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Abstract. We describe a robust, adaptive algorithm for the solution of singularly perturbed two-
point boundary value problems. Many different phenomena can arise in such problems, including
boundary layers, dense oscillations, and complicated or ill-conditioned internal transition regions.
Working with an integral equation reformulation of the original differential equation, we introduce a
method for error analysis which can be used for mesh refinement even when the solution computed
on the current mesh is underresolved. Based on this method, we have constructed a black-box
code for stiff problems which automatically generates an adaptive mesh resolving all features of the
solution. The solver is direct and of arbitrarily high-order accuracy and requires an amount of time
proportional to the number of grid points.
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1. Introduction. In this paper we describe a robust, automatic, adaptive algo-
rithm for the solution of two-point boundary value problems of the form

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x)(1)

or, more suggestively,

εu′′(x) + p(x)u′(x) + q(x)u(x) = f(x),(2)

where ε is a small parameter. Many different phenomena can arise in such problems,
including boundary layers, dense oscillations, and complicated or ill-conditioned in-
ternal transition regions. We are primarily interested in the singularly perturbed or
“stiff ” case, usually written in the form (2), but we will take (1) to be the standard
form of an equation.

The last few decades have seen substantial progress in the development of numer-
ical methods for the solution of such problems and several excellent textbooks, such
as [2] and [21], and software packages, such as COLSYS [3, 5], PASVAR [27], and
MUS [29] are presently available. We do not seek to review the subject here, but we
will briefly list some of the currently available strategies for mesh selection.

1. Transformation methods assume that one knows a priori where complicated
features of the solution are to be found and introduce a change of variables. The
solution of the transformed problem in the new variable is smooth and can be resolved
on a simple, uniform mesh. A good reference is [25]. When applicable, such an
approach provides rapid and accurate answers, but it is not an automatic strategy.
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2. Multiple shooting and Ricatti methods are based on the use of initial
value problem solvers and have achieved some success for stiff problems. It is difficult,
however, to ensure that one has resolved all features of the solution unless their
location is known in advance. For a thorough discussion, see [2].

3. Finite difference and collocation methods are probably the most popular
and best-developed general purpose solvers available [3, 5, 24, 27, 30]. There are two
possible modes for mesh selection: the user can specify in advance a nonuniform mesh
which resolves complicated features or the user can request that the solver construct a
sequence of adaptively refined meshes as part of the solution process. In the latter case,
the refinement strategy is based on a posteriori error estimation with varying levels
of sophistication. In brief, once an approximate solution has been obtained, the code
attempts to ascertain which subintervals incur the maximum error and subdivides
those selectively. The problem with this approach is that it is unreliable until some,
perhaps crude, resolution has been achieved. From that point on, a posteriori error
analysis is quite robust.

Remark. For stiff problems, the goal of all the above strategies as well as our
own) is the same: the construction of a mesh on which all features of the solution are
locally smooth.

Our goal, however, is to be able to determine which subintervals require further
refinement before any resolution has been achieved. For this, we work with an integral
equation reformulation of the original two-point boundary value problem. Such an ap-
proach has generally been avoided due to the excessive computational cost associated
with solving dense linear systems. A finite difference or collocation method requires
only O(N) arithmetic operations to solve a discretized problem with N mesh points.
A straightforward integral equation method requires O(N3) work for the same size
problem. In the last few years, however, several fast algorithms have been introduced
which allow for the direct solution of the integral equation in onlyO(N) or O(N logN)
operations [4, 7, 8, 11, 12, 19, 20, 28, 31]. Of particular relevance are the papers [20],
which considers a single scalar equation of the form (1), and [31], which extends this
method to first-order systems. These schemes are well conditioned and of arbitrary
(but fixed) order accuracy. They perform well even for ill-behaved equations such as
high-order Bessel equations and problems with internal or boundary layers. They do
not, however, address the question of mesh selection.

In this paper, we introduce a method for error analysis which can be used even
when the solution computed on the current mesh yields no accuracy. We also show
how to incorporate this method into an adaptive version of the fast integral equation
solver mentioned above. The result is a “black box” code for stiff equations whose
performance is demonstrated on a suite of test problems in section 4.

2. Mathematical preliminaries. In this section, we begin by summarizing
the standard integral equation approach to the solution of two-point boundary value
problems. We then consider the mathematical framework of a recursive solver, based
on the algorithm of [20].

2.1. Green’s functions for second-order ordinary differential equations.
Consider the problem of determining a function u in C2[a, c] which satisfies the second-
order differential equation

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x)(3)
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on the interval [a, c] ⊂ R, where p, q are continuous functions on (a, c), subject to the
linear boundary conditions

ζl0 · u(a) + ζl1 · u′(a) = Γl,(4)
ζr0 · u(c) + ζr1 · u′(c) = Γr.(5)

It is well known that the solution of the original equation (3) can be decomposed
into two terms, u = uh + ui, where ui is a linear (or for pure Neumann conditions a
quadratic) function which satisfies the inhomogeneous boundary conditions (4) and
(5) and uh solves the equation

u′′h(x) + p(x)u′h(x) + q(x)uh(x) = f̃(x),(6)

where

f̃(x) ≡ f(x)− (u′′i (x) + p(x)u′i(x) + q(x)ui(x)),

with homogeneous boundary conditions

ζl0 · uh(a) + ζl1 · u′h(a) = 0,(7)
ζr0 · uh(c) + ζr1 · u′h(c) = 0.(8)

We will represent the solution to equations (6), (7), and (8) in terms of Green’s
function for a simpler problem by making use of the following lemma [10].

LEMMA 2.1. Let q0 ∈ C1(a, c) and suppose that the equation

φ′′(x) + q0(x)φ(x) = 0(9)

subject to the homogeneous boundary conditions (7) and (8) has only the trivial so-
lution. Then there exist two linearly independent functions gl(x), gr(x) which satisfy
equation (9) and the boundary conditions (7) and (8), respectively. Green’s function
for this equation, denoted by G0, can be constructed as follows:

G0(x, t) =

{
gl(x)gr(t)/s if x ≤ t,
gl(t)gr(x)/s if x ≥ t,

(10)

where s is a constant given by s = gl(x)g′r(x)− g′l(x)gr(x).
Given Green’s function G0, any twice differentiable function satisfying the bound-

ary conditions (7) and (8) can be uniquely represented in the form

φ(x) =
∫ c

a

G0(x, t) · σ(t)dt,(11)

where σ(x) is an unknown density function. In order for the function φ, represented
by (11), to satisfy the ordinary differential equation (6), σ(x) must simply satisfy the
second kind of integral equation

σ(x) + p̃(x)
∫ c

a

G1(x, t)σ(t)dt+ q̃(x)
∫ c

a

G0(x, t)σ(t)dt = f̃(x),(12)

where p̃(x) = p(x) and q̃(x) = q(x)− q0(x), and

G1(x, t) =
d

dx
G0(x, t).(13)
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Once σ(x) is known, then uh(x) = φ(x) can be added to ui(x) to provide the solution
of the original problem (3), (4), and (5). Similarly, u′(x) = u′h(x) + u′i(x), where

u′h(x) =
∫ c

a

G1(x, t)σ(t)dt.(14)

Of course, if p(x) = 0 and q0(x) = q(x), then the solution to equation (12) is just
σ = f̃ . In practice, however, we choose q0 to be a nonpositive constant so that Green’s
function G0 is readily available, while Green’s function for the original system is not.
In particular, it is easy to verify the following result.

LEMMA 2.2. If |ζl0| ≥ |ζl1| or |ζr0| ≥ |ζr1|, then Green’s function corresponding
to q0(x) = 0 in equation (9) can be constructed from

gl(x) = ζl0(x− a)− ζl1(15)
gr(x) = ζr0(x− c)− ζr1.(16)

If both |ζl0| < |ζl1| and |ζr0| < |ζr1|, then Green’s function corresponding to q0(x) = −1
in equation (9) can be constructed from

gl(x) = ζl1 cosh(x− a)− ζl0 sinh(x− a),(17)
gr(x) = ζr1 cosh(x− c)− ζr0 sinh(x− c).(18)

2.2. Notation. We define the operator P : L2[a, c]→ L2[a, c] as follows:

Pη(x) = η(x) + p̃(x)
∫ c

a

G1(x, t)η(t)dt+ q̃(x)
∫ c

a

G0(x, t)η(t)dt.(19)

The integral equation (12) can then be written in the form

Pσ = f̃ .(20)

In terms of the component functions gl and gr which define Green’s function G0, we
have

Pη(x) = η(x) + ψl(x)
∫ x

a

gl(t)η(t)dt+ ψr(x)
∫ c

x

gr(t)η(t)dt,(21)

where

ψl(x) = (p̃(x)g′r(x) + q̃(x)gr(x))/s,(22)
ψr(x) = (p̃(x)g′l(x) + q̃(x)gl(x))/s.(23)

Consider now a subinterval B = [bl, br] ⊂ [a, c] and let us denote the restriction
of η to B by ηB and the restriction of P to B by PB . That is PB : L2(B) → L2(B)
and for x ∈ B,

PBηB(x) = ηB(x) + p̃(x)
∫ br

bl

G1(x, t)ηB(t)dt+ q̃(x)
∫ br

bl

G0(x, t)ηB(t)dt

= ηB(x) + ψl(x)
∫ x

bl

gl(t)ηB(t)dt+ ψr(x)
∫ br

x

gr(t)ηB(t)dt.(24)

Note that we would like to find σ(x) = P−1f̃(x) but that the linear system obtained
from discretization of P is dense and computationally unattractive. There is, how-
ever, a remarkable relationship between σB , the restriction of the solution of the full
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integral equation to a subinterval B, and the function P−1
B f̃(x). To understand this

relationship, we divide [a, c] into three pieces, namely A = [a, bl], B = [bl, br], and
C = [br, c]. Then for x ∈ B,

Pσ(x) = PBσB(x) + ψl(x)
∫ bl

a

gl(t)σA(t)dt+ ψr(x)
∫ c

br

gr(t)σC(t)dt

= PBσB(x)− ψl(x)λBl − ψr(x)λBr = f̃(x),(25)

where λBl and λBr are given by

λBl = −
∫ bl

a

gl(t)σ(t)dt,

λBr = −
∫ c

br

gr(t)σ(t)dt.(26)

DEFINITION 2.1. The constants λBl and λBr will be referred to as coupling coeffi-
cients.

An immediate consequence of equation (25) is the following fundamental formula.
LEMMA 2.3. Given the coupling coefficients λBl and λBr , the restriction of the

solution of the global integral equation (20) to a subinterval B can be expressed as a
linear combination of the solution of purely local problems:

σB(x) = P−1
B f̃(x) + λBl P

−1
B ψl(x) + λBr P

−1
B ψr(x).(27)

This leads to an efficient method for solving the original equation (20), for we
can subdivide [a, c] into a large number of subintervals B1, . . . , BM and apply this
observation on each one. The local problems are much less expensive to solve than
(20) and it remains only to somehow determine the coupling coefficients λBil and λBir
for each Bi.

2.3. A divide and conquer procedure. By Lemma 2.3, the solution of the
integral equation (20) on a fixed subinterval B can be constructed as a linear com-
bination of P−1

B ψl(x), P−1
B ψr(x), and P−1

B f̃(x). In order to efficiently compute the
coupling coefficients λBl and λBr , however, we will need to develop a number of an-
alytic relations which they satisfy. We will return to the integral equation itself in
section 2.4. For the moment then let us suppose that ηB satisfies

PB ηB = µBl ψl + µBr ψr + µB f̃ ,(28)

where µBl , µ
B
r , and µB are given constants. We subdivide B into a left and a right

subinterval, denoted by D and E, respectively, and refer to D and E as B’s children.
The restriction of ηB to D and E will be denoted by ηD and ηE . From the discussion
in section 2.2, it is easy to see that there exist coefficients µDl , µ

D
r , µ

D, µEl , µ
E
r , and

µE , such that

PD ηD = µDl ψl + µDr ψr + µDf̃ ,(29)
PE ηE = µEl ψl + µEr ψr + µE f̃ .(30)

DEFINITION 2.2. The coefficients µDl , µDr , µD, µEl , µEr , and µE, which define the
right-hand sides in equations (29) and (30), will be referred to as the refinement of
the coefficients µBl , µ

B
r , and µB, which define the right-hand side in equation (28).
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We will require a number of inner products given by the following.
DEFINITION 2.3. Let X denote a subinterval of [a, c]. Then

αXl ≡
∫
X

gl(t)P−1
X ψl(t)dt, αXr ≡

∫
X

gr(t)P−1
X ψl(t)dt,(31)

βXl ≡
∫
X

gl(t)P−1
X ψr(t)dt, βXr ≡

∫
X

gr(t)P−1
X ψr(t)dt,(32)

δXl ≡
∫
X

gl(t)P−1
X f̃(t)dt, δXr ≡

∫
X

gr(t)P−1
X f̃(t)dt.(33)

LEMMA 2.4. Suppose that we are given the coefficients µBl , µ
B
r , µ

B in equation
(28). Then their refinements are given by

µD = µB ,

µE = µB ,

µDl = µBl ,

µEr = µBr ,(34) (
µDr

µEl

)
=

(
1 αEr

βDl 1

)−1(
µBr (1− βEr )− µBδEr
µBl (1− αDl )− µBδDl

)
.

Proof. We first expand PB ηB in the form

PB ηB = ηB(x) + ψl(x)
∫ x

bl

gl(t)ηB(t)dt+ ψr(x)
∫ br

x

gr(t)ηB(t)dt

=

{
PD ηD + ψr(x)(gr, ηE) if x ∈ D,
PE ηE + ψl(x)(gl, ηD) if x ∈ E,

(35)

where

(gr, ηE) =
∫
E

gr(t)ηE(t)dt,

(gl, ηD) =
∫
D

gl(t)ηD(t)dt.

Using equations (28), (29), (30), and (35), it is easy to see that

PB ηB = µBl ψl + µBr ψr + µB f̃(36)

=

{
µDl ψl + (µDr + (gr, ηE))ψr + µDf̃ if x ∈ D,

(µEl + (gl, ηD))ψl + µEr ψr + µE f̃ if x ∈ E.
(37)

The first four relations in (34) can now be obtained by comparing the coefficients of
ψl, ψr, and f̃ . For µEl and µDr , we have the more complicated conditions

µBl = µEl + (gl, ηD) = µEl + µDl α
D
l + µDr β

D
l + µDδDl(38)

µBr = µDr + (gr, ηE) = µDr + µEl α
E
r + µEr β

E
r + µEδEr .(39)

The remaining relations in (34) follow in a straightforward manner.
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If we were only interested in one level of subdivision, then we would allow B
to play the role of the full interval [a, c] and we would set µBl = µBr = 0, µB = 1,
and ηB = σB . We would obtain the solution to the global equation by first comput-
ing P−1

D ψl, P
−1
D ψr, P

−1
D f̃ , P−1

E ψl, P
−1
E ψr, and P−1

E f̃ and subsequently computing the
inner products

αDl , α
D
r , β

D
l , β

D
r , δ

D
l , δ

D
r , α

E
l , α

E
r , β

E
l , β

E
r , δ

E
l , δ

E
r .

Lemma 2.4 then provides the refined coefficients needed on the two subintervals D
and E. It is easy to see that by virtue of the specific choice µBl = µBr = 0, µB = 1,
the refined coefficients are the coupling coefficients defined in (26). Thus, we can
evaluate σD and σE via Lemma 2.3. We have allowed a more general definition of
the coefficients µBl , µ

B
r , and µB in order to simplify the proof of the next lemma. It

describes how to compute the coefficients α, β, and δ for a parent interval given the
corresponding coefficients for its children.

LEMMA 2.5. Suppose that B is a subinterval with children D and E. Then

αBl =
(1− αEl ) · (αDl − βDl · αEr )

∆
+ αEl ,(40)

αBr =
αEr · (1− βDr ) · (1− αDl )

∆
+ αDr .(41)

βBl =
βDl · (1− βEr ) · (1− αEl )

∆
+ βEl ,(42)

βBr =
(1− βDr ) · (βEr − βDl · αEr )

∆
+ βDr .(43)

δBl =
1− αEl

∆
· δDl + δEl +

(αEl − 1) · αDl
∆

· δEr ,(44)

δBr =
1− βDr

∆
· δEr + δDr +

(βDr − 1) · αEr
∆

· δDl ,(45)

where ∆ = 1− αEr βDl .
Proof. Observe that by choosing µBl = 1, µBr = 0, and µB = 0, equations (28),

(29), and (30) and Lemma 2.4 together yield

P−1
B ψl(x) =

 P−1
D ψl(x)− αEr (1−αDl )

∆ P−1
D ψr(x) for x ∈ D,

1−αDl
∆ P−1

E ψl(x) for x ∈ E.
(46)

Similarly, choosing µBl = 0, µBr = 1, and µB = 0 yields

P−1
B ψr(x) =


1−βEr

∆ P−1
D ψr(x) for x ∈ D,

P−1
E ψr(x)− βDl (1−βEr )

∆ P−1
E ψl(x) for x ∈ E

(47)

and choosing µBl = 0, µBr = 0, and µB = 1 yields

P−1
B f̃(x) =

 P−1
D f̃(x) + αEr δ

D
l −δ

E
r

∆ P−1
D ψl(x) for x ∈ D,

P−1
E f̃(x) + βDl δ

E
r −δ

D
l

∆ P−1
E ψl(x) for x ∈ E.

(48)

A small amount of algebra provides the desired results.
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2.4. Informal description of a recursive solver. The tools developed in the
previous subsection suggest the following algorithm:

1. Generate subinterval tree.
Starting from the root interval [a, c], recursively subdivide each interval into two
smaller intervals until the intervals at the finest level are sufficiently small that the
restricted integral equations can be solved directly and inexpensively. This procedure
generates a binary tree with each node corresponding to a subinterval. The finest level
intervals will be referred to as leaf nodes. Nodes which are not leaves will be referred
to as internal nodes.

2. Solve restricted integral equations on leaf nodes.
For each leaf node Bi, compute P−1

Bi
ψl, P−1

Bi
ψr, and P−1

Bi
f̃ . Compute the inner prod-

ucts α, β, and δ on each leaf directly from the definitions (31), (32), and (33).
3. Sweep upward to compute α,β, and δ.

Use Lemma 2.5 to compute α, β, and δ at each internal node.
4. Sweep downward to compute λ.

Once the coefficients α, β, and δ are available at all nodes, Lemma 2.4 can be used
to generate the coupling coefficients λl and λr at all nodes. The process is initialized
by setting µBl = µBr = 0 and µB = 1 at the root node. The refined coefficients at the
nodes Bi are then the necessary coupling coefficients.

5. Construct solution to integral equation.
Evaluate σ on each leaf node as a linear combination of local solutions via Lemma 2.3.

6. Construct solution to boundary value problem.
The solution of the original ordinary differential equation can be constructed from
the representation (11).

3. An adaptive algorithm. The recursive procedure described in the previ-
ous section is exact; in other words, the solution of the global integral equation is
constructed analytically from the solutions of local equations on subintervals. In this
section, we discuss the discretization process. Once a fully discrete algorithm is avail-
able, we will describe our mesh selection strategy and give a detailed description of
an adaptive solver.

3.1. Chebyshev discretization. For a nonnegative integer k, the Chebyshev
polynomial Tk(x) is defined on [−1, 1] by the formula

Tk(cos θ) = cos(kθ).

Consider now a fixed positive integer K. The roots of TK are real, located on [−1, 1],
and given by

τj = cos
(2K − 2j + 1)π

2K
for j = 1, . . . ,K.

If the values of a function φ(x) are specified at the nodes τj , the Chebyshev interpolant
is defined on [−1, 1] by

φ(x) =
K−1∑
k=0

αkTk(x),

where the Chebyshev coefficients αk are given by

α0 =
1
K

K∑
j=1

φ(τj),

αk =
2
K

K∑
j=1

φ(τj)Tk(τj) for k ≥ 1.(49)
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For a thorough discussion of Chebyshev approximation, we refer the reader to [15] or
[17].

DEFINITION 3.1. Let S denote the space of continuous functions on [−1, 1]. The
operator CfK : S→ RK which maps a function to the vector of Chebyshev coefficients
(α0, α1, . . . , αK−1) will be referred to as the forward Chebyshev transform. The op-
erator CbK : RK → S which maps the vector (α0, α1, . . . , αK−1) to the corresponding
K-term Chebyshev expansion will be referred to as the backward Chebyshev transform.
Note that

CbKC
f
K(φ) = φ.

One of the reasons we use Chebyshev discretization is that the integration of
functions expanded in Chebyshev series is particularly simple (see, for example, [9,
19]).

LEMMA 3.1. Suppose that f(x) is a continuous function defined on [−1, 1] with
Chebyshev series

f(x) =
∞∑
k=0

fkTk(x).

Then

Fl(x) =
∫ x

−1
f(t) dt =

∞∑
k=0

akTk(x),(50)

where

ak = 1
2k (fk−1 − fk+1) for k ≥ 2,

a1 = 1
2 (2f0 − f2),(51)

a0 =
∞∑
k=1

(−1)k−1 ak.

Similarly,

Fr(x) =
∫ 1

x

f(t) dt =
∞∑
k=0

bkTk(x),(52)

where

bk = 1
2k (fk+1 − fk−1) for k ≥ 2,

b1 = 1
2 (f2 − 2f0),(53)

b0 = −
∞∑
k=1

bk.

Proof. For proof, see [9], [15], or [17].
DEFINITION 3.2. Let f denote the vector of Chebyshev coefficients (f0, f1, . . . , fK−1),

let a denote the vector of coefficients (a0, a1, . . . , aK−1) defined in equation (51), and
let b denote the vector of coefficients (b0, b1, . . . , bK−1) defined in equation (53). The
mapping

Isl : f → a
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will be referred to as the left spectral integration matrix and the mapping

Isr : f → b

will be referred to as the right spectral integration matrix.
DEFINITION 3.3. The left integration operator Il is given by

Il ≡ CbKIsl C
f
K .

The right integration operator Ir is given by

Ir ≡ CbKIsrC
f
K .

It is easy to verify that Il and Ir are exact for polynomials of degree K − 2 for
all x ∈ [−1, 1]. It is also easy to see that these integration operators are exact for
polynomials of degree K − 1 at the Chebyshev nodes themselves since TK(x) = 0
there.

When the interval of integration is of the form Bi = [bi, bi+1] rather than [−1, 1],
we can define analogous operators using scaled Chebyshev polynomials and the scaled
Chebyshev nodes

τ ij =
bi+1 − bi

2
τj +

bi+1 + bi
2

=
bi+1 − bi

2
cos

(2K − 2j + 1)π
2K

+
bi+1 + bi

2
,(54)

for j = 1, . . . ,K.
DEFINITION 3.4. The left and right integration operators for the interval Bi =

[bi, bi+1] will be referred to as Iil and Iir, respectively.

3.2. Discretization of the integral operator. We are now in a position to
discretize the local integral operator defined in equation (24). For the subinterval
Bi = [bi, bi+1], we denote this operator by Pi. Letting σi(x) : Bi → R be a function
of the form

σi(x) =
K−1∑
k=0

σki Tk

(
2(x−bi)
bi+1−bi − 1

)
,

we approximate

Piσi(x) = σi(x) + ψl(x)
∫ x

bi

gl(t)σi(t)dt+ ψr(x)
∫ bi+1

x

gr(t)σi(t)dt

by

P iσi(x) = σi(x) + ψl(x) · Iil (glσi)(x) + ψr(x) · Iir(grσi)(x).(55)

The fully discrete local integral equation then takes the form

P iσi(τ ij) = σi(τ ij) + ψl(τ ij) · Iil (glσi)(τ ij) + ψr(τ ij) · Iir(grσi)(τ ij)(56)

= f̃(τ ij), j = 1, . . . ,K.

Analogous linear systems are used to approximate P
−1
i ψl and P

−1
i ψr. We will use

the notation P i to denote both the operator in equation (55) and the K ×K matrix
in equation (56). The meaning should be clear from the context. Once the local
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integral operator is discretized in the form (56), it remains only to discretize the inner
products α, β, and δ. This is done through spectral integration.

Suppose now that [a, c] has been subdivided into M subintervals B1, . . . , BM .
Then we can denote by f the vector consisting of the values of f̃ at the scaled Cheby-
shev nodes of each interval B1, . . . , BM in turn. The global integral equation Pσ = f̃
is then replaced by a (rather complicated) dense linear system Pσ = f . Note that
we never form this matrix explicitly; we simply invert the system via the recursive
solver.

3.3. Mesh refinement. Suppose now that we have solved the discrete system
Pσ = f on the mesh defined by the subintervals B1, . . . , BM . We would then like
to be able to estimate the error in the computed solution. More critically, when the
computational mesh does not properly resolve the true solution, we would like to be
able to detect which subintervals require further refinement. For this, we begin with
the following lemma.

LEMMA 3.2. Suppose that σ is a solution of the original integral equation Pσ = f̃
and that σ is a solution of the discretized integral equation Pσ = f . Then the relative
error of σ satisfies the following bound:

‖σ − σ‖2
‖σ‖2

≤ κ(P )

(
‖(P − P )σ‖2
‖f̃‖2

+
‖f − f̃‖2
‖f̃‖2

)
,(57)

where κ(P ) is the condition number of the operator P .
Proof. The result follows from the following two estimates:

‖σ − σ‖2 = ‖P−1(Pσ − Pσ)‖2
≤ ‖P−1‖2 ( ‖Pσ − Pσ‖2 + ‖Pσ − Pσ‖2 )

and

‖P‖2 ‖σ‖2 ≥ ‖f̃‖2.

Remark. The source term f̃ combines information from the original right-hand
side f as well as the functions p and q. Thus, all three need to be resolved in order
for the term ‖f − f̃‖2 to be small.

Remark. An important feature of Lemma 3.2 is that it provides a sufficient
condition for convergence based only on the computed solution. Such an estimate
cannot easily be obtained for finite difference or finite element discretizations of the
original equation (3), since the ordinary differential operator is unbounded in L2.
(One can obtain finite element estimates using the Sobolev space H1, but numerical
differentiation is then required.)

We can make the error analysis even more precise by studying the last two coef-
ficients of the Chebyshev expansions of the solutions σi defined on the subintervals
Bi.

LEMMA 3.3. Suppose that we are representing the solution in terms of a piecewise
linear Green’s function. If the last two Chebyshev coefficients of σi(x) satisfy σK−1

i =
σK−2
i = 0, then

Piσi = P iσi.
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Proof. The result follows immediately from the fact that spectral integration is
exact for polynomials of degree less than p− 1.

Lemma 3.3 assures us that if the last two coefficients σK−1
i and σK−2

i are zero on
every interval, then Pσ = Pσ. Combining Lemmas 3.2 and 3.3, we have the following.

THEOREM 3.4. Suppose that we are representing the solution in terms of a piece-
wise linear Green’s function and that the following conditions hold:

1. σK−1
i < (ε/2) ‖f̃‖ for each subinterval Bi,

2. σK−2
i < (ε/2) ‖f̃‖ for each subinterval Bi,

3. ‖f − f̃‖ < ε ‖f̃‖.
Then

‖σ − σ‖
‖σ‖ ≤ κ(P ) (‖P − P‖+ 1) ε.

In other words, if f̃ is properly resolved, then a sufficient condition for the error
to be of the order O(ε) is that the last two coefficients of all local expansions be of
the order O(ε). This has, of course, only been demonstrated rigorously when using
a Green function G0 which is piecewise linear, such as the one constructed from (15)
and (16). Corresponding results for other Green’s functions, such as those based on
(17) and (18), can be obtained but are significantly more involved. In any case, the
analysis of this section suggests that an adaptive refinement strategy can be based on
the examination of the tails of the local Chebyshev expansions. We have chosen one
such strategy based on the last three coefficients.

REFINEMENT ALGORITHM.
• On each subinterval Bi, compute the monitor function

Si = |σK−2
i |+ |σK−1

i − σK−3
i |.(58)

• Compute Sdiv = maxMi=1 Si/2
C , where the constant C > 1 is provided by the

user.
• Subdivide Bi if Si ≥ Sdiv.
• If Bi and Bi+1 are children of the same node and (Si + Si+1) < Sdiv/2K , then

replace them by their parent. This step merges subintervals which are determined to
be overresolved.

Remark. We recommend setting C = 4.0. This works well for all problems we
have investigated. It is possible to tune this parameter to the type of problem being
solved. For example, if there are only sharp transition regions, then a larger value of
C might be slightly better. If there are dense oscillations, a smaller value of C might
be more efficient.

Remark. The reason we have used the expression Si = |σK−2
i |+|σK−1

i −σK−3
i | as a

monitor function rather than |σK−2
i |+|σK−1

i | is somewhat complicated but stems from
the fact that the left and right spectral integration matrices of order K are singular.
In particular, when K is even, the function f(x) = TK−1(x) + TK−3(x) + · · ·+ T1(x)
happens to be a null vector. When the solution is underresolved, spurious values for
σK−1
i can be introduced by projections in this direction. By evaluating the difference

between σK−1
i and σK−3

i , we ignore this projection. A similar problem arises when
K is odd.

When we create a new mesh by subdividing selected subintervals, we define a new
discretized integral operator P . Most of the subintervals remain unchanged, however,
so only a few new operators P i need to be inverted locally. This is computationally ad-
vantageous since, as we will see below, the local solvers dominate the computation cost.
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3.4. Termination condition. Our refinement strategy is applied iteratively
until a convergence criterion has been satisfied. There are several options for deter-
mining when the computed solution is sufficiently resolved. One can look at the tails
of the Chebyshev expansions and apply Theorem 3.4, but such global error bounds
are difficult to use since the condition number of the integral operator P and bounds
on ‖P − P‖ are not known. A more standard approach is to look at changes in the
computed solution σ(x) or the corresponding approximation to the solution u(x) of
the original equation. Letting ur be the approximation to u(x) at refinement stage r,
we choose to stop when the following condition is satisfied:

‖ur − ur−1‖
‖ur + ur−1‖

< TOL,

where TOL is the desired accuracy.
Suppose that, with the preceding stopping criterion, there have been R stages of

refinement and that the last solution computed is uR. As a further check, we can
then double the final mesh and solve the global integral equation using twice as many
points as deemed necessary. We refer to the corresponding solution as uDBL. We can
estimate the error in uR as

‖uR − u‖ ≈ ‖uR − uDBL‖.(59)

In our implementation, we also check, after mesh doubling, that the termination
condition given above is still satisfied.

3.5. Description of the algorithm. We now present a more detailed descrip-
tion of the numerical method. The user must provide

1. subroutines which evaluate the functions p(x), q(x), and f(x),
2. the desired order of accuracy of the method (K),
3. the initial mesh, defined by a sequence of distinct points a = b1, b2, . . . , bM , bM+1

= c, with M ≥ 1,
4. the refinement parameter C,
5. the desired tolerance TOL.

ALGORITHM.

Initialization.

Comment [Define initial parameters and create tree data structure]

(1) Create M subintervals Bi = [bi, bi+1] on [a, c] so that [a, c] = ∪Mi=1Bi.
(2) Construct a binary tree with M leaves corresponding to subintervals Bi.
(3) Create the update list, consisting of all leaf nodes.
(4) Set DblFlag = FALSE.
Remark. The number of nodes in the update list at refinement stage r will be denoted

by Ur. The total number of subintervals in the discretization will be denoted by Mr. On
initialization, r = 1, M1 = M , and U1 = M1.

Step 1 (Local solver).

Comment [Solve the local integral equations and compute the inner products α, β, and
δ on each leaf node in update list]

for (Bi in update list)
(1) Determine the locations of the scaled Chebyshev nodes τ i1, τ i2, . . . , τ iK on Bi us-

ing (54).
(2) Evaluate p̃(x), q̃(x), and f̃(x) at the scaled Chebyshev nodes.
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(3) Construct the K ×K linear system P i on Bi via equation (56).
(4) Evaluate P−1

i f̃ , P
−1
i ψl, P

−1
i ψr on Bi via Gaussian elimination.

(5) Evaluate the coefficients αi[l,r], β
i
[l,r], and δi[l,r] on Bi using Chebyshev integration

and the formulas (31), (32), and (33).
(6) Remove Bi from update list.

end for
Remark. The amount of work required to factor the local linear systems P i for Ur

intervals in the update list is of the order O(Ur ·K3). This is the most expensive part of the
algorithm. Once the factorizations of all the P i are obtained, it is possible to apply P−1

i to
ψl, ψr and f̃ at a total cost of approximately 3Ur · K2 operations. The evaluation of α, β,
and δ requires only 3Ur ·K operations.

Step 2.A (Upward sweep).

Comment [Compute αk[l,r], β
k
[l,r], and δk[l,r] for all internal nodes k]

for each internal node k in the binary tree [from the finest level to the coarsest]
(1) Find its two children nodes kl and kr.
(2) Evaluate αk[l,r], β

k
[l,r], and δk[l,r] from α

kl,kr
[l,r] , β

kl,kr
[l,r] , and δkl,kr[l,r] using formulas (40)–(45).

end for

Step 2.B (Downward sweep).

Comment [Construct the coupling coefficients λkl , λ
k
r for all nodes k]

Set λrootl = λrootr = 0 and λroot = 1.
for each internal node k in the binary tree [from the coarsest level to the finest]

(1) Find its two children nodes kl, kr.

(2) Evaluate λkl,kr[l,r] from α
kl,kr
[l,r] , β

kl,kr
[l,r] , δkl,kr[l,r] , and λk[l,r] using Lemma 2.4.

end for

Step 2.C (Evaluation of solution of global integral equation).

Comment [Compute the approximate solution σ of equation (20) at the nodes τ i1, τ i2, . . . , τ iK
on each Bi via Lemma 2.3]

for (each leaf node Bi)
(1) Determine the values of the solution σ at the node τ ij , j = 1, ...,K from P−1

Bi
ψl,

P−1
Bi
ψr, P−1

Bi
f̃ , and λi[l,r] via formula (27).

end for
Remark. Steps (2.A) and (2.B) require an amount of work proportional to the number

of subintervals, while (2.C) requires O(K) operations for each subinterval. Thus, the total
cost for step 2 is O(M) +O(MK).

Step 3.A (Evaluation of solution).

Comment [Precompute the definite integrals J il =
∫ bi
a
gl · σ and J ir =

∫ c
bi+1

gr · σ]

J1
l = 0, JMr = 0

do i = 1, M-1
J i+1
l = J il +

∫ bi+1
bi

gl(t)σ(t) dt = J il + δil + λilα
i
l + λirβ

i
l

end do
do i = M, 2, -1

J i−1
r = J ir +

∫ bi+1
bi

gr(t)σ(t) dt = J ir + δir + λilα
i
r + λirβ

i
r

end do

Step 3.B (Evaluation of solution).

Comment [compute u(x) and u′(x) at each node in discretization]
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for (each leaf node Bi)
do j=1,K

u(τ ij ) = ui(τ ij ) +
gr(τij )
s
·
[
J il +

∫ τij
bi
gl(t) · σ(t) dt

]
+

gl(τ
i
j )
s
·
[∫ bi+1

τij
gr(t) · σ(t) dt+ J ir

]
u′(τ ij ) = u′i(τ ij ) +

g′r(τij )
s
·
[
J il +

∫ τij
bi
gl(t) · σ(t) dt

]
+

g′l(τ
i
j )
s
·
[∫ bi+1

τij
gr(t) · σ(t) dt+ J ir

]
end do

end for
Remark. Approximately 2M operations are required in Step (3.A). The integrals re-

quired on each subinterval in Step (3.B) can be computed in O(K logK) work using the fast
cosine transform and spectral integration. Since K is typically less than 20, however, we
assume that the integrals are computed directly at a cost of K2 operations. The total cost
for evaluation of the solution is of the order O(M) +O(MK2).

Step 4 (Mesh refinement).

Comment [Refine mesh until computed solution converges within TOL]

Compute TEST = ‖ur − ur−1‖/‖ur + ur−1‖.
if (TEST > TOL)

Evaluate monitor function Si on each interval Bi via equation (58).
Compute Sdiv = maxMi=1 Si/2C .
for (each interval Bi)

if Si ≥ Sdiv then
(1) divide Bi into left and right subintervals
(2) add new intervals to update list.

else if (Bi and Bi+1 are children of the same node) and (Si + Si+1) < Sdiv/2K then
merge Bi and Bi+1

end if
end for
DblFlag = FALSE

else if (DblFlag = FALSE) then
Divide all subintervals into halves and add them to update list
DblFlag = TRUE

else
Exit the loop (Convergence test is satisfied after doubling the mesh).

end if
Go to Step (1)

4. Numerical results. The algorithm of section 3 has been implemented in
double precision in FORTRAN. To study its performance, we have chosen a repre-
sentative collection of stiff two-point boundary value problems and have solved them
using our algorithm on a SUN SPARCstation IPX. In each case, the order of the
method is fixed to be 16 and the initial mesh is just a single interval.

Example 1 (Viscous shock). We first consider the steady advection–diffusion prob-
lem

εu′′(x) + 2xu′(x) = 0,(60)

with boundary conditions

u(−1) = −1; u(1) = 1,

whose exact solution is given by

u(x) = erf−1
(

1√
ε

)
erf

(
x√
ε

)
= erf−1

(
1√
ε

)
2√
π

∫ x√
ε

0
e−t

2
dt.



418 JUNE-YUB LEE AND LESLIE GREENGARD

0 2 4 6 8
10

-10

10
0

10
10

Solution Convergence

step

E
rr

or
(s

te
p)

-1 -0.5 0 0.5 1
0
2
4
6
8

Mesh refinement

x

st
ep

-1 0 1
-20

0

20
refinement step=1

-1 0 1
-20

0

20
refinement step=2

-1 0 1
-20

0

20
refinement step=3

-1 0 1
-5

0

5
refinement step=4

-1 0 1
-5

0

5
refinement step=5

-1 0 1
-5

0

5
refinement step=6

-1 0 1
-2

0

2
refinement step=7

-1 0 1
-2

0

2
refinement step=8

-1 0 1
-2

0

2
refinement step=9

FIG. 1. A summary of the adaptive solution of the viscous shock problem. The top nine graphs
show the solutions at successive refinement steps. The bottom left graph is a plot of the relative
L2 norm of the error as a function of the refinement step. The bottom right graph is a plot of the
subinterval boundaries constructed by the adaptive algorithm at each step of the refinement process.

For ε = 10−5, the adaptive algorithm requires nine levels of mesh refinement. For
illustration, we plot the computed solution at each step in the refinement process in
Figure 1. We also plot the relative error of the computed solution in the L2 norm and
the subinterval boundaries constructed during the execution of the program. Note
that refinement takes place only in the vicinity of the internal layer, despite the fact
that the solution is underresolved for the first four or five steps.

We have examined the behavior of the algorithm over a wide range of ε, from
10−4 to 10−14. Figure 2 plots the relative error against the number of subintervals
constructed. The dashed line at the end of each curve shows how the error behaves
after doubling the final mesh produced by the adaptive code. The number of accurate
digits obtained fits the formula 10−16/

√
ε very closely. This is consistent with the fact

that the condition number of the problem is of the order O(1/
√
ε). The amount of

time required for these cases is summarized in Table 1.
Example 2 (Bessel equation). Our second example is the Bessel equation

u′′(x) +
1
x
u′(x) +

x2 − ν2

x2 u(x) = 0,

with boundary conditions

u(0) = 0; u(600) = 1,
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FIG. 2. A study of the viscous shock problem over a wide range of viscosity ε. We plot the
relative L2 norm of the error against the number of subintervals constructed. Curves (A) through
(F) correspond to values of ε from 10−4 to 10−14. In each successive curve, the value of ε is reduced
by a factor of 100.

TABLE 1
Performance of the adaptive algorithm on the viscous shock problem (Example 1) with vary-

ing values of the viscosity ε. R denotes the number of refinements, MR denotes the number of
subintervals in the final discretization, and times are measured in seconds.

Legend (A) (B) (C) (D) (E) (F)
ε 10−4 10−6 10−8 10−10 10−12 10−14

R 9 13 15 18 21 24
MR 20 26 28 34 40 46

Error 5.63 · 10−15 9.50 · 10−14 8.75 · 10−13 4.66 · 10−12 1.88 · 10−10 1.05 · 10−9

CPU Time 0.4 0.6 0.7 1.0 1.2 1.4

with ν = 100, for which the exact solution is

u(x) =
J100(x)
J100(600)

.

The solution to this equation is smooth on [0, 100], at which point it becomes highly
oscillatory. There are approximately 80 full oscillations on [100, 600], and the adap-
tive algorithm used 106 subintervals (or approximately 20 points per wavelength) to
achieve an L2 error of 4.6 × 10−10. Although 6 points per wavelength are sufficient
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FIG. 3. The adaptive solution of the Bessel equation (Example 2). In one coordinate plane, we
plot the computed solution and a magnification of one small interval. In the magnified window, the
circles indicate the location of discretization points. The leftmost coordinate plane plots the relative
L2 norm of the error as a function of the refinement step and the third coordinate plane plots the
boundaries of the subintervals created by the adaptive algorithm at each refinement step.

to resolve the problem, two more doublings are required to achieve full accuracy. A
summary of the adaptive calculation is presented in Figure 3.

Example 3 (Turning point). The turning point problem

εu′′(x)− xu(x) = 0,

with boundary conditions

u(−1) = 1; u(1) = 1,

has smooth regions, boundary layers, internal layers, and regions with dense oscilla-
tions. The exact solution is a linear combination of Airy functions

u(x) = c1 ∗Ai
(
x
3
√
ε

)
+ c2 ∗Bi

(
x
3
√
ε

)
.

A summary of the adaptive calculation is presented in Figure 4 for ε = 10−6.
Example 4 (Potential barrier). A boundary value problem typical of those which

arise in quantum mechanics is

εu′′(x) + (x2 − w2)u(x) = 0,
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FIG. 4. The adaptive solution of a turning point problem (Example 3). In this case, the
magnified window examines the boundary layer at x = 1.

with boundary conditions

u(−1) = 1; u(1) = 2,

with w = 0.5. Figure 5 summarizes the adaptive calculation for ε = 10−6. To measure
accuracy, we have chosen as an “exact” solution the one obtained by doubling the last
mesh produced by the algorithm.

Example 5 (Cusp). The problem

εu′′(x) + xu′(x)− 1
2
u(x) = 0,

with

u(−1) = 1; u(1) = 2,

has a cusplike structure at the origin. The exact solution is

u(x) =
3
2
M(− 1

4 ,
1
2 ,−

x2

2ε )
M(− 1

4 ,
1
2 ,−

1
2ε )

+
1
2
x
M( 1

4 ,
3
2 ,−

x2

2ε )
M( 1

4 ,
3
2 ,−

1
2ε )

,

where M is a parabolic cylinder function [1]. Figure 6 summarizes the adaptive
calculation for ε = 10−10. Since the exact solution is difficult to evaluate directly, we
proceed as in Example 4. In other words, we choose as an “exact” solution the one
obtained by doubling the last mesh produced by the algorithm.
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FIG. 5. The adaptive solution of the potential barrier problem (Example 4).
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FIG. 6. The adaptive solution of the cusp problem (Example 5).
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Example 6 (Exponential ill conditioning). Our final example is the equation

εu′′(x)− xu′(x) + u(x) = 0,

with

u(−1) = 1; u(1) = 2,

whose exact solution is

u(x) =
1
2
x+

3
2
M(− 1

2 ,
1
2 ,

x2

2ε )
M(− 1

2 ,
1
2 ,

1
2ε )

,

where the parabolic cylinder function now has the simple series expansion

M

(
−1

2
,

1
2
, z

)
=
∞∑
n=0

−1
2n− 1

zn

n!
.

This problem is exponentially ill conditioned; there is an eigenvalue of the order
e−1/2ε. The difficulty is that, although the structure of the two boundary layers at ±1
is easily obtained, the structure of the linear transition region joining them together is
not. This equation is discussed in [18] and [22] from the point of view of asymptotics.
The subsequent paper [14] presents an analysis based on eigenvalues and explains the
ill-conditioned nature of the problem. Figure 7 summarizes the adaptive calculation
for ε = 1/70, at which point the condition number is approximately 1015. For the
sake of illustration, we have forced the adaptive algorithm to continue the refinement
process beyond the obtainable accuracy in double precision (which is approximately
one digit).

Summary. The performance of the adaptive algorithm on the preceding exam-
ples is presented in Table 2. A more detailed breakdown of the algorithm in two
extreme cases is presented in Figure 8. The viscous shock problem (Example 1) has a
single complicated feature while the Bessel equation (Example 2) is highly oscillatory.
In both cases, it can be seen that the majority of the time is spent in solving local
problems. For problems with layers, cusps, etc., but no dense oscillations, the algo-
rithm performs as it does for the viscous shock. In the presence of dense oscillations
(even over a relatively small subinterval), the algorithm performs as it does for the
Bessel equation.

The following two observations can be made on the basis of the examples in this
section.

1. With the exception of the ill-conditioned problem of Example 6, where we
asked for more accuracy than could be achieved, the adaptive mesh constructed has
never been determined to be unnecessarily refined.

2. The execution time of the adaptive algorithm is approximately twice that of
the nonadaptive algorithm, had the resolving grid been known a priori.

5. Eigenvalue problems. We briefly consider the Sturm–Liouville eigenvalue
problem

Lu+ λwu = (pu′)′ + qu+ λwu = 0.

Popular methods for such problems include shooting methods based on a Ricatti or
Prüfer transformation [2, 6] and linear algebraic techniques based on finite difference
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FIG. 7. The adaptive solution of the problem of Example 6. For one digit of accuracy, the
algorithm’s automatic strategy suggested halting at step 4. We then asked for more digits of accuracy,
which the code could not provide due to the extreme ill conditioning of the problem. In this case,
at refinement step 5, the mesh was doubled but no improvement was made. At step 6, it was noted
that a few subintervals could be merged without any loss of precision.

TABLE 2
Performance of the adaptive algorithm on Examples 1–6. The final error refers to the relative

error in the L2 norm and R denotes the number of refinement steps. MR denotes the number of
subintervals in the final discretization, Mtot =

∑R
r=1 Mr, and Utot =

∑R
r=1 Urs. Total time and

doubled mesh time are actually measured in seconds.

Example 1 2 3 4 5 6
Example Type Shock Bessel Turn. Pt. Barrier Cusp Ill Cond.

Parameter ε, ν ε = 10−8 ν = 100 ε = 10−6 ε = 10−6 ε = 10−10 ε = 1/70
R 15 16 19 14 17 9
Final error 8.7 · 10−13 4.6 · 10−10 2.0 · 10−11 1.2 · 10−10 3.2 · 10−12 2.2 · 10−2

R 15 16 19 14 17 9
MR 28 106 200 142 32 37
Utot 55 211 399 283 63 85
Mtot 211 587 1061 622 273 114
Total Time 0.7 3.1 6.2 2.7 1.1 1.0
Doubled mesh time 1.2 5.8 10.3 4.8 2.0 1.8

or finite element discretizations [13, 23]. We propose a somewhat different method,
based on inverse orthogonal iteration with individual shifts, which is quadratically
convergent [16]. The computational requirements of the algorithm are proportional
to the number of nodes and the number of iterations but grow quadratically with the
number of eigenvalues. Further discussion of the method with applications can be
found in [26].
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Interior layer

total time  0.75(sec)

X

I

1
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4 T

Bessel funtion

total time  3.13(sec)

X

I

1
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4
T

Legendtime(ms) called time(ms) called

I: Initialization5.84 1 18.02 1
1: Local Solver290.8 55 1610 211

2: Up/down sweep15.18 15 54.06 8
3: Function Evaluation266.3 211 756.8 587
4: Mesh Refinement7.154 14 54.81 15
T: Termination Test31.54 14 252.3 15
X: Miscellaneous133.2 15 384.4 16

FIG. 8. A detailed breakdown of the CPU time requirements of the adaptive algorithm for
Examples 1 and 2. Both the time spent in each step and the number of procedure calls are given.
The steps correspond to those described in section 3.5. Note that there are Utot calls to the local
solver and Mtot calls for function evaluation. The row marked “Miscellaneous” includes the time
for I/O and the evaluation of the exact solution at every refinement step.

A brief description of the algorithm follows.

ALGORITHM.

Comment [This algorithm computes the J eigenvalues closest to a user-specified value
λg. If the smallest eigenvalues are desired, set λg = 0]

Initialization.

Comment [Define initial guess for eigenvalue/eigenvector pairs]

(1) Let {q1, . . . , qJ} be a random set of vectors.
(2) Construct the matrixQ(0) = {q(0)

1 | . . . |q
(0)
J } by orthonormalization of the set {q1, . . . , qJ}.

(3) Define Λ1 = · · · = ΛJ = λg.
(4) Set n = 0.

Iteration.

do
(1) For j = 1, . . . , J , solve (L− ΛjI)z(n+1)

j = q
(n)
j .

(2) Construct the matrix Z(n+1) = {z(n+1)
1 | . . . |z(n+1)

J }.
(3) Compute QR factorization of Z(n+1): Z(n+1) = Q(n+1)R(n+1).
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FIG. 9. The first four eigenvalues and eigenfunctions of the Bessel function J10(x). The errors
of the eigenvalues are plotted as a function of the number of iterations on the right.

(4) For j = 1, . . . , J , set λ(n+1)
j = 1/R(n+1)

jj .

(5) if |λ(n+1)
j − λ(n)

j | <
MIN

(∣∣∣λ(n+1)
j+1 −λ(n+1)

j

∣∣∣, ∣∣∣λ(n+1)
j −λ(n+1)

j−1

∣∣∣)
4 for all j

then Λj = λn+1
j for all j.

(6) n = n+ 1.
until all of the sequences λj converge.

Note that if J = 1, the preceding algorithm is just the inverse power method with
shifts. The only unusual feature of the algorithm is step (5), which suggests that new
shifts be created only when the indicated criterion is satisfied, rather than at every
step. Since our two-point boundary value problem solver is particularly efficient for
multiple right-hand sides, we would like to change the differential operator in step (1)
as infrequently as possible.

Example 7 (Eigenvalues of the Bessel equation). For illustration, we study the
singular Sturm–Liouville problem

Lu(x) + λ2w(x)u(x) = (xu′(x))′ − 1
x
n2u+ λ2xu(x) = 0,(61)

with boundary conditions u(0) < ∞ and u(1) = 0 for n > 0. The corresponding
eigenfunctions and eigenvalues are uj(x) = Jn(λjx), where λj is jth zero of the Bessel
function Jn (Figure 9).
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FIG. 10. The first four eigenvalues and eigenfunctions for the square well potential of Example 8.
The errors of the eigenvalues are plotted as a function of the number of iterations on the right.

Example 8 (Square well potential). Typical of the problems which arise in quan-
tum mechanics is the radial Schrödinger equation with a square well potential with
discontinuities at x = − 1

2 and at x = 1
2 . In Figure 10, we plot the first four eigenmodes

computed by the algorithm outlined above.

Lu(x) + λ2w(x)u(x) = u′′(x)− V (x)u(x) + λ2u(x) = 0,(62)

where

V (x) =

{
0 if |x| ≤ 1

2 ,

1000 if |x| > 1
2 .

6. Conclusions. We have developed a robust, adaptive solver for stiff two-point
boundary value problems, with mesh selection based on a sequence of computed so-
lutions. Without a priori information about the location of complicated features, the
final mesh constructed is fine in regions which require it and coarse in regions which
do not. Perhaps more remarkable, the method requires about twice as much work as
a nonadaptive code which is simply given the resolving mesh structure on input.

We have described preliminary applications of the method to eigenvalue problems
and are currently extending the scheme to time-dependent problems and first-order
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systems. The algorithm of [31] provides a suitable integral equation framework into
which our adaptive refinement strategy can be incorporated. While the present algo-
rithm is inherently linear, it can, of course, be used to solve nonlinear problems by
coupling it with an outer iteration such as Newton’s method.

Acknowledgments. We would like to thank Professors Michael Ward and Vladimir
Rokhlin for several useful discussions. In particular, we would like to thank Michael
Ward for suggesting that we look at the ill-conditioned problem of Example 6.
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