture 6

We saw that

$$\frac{\sqrt{\pi}(1+i)}{2\sqrt{2}} = \int_0^\infty e^{ix^2} dx = \int_0^\infty e^{iR^2 e^{i\pi/4}} e^{i\pi/8} dR = I$$

when we integrated from $(0, 0)$ to $(0, R)$, then along $|z| = R$ to the ray $\theta = \pi/8$, then along that ray to $(0, 0)$, after letting the arc move off to infinity.

Now $e^{i\pi/8} = 2^{-1/4} \sqrt{1+i}$. Thus we have

$$I = \sqrt{1+i} \int_0^\infty e^{-t^2} e^{it^2} dt.$$

Thus

$$\int_0^\infty e^{-t^2} \cos(t^2) dt = \sqrt{\pi/8} \Re \sqrt{1+i}.$$

But if $\sqrt{1+i} = a+ib$, then $1+i = a^2 - b^2 + 2iab$, $a^2 - b^2 = 1$, $2ab = 1$. Solving for $a > 0$ we get $a = \sqrt{\frac{1+\sqrt{2}}{\sqrt{2}}}$. Thus

$$\int_0^\infty e^{-t^2} \cos(t^2) dt = \frac{1}{4} \sqrt{\pi} \sqrt{1+\sqrt{2}}.$$