Principles of Scientific Computing
Basic Numerical Analysis, I

Jonathan Goodman

last revised January 16, 2003

Among the most common computational tasks are differentiation, interpo-
lation, and integration. The basic methods used for these operations are finite
difference approximations for derivatives, low order polynomial interpolation,
and panel method integration. Taylor series is the mathematical tool used to
design methods for these three problems.

Even the errors in approximate differentiation or integration have Taylor
series expansions, which tell us how the error depends on the computational step
size, h. These asymptotic error expansions play a central role in computational
software. A convergence study verifies the correctness of a code by checking
that the errors depend on the computational parameters as theory says they
should. Richardson extrapolation combines several computations with different
h values to produce a more accurate overall answer. Adaptive algorithms adjust
h until the Richardson estimate suggests that the error is below a specified
tolerence. All these applications, ranging from basic to sophisticated, rest on
simple manipulation of Taylor series.

Errors in approximate differentiation and integration that may be inter-
preted as neglecting terms in a Taylor series are called truncation error. We
usually ignore roundoff error when discussing truncation error. Roundoff is
usually negledgible compared to truncation error in practical computations that
have both. An exception discussed below is the limit, due to roundoff, on the
accuracy of finite difference approximations to derivatives, which is much larger
than €, ch-

For each of the problems discussed, there is a range of methods. The sim-
plest methods are robust and easy to program. These are often adequate for
casual computing. Why spend more time optimizing a code than possibly could
be saved in a computation that takes the computer less than a minute? How-
ever, sophisticated methods can be much more accurate and faster. The basic
operations of integration and differentiation are often at the hearts of computa-
tional algorithms whose running times are a serious concern. Time discovering
and implementing more complex and accurate approximations may be repaid
amply.

1 Taylor series and asymptotic expansions

Taylor series describe the behavior of a function about a point. The Taylor
series if a function f about the point z is

Fl+h) = F(@) 4 hF(@) 4 @) 4k SO @))

For now, it may help to think of z as a fixed point and h as the varaible. The
approximation formed by taking the first n41 terms on the right will be written
Flo+h) ~ Falw,h) = 3 0 (2) (2)
k=

k!
0

These are progressively more accurate descriptions of the behavior of f near z.
The first one, f(x 4+ h) = Fy(z,h) = f(z), just says that for small h, the value
of f(x + h) is not very different from the value of f(x), which is to say that
f is continuous at x. The next approximation, F;(z,h) = f(z) + hf'(z) is a
linear function of h that takes into account the slope of the graph at x. The
tangent line approximation to f near x is a better approximation than the flat
line approximation, Fy. An even better approximation is f(x + h) = Fy(z,h) =
f(x)+hf'(x) + %zf”(a:), which takes into account the curvature of the graph
at x.

The errors of basic differentiation and integration methods depend on the
errors in the Taylor series approximations Fy,(z, h). The error is the difference
between f(z + h) and F,(z,h). It is simpler at first to examine the difference
between F,,(z,h) and F,,_1(z, h)

The series (1) converges to f if

F.(z,h) — f(x+h) asn— occ. (3)

Generally speaking, if you can write a formula for f(x) then the expansion will
converge for sufficiently small h. According to (3) we improve the accuracy of
the Taylor series approximation (2) by increasing n, taking more terms.

The accuracy also improves if we make h smaller without changing n. We
will see that for small enough h, the error is roughly proportional to a power of
h:

fx+h) — Fy(z,h) =~ Cpy k" (4)

The power of h on the right side is the order of accuracy. Higher order of
accuracy, larger n, generally implies less error. For example, if h = .1, then h®
is ten times smaller than h2. Unless C3 is ten times larger than Cs, the third
order approximation (order of accuracy = 3, n = 2) will be more accurate than
the second order approximation (n = 1). Higher order approximations gain
accuracy at a greater rate than low order ones. For example, (4) implies that
the third order approximation improves by a factor of 8 if we reduce h be a
factor of 2 while the second order approximation improves by only a factor of
4.

We can make a heuristic derivation of the error estimates (4) using the series

(1):
1

@R

fx+h)—F,(z,h) =

We factor out h"*+!, which is a common factor of every term on the right, and
get:

flx+h) = Fy(x,h) = h"t? (mil)!f(”“)(x) +

= hn+1Gn+1(x7 h))

ﬁ]dwz)(m)h L.)

where G,,41 is the quantity in big parentheses on the top line. If the sum
defining G, 11 converges, then we can take

C = max |G x,h)|,
n+1 Ih\ﬁho‘ n+1()l
and the inequality (4) will be true.
A better tool for rigorous analysis is the Taylor series remainder theorem,
which is the formula:

h(n+1)

AR (5)

flx+h)— F,(x,h) =
This € depends on z, h, and n in an unknown way, except that ¢ is between x and
x+h. If his negative, then x+h is to the left of , but still £ is between. For (5)
to hold for a particular n, it is only necessary that the derivative of order n + 1
exists for all £ between x and 2+ h (including at the the endpoints, « and z+h).
For example, if f(z) = 0 for z < 0 and f(x) = 2 for > 0, then the second
derivative of f exists for all z, and therefore f(z+h)—(f(x)—hf' (z)) = %f”(f).
However, the Taylor series for this f about x = —1 has all terms equal to zero,
so the convergence (3) does not hold for h = 2. The approximation (2) does
not even make sense for n = 4 and x = 0, since the fourth derivatvie of f is not
defined for x = 0.

If f(n+ 1) exists in the necessary range, than we may take

1

CER TR FO @+)|

CnJrl -

and (4) will hold. The remainder theorem approach may be preferred because
it does not rely on the convergence of the Taylor series as n — oo. Since our n
will typically not be very big, what happens as n — oo should be irrelevant.

2 Software tips

2.1 Write flexible and verifiable codes

The main way to verify correctness of a code it to check that it gets the right
answer. For this reason, it is helpful to build codes general enough to calculate
a variety of answers, some of which we already know. Maybe the problem you
want to solve will strain the computer resources so that a convergence study
is impossible. Hopefully, the same code can solve an easier problem, perhaps
differing only in values of parameters, that for which a convergence study is
possible.

2.2 Report failures

A code should not fail silently. If a procedure is unable to do what it is asked
to do, it must report this in some way. Most procedures used in a computation

can fail on some problems they would be exposed to. Most user want know
that the answer is wrong if it is. As a principle of programming practice, every
procedure should have some way to communicate failure, either to the calling
procedure (preferred for serious codes) or directly to the user.

There are several ways to report failure. The simplest is just to print an
error message, such as:

cout << "Procedure Integrate failed because n = " << n
<< " was larger than N_MAX = " << N_MAX << endl;

Notice that the message told the user the name of the routine, the reason for
the problem, and the offending number.

3 Further reading

There several good old books on classical numerical analysis. One favorite is
Numerical Methods by Germund Dahlquist and Ake Bjork. Others are not sure
by Gene Isaacson and Herb Keller and 7777. Particularly interesting subjects
are the symbolic calculus of finite difference operators and Gaussian quadrature.

There are several applications of convergent Taylor series in scientific com-
puting. One example is the fast multipole method of Leslie Greengard and
Vladimir Rokhlin.

4 Exercises

1. We want to study the function

f(x) :/0 cos (xt?) dt . (6)

Step 1: Write a procedure (or “method”) to estimate f(z) using a panel
integration method with uniformly spaced points. The procedure
should be well documented, robust, and clean. Robust will mean
many things in future assignments. Here is means: (i) that it should
use the correct number of panels even though the points ¢; are com-
puted in inexact floating point arithmetic, and (ii) that the procedure
will return an error code and possibly print an error message if one of
the calling arguments is out of range (here, probably just n < 0). It
should take as inputs # and n = 1/At and returns the approximate
integral with that x and At value. This routine should be written so
that another person could easily substitute a different panel method
or a different integrand by changing a few lines of code.

Step 2: Verify the correctness of this procedure by checking that it gives
the right answer for small z. We can estimate f(z) for small = using
a few terms of its Taylor series. This series can be computed by

integrating the Taylor series for cos(xt?) term by term. This will
require you to write a “driver” that calls the integration procedure
with some reasonable but not huge values of n and compares the
returned values with the Taylor series approximation.

Step 3: With x = 1, do a convergence study to verify the second or-
der accuracy of the trapezoid rule and the fourth order accuracy of
Simpson’s rule. This requires you to write a different driver to call
the integration procedure with several values of n and compare the
answers in the manner of a convergence study. Once you have done
this for the trapezoid rule, it should take less than a minute to redo
it for Simpson’s rule. This is how you can tell whether you have done
Step 1 well.

Step 4: Write a procedure that uses the basic integration procedure from
Step 1, together with Richardson error estimation to find an n that
gives f(x) to within a specified error tolerance. The procedure should
work by repeatedly doubling n until the estimated error, based on
comparing approximations, is less than the tolerence given. This rou-
tine should be robust enough to quit and report failure if it is unable
to achieve the requested accuracy. The input should be x and the
desired error bound. The output should be the estimated value of f,
the number of points used, and an error flag to report failure. Before
applying this procedure to the panel integration procedure, apply
it to the fake procedure fakeInt.c or fakeInt.C. Note that these
testers have options to make the Richardson program fail or succeed.
You should try it both ways, to make sure the robustness feature
of your Richardson procedure works. Include with your homework,
output illustrating the behavior of your Richardson procedure when
it fails.

Step 5: Here is the “science” part of the problem, what you have been
doing all this coding for. We want to test an approximation to f that
is supposed to be valid for large x. The supposed approximation is:

J(@) ~) = + o= sin(x) -

52 T 22 cos(x) +--- . (7)

1622
Make a few plots showing f and its approximations using one, two
and all three terms on the right side of (2) for z in the range 1 < z <
1000. In all cases we want to evaluate f so accurately that the error
in our f value is much less than the error of the approximation (2).
Note that even for a fixed level of accuracy, more points are needed
for large . Why?

