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ABSTRACT

Ensemble based filtering or data assimilation methods have proved to be

indispensable tools in atmosphere and ocean science as they allow computa-

tionally cheap, low dimensional ensemble state approximation for extremely

high dimensional turbulent dynamical systems. For sparse, accurate and in-

frequent observations, which are typical in data assimilation of geophysical

systems, ensemble filtering methods can suffer from catastrophic filter diver-

gence which frequently drives the filter predictions to machine infinity. A

two-layer quasi-geostrophic equation which is a classical idealized model for

geophysical turbulence is used to demonstrate catastrophic filter divergence.

The mathematical theory of adaptive covariance inflation by Tong et al. and

covariance localization are investigated to stabilize the ensemble methods and

prevent catastrophic filter divergence. Two forecast models, a coarse-grained

ocean code, which ignores the small-scale parameterization, and stochastic

superparameterization (SP), which is a seamless multi-scale method devel-

oped for large-scale models without scale-gap between the resolved and unre-

solved scales, are applied to generate large-scale forecasts with a coarse spa-

tial resolution 48×48 compared to the full resolution 256×256. The methods

are tested in various dynamical regimes in ocean with jets and vorticities, and

catastrophic filter divergence is documented for the standard filter without in-

flation. Using the two forecast models, various kinds of covariance inflation

with or without localization are compared. It shows that proper adaptive ad-

ditive inflation can effectively stabilize the ensemble methods without catas-

trophic filter divergence in all regimes. Furthermore, stochastic SP achieves

accurate filtering skill with localization while the ocean code performs poorly

even with localization.
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1. Introduction34

Ensemble based filters or data assimilation methods, including the ensemble Kalman filter35

(EnKF; Evensen 2003) and ensemble square root filters, the ensemble transform Kalman filter36

(ETKF; Bishop et al. 2001) and the ensemble adjustment Kalman filter (EAKF; Anderson 2001),37

provide accurate statistical estimation of a geophysical system combining a forecast model and38

observations. These methods quantify the uncertainty of the system using an ensemble which sam-39

ples the information of the system. For geophysical systems which are complex high-dimensional40

and thus require enormously huge computational costs for long time integration, the ensemble41

based methods are indispensable tools for data assimilation as the methods allow computation-42

ally cheap and low dimensional state approximation. Due to the simplicity and efficiency of the43

ensemble based filters, these methods are widely applied to various fields of geophysical science44

such as numerical weather prediction (Kalnay 2003).45

Despite their successful applications in geophysical applications, ensemble based filters suffer46

from small ensemble size due to the high dimensionality and expensive computational costs (fre-47

quently referred as “curse of ensemble numbers” (Majda and Harlim 2012) ) which can lead to48

filter divergence. Sampling errors due to insufficient ensemble size and imperfect model errors49

often yield underestimation of the uncertainty in the forecast and thus filters trust the forecast with50

larger confidence than the information given by observations. Inaccurate uncertainty quantifica-51

tion in the forecast fails to track the true signal and thus filter performance degrades, which is52

called filter divergence (Majda and Harlim 2012). Also insufficient ensemble size can lead to spu-53

rious overestimation of cross correlations between otherwise uncorrelated variables (Hamill et al.54

2001; Whitaker et al. 2009; Sakov and Oke 2008) which also affect filter performance. Covari-55

ance inflation, which inflates the prior covariance and pulls the filter back toward observations,56

is one among various methods to remedy the filter divergence (Anderson 2001). For the over-57

estimation of cross correlations between uncorrelated variables, localization which multiplies the58

covariances between prior state variables and observation variables by a correlation function with59

3



local support is a powerful method to correct the overestimated cross correlations (Houtekamer60

and Mitchell 2001).61

Catastrophic filter divergence (Harlim and Majda 2010; Gottwald and Majda 2013) is another62

important issue hindering the applications of the ensemble based methods to high dimensional sys-63

tems especially in the case with sparse and infrequent observations and small observation errors.64

Catastrophic filter divergence drives the filter predictions to machine infinity although the under-65

lying system remains in a bounded set. In data assimilation of geophysical systems in the ocean,66

observations are often sparse and infrequent. In observations of ocean dynamics such as sea sur-67

face temperature, observations become accurate using various techniques such as tropical moored68

buoys, ocean reference status, and surface drifting buoys. But observations are still inadequate and69

sparse to sample over the vast surface and the interior of the ocean.70

It is shown rigorously in Kelly et al. 2015 that catastrophic filter divergence is not caused by71

numerical instability, instead the analysis step of filters generates catastrophic filter divergence.72

Although covariance inflation and localization stabilize filters and improve accuracy, they cannot73

avoid catastrophic filter divergence. In Harlim and Majda 2010, it is demonstrated that ensemble74

based methods with constant covariance inflation still suffer from catastrophic filter divergence. In75

this study we also see that covariance localization decreases the occurrence of catastrophic filter76

divergence but does not prevent catastrophic divergence.77

To avoid catastrophic filter divergence, a judicious model error using linear stochastic models78

was studied in Harlim and Majda 2010 with skillful results in some parameter regimes. Recently79

a simple remedy of catastrophic filter divergence without using linear stochastic models has been80

proposed through rigorous mathematical arguments and tested for the Lorenz-96 model in Tong81

et al. 2016. The approach in Tong et al. 2016 adaptively inflates covariance with minimal addi-82

tional costs according to the distribution of the ensemble. The strength of inflation is determined83

by two statistics of the ensemble, 1) ensemble innovation which measures how far predicted ob-84

servations are from actual observations and 2) cross covariance between observed and unobserved85
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variables (see (12) and (13) in Section 3 respectively). If the filter is malfunctioning based on these86

two statistics, inflation is triggered and becomes larger when filters stray further into malfunction.87

In this study we demonstrate catastrophic filter divergence of ensemble based filters in the two-88

layer quasi-geostrophic equations, which are classical idealized models for geophysical turbulence89

(Salmon 1998). The adaptive inflation method is then proposed for this two-layer system to avoid90

catastrophic filter divergence. Both a coarse-grained ocean code, which ignores the subgrid scale91

parameterization, and stochastic superparameterization (Grooms et al. 2015b), which is a seamless92

multi-scale method developed for large-scale models without scale-gap between the resolved and93

unresolved scales, are applied to generate forecasts with a coarse spatial resolution 48×48 for each94

layer compared to the full resolution 256× 256 which generates true signals. We test ensemble95

methods for various dynamical regimes in the ocean corresponding to idealized low, mid and96

high latitude states and document that catastrophic filter divergence occurs for ensemble based97

methods even with localization unless adaptive inflation is applied. Ensemble filtering for the98

two-layer quasi-geostrophic equations using these forecast models, the ocean code and stochastic99

superparameterization, has already been studied in Grooms et al. 2015a to investigate the effect100

of constant inflation on accounting for model errors without catastrophic filter divergence. In this101

study we test a very sparse observation network which observes only 4× 4 points of the upper102

layer stream function with a small observation error variance corresponding to 1% of the total103

variance of the stream function to represent the typical realistic scenario with sparse high quality104

data, which leads to catastrophic filter divergence.105

Using both the ocean code and stochastic superparameterization, various kinds of covariance106

inflation with or without localization are compared. We verify that proper adaptive covariance107

inflation can effectively stabilize the ensemble based filters uniformly without catastrophic filter108

divergence in all test regimes. Furthermore, stochastic superparameterization achieves accurate109

filtering skill with localization while the ocean code performs poorly even with localization.110

The structure of this paper is as follows. In Section 2 we briefly review an ensemble method,111

the Ensemble Adjustment Kalman Filter (Anderson 2001) with covariance inflation and local-112
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ization. The adaptive inflation method to prevent catastrophic filter divergence is described in113

Section 3 including how to choose parameters of the adaptive method. In Section 4 the two-114

layer quasi-geostrophic equation with baroclinic instability is described and two coarse-grained115

forecast models, the ocean code and stochastic superparameterization, are explained. Numerical116

experiments with various inflation strategies with or without localization are reported in Section 5117

along with stabilized and improved filtering results using the adaptive inflation method. In Section118

6 we conclude this paper with discussion.119

2. Ensemble Filtering120

In this section we briefly describe the Ensemble Adjustment Kalman Filter (EAKF; Anderson121

2001) which in our experience is a more stable and accurate scheme than other popular ensem-122

ble based methods (Majda and Harlim 2012). We assume that the true signal is generated by a123

nonlinear mapping ψn : Rd → Rd
124

un = ψn(un−1) (1)

where un ∈ Rd is a state vector at the n-th observation time. We consider a linear observation of125

un by an observation operator H : Rd → Rq with a rank q126

zn = Hun +ξn (2)

where ξn is a mean zero Gaussian noise with a variance σ independent in different times and space127

grid points. For an easy exposition of the adaptive inflation in Section 3 we use a decomposition128

of the state variable un into observed and unobserved variables xn ∈Rq and yn ∈Rd−q respectively129

so that xn = Hun and yn ∈ Ker(H).130

As other ensemble based filters, EAKF uses ensemble members {v(k)n }K
k=1 to represent statis-131

tical properties of the state but uses only the first and second order moments (that is, mean and132

covariance) to update each ensemble member. First, EAKF generates prior predictions by solving133
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a forecast model for each ensemble member134

ṽ(k)n = ψ̃n(v
(k)
n−1), k = 1,2, ...,K (3)

where ψ̃n is an approximate forecast model to the true dynamics ψn. From the forecast ensemble135

{ṽ(k)n }K
k=1, the prior mean v f

n and covariance C f
n are given by136

v f
n =

1
K

K

∑
k=1

ṽ(k)n (4)

and137

C f
n =

1
K−1

K

∑
k=1

(
ṽ(k)n − v f

n

)
⊗
(

ṽ(k)n − v f
n

)
(5)

respectively. With these prior mean and covariance, the standard Kalman formula using observa-138

tion zn ∈ Rq gives the following posterior mean and covariance139

va
n = v f

n −CnHT (I +HTCnH)−1(Hv f
n − zn). (6)

and140

Ca
n =C f

n −C f
n HT (I +HTC f

n H)−1HC f
n (7)

respectively. For a ensemble perturbation matrix V ∈ Rd×K whose k-th column is given by the141

ensemble perturbation δv(k)n = ṽ(k)n − v f
n , EAKF finds an adjustment matrix An ∈ RK×K so that the142

adjusted ensemble satisfies the posterior covariance (7)143

1
K−1

VnAn⊗VnAn =Cn−CnHT (I +HTCnH)−1HCn. (8)

Once the adjustment matrix An is calculated, the posterior ensemble is obtained by adding the144

adjusted perturbation to the posterior mean. That is v(k)n = va
n + s(k)n where s(k)n is the k-th column145

of the ensemble perturbation matrix VnAn.146
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Covariance inflation overcomes some problems caused by sampling errors due to insufficient147

ensemble numbers or an imperfect model and requires only a minimal additional cost to the origi-148

nal EAKF. The covariance inflation introduces more uncertainty in the prior covariance so that the149

filter has more weight on the information given by observations. That is, for a constant λn which150

determines the strength of inflation, covariance inflation inflates the prior covariance151

C f
n ← (I +λn)C f

n . (9)

for multiplicative inflation or152

C f
n ←C f

n +λnI (10)

for additive inflation. Then the ensemble is modified to satisfy the inflated prior covariance by153

spreading the ensemble for the multiplicative inflation and by adding additional noise for the addi-154

tive inflation. Although covariance inflation improves filter skill in many applications it is reported155

that constant inflation does not prevent catastrophic filter divergence with sparse and accurate ob-156

servation networks (Harlim and Majda 2010).157

3. Adaptive Additive Inflation158

A simple remedy in Tong et al. 2016 to stabilize ensemble based filters by preventing catas-159

trophic filter divergence is to adaptively trigger the inflation and change the strength λn. Although160

the adaptive inflation method of Tong et al. 2016 works both for the multiplicative inflation (9)161

and additive inflation (10), we focus on the simpler additive inflation in this study. The inflation162

strength λn of (10) is determined by two statistics of the ensemble163

λn = caΘn(1+Ξn)1{Θn>M1 or Ξn>M2} (11)
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where ca is a tunable positive constant, Θn is a measure related to the innovation process Hṽ(k)n −zn164

in a standard Kalman filter165

Θn :=
1
K

K

∑
k=1
‖Hṽ(k)n − zn‖2, (12)

Ξn is the l2 norm of the cross covariance between the observed and unobserved variables166

Ξn =

∥∥∥∥∥ 1
K−1

K

∑
k=1

(
x̃(k)n − xn

)
⊗
(

ỹ(k)n − yn

)∥∥∥∥∥ , ṽ(k)n = (x̃(k)n , ỹ(k)n ), x̃(k)n = Hṽ(k)n (13)

and M1 and M2 are fixed positive thresholds to decide whether the filter is performing well or not.167

The first statistical information Θn measures the accuracy of the prediction, that is, how far the168

predicted observations are from actual observations. The second statistical information Ξn is an169

important factor because large cross covariance can magnify a small error in the observed com-170

ponent and impose it on the unobserved variables. Hence the adaptive inflation can be regarded171

as a control of these two statistics to prevent catastrophic filter divergence. Note that these two172

factors are in fact derived from a rigorous mathematical argument for nonlinear stability of finite173

ensemble filters which can be found in Tong et al. 2016.174

In contrast to the conventional covariance inflation which modifies the prior ensemble to satisfy175

the inflated covariance, the EAKF with adaptive additive inflation does not modify the prior en-176

semble to inflate covariance; the additive inflation can make the rank of the posterior covariance177

larger than or equal to d while its rank cannot exceed K−1 where K is the ensemble size. Thus,178

in adaptive additive inflation, we use the inflated prior covariance (10) to calculate the posterior179

mean while the posterior covariance does not change. That is, instead of (6), the posterior mean is180

defined as181

va
n = v f

n −C̃ f
n HT (I +HTC̃ f

n H)−1(Hv f
n − zn). (14)

using182

C̃ f
n =C f

n +λnI (15)
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where the posterior covariance is the same as (7), that is, no inflated prior covariance.183

The two thresholds M1 and M2 of (11) are important factors as they differentiate poor forecasts184

from properly working forecasts. Using an elementary benchmark of accuracy which should be185

surpassed by filters, we use the following aggressive thresholding (Tong et al. 2016). The thresh-186

olds are given by187

M1 = ‖H‖2Errorbench +2qσ (16)

and188

M2 =
K

2K−2
Errorbench (17)

where the benchmark for accuracy Errorbench is the mean-square error of an estimator using an189

invariant probability measure of the model190

Errorbench := E(un−E(un|zn)|2. (18)

As the invariant measure of the model is not available, aggressive thresholding uses a Gaussian ap-191

proximation to the invariant measure using climatological properties, mean and covariance. Then192

the conditional distribution given observation zn is a Gaussian measure and can be computed ex-193

actly which gives the following formula194

Errorbench = tr
(
cov(un)− cov(un)HT (I +Hcov(un)HT )−1Hcov(un)

)
. (19)

4. Model equations and forecast models195

In atmosphere and ocean science, quasi-geostrophic equations are widely used as classical ide-196

alized models of geophysical turbulence (Salmon 1998). In this study we use a two-layer quasi-197

geostrophic equation as the model equation to observe catastrophic filter divergence in high di-198

mensional data assimilation and test the adaptive additive inflation to prevent catastrophic filter199

divergence. The system is maintained by baroclinic instability imposed by vertical shear flows200
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and shows interesting features in geophysical turbulence such as inverse cascade of energy and201

zonal jets. After describing the model equation in Section a, two coarse-grained forecast mod-202

els, an ocean code which ignores the subgrid scales and another forecast method with stochastic203

parameterization of the subgrid scales, are explained in Section b.204

a. Two-layer quasi-geostrophic equations205

Our model equation to generate high dimensional geophysical turbulence is the following two-206

layer quasi-geostrophic equation in a doubly periodic domain used in Grooms and Majda 2014;207

Majda and Grooms 2014; Grooms et al. 2015a; Lee et al. 2016 to generate baroclinic turbulence208

∂tq1 = −v1 ·∇q1−∂xq1− (k2
β
+ k2

d)v1−ν∆
4q1,

∂tq2 = −v2 ·∇q2 +∂xq2− (k2
β
− k2

d)v2− r∆ψ2−ν∆
4q2, (20)

q1 = ∆ψ1 +
k2

d
2
(ψ2−ψ1),

q2 = ∆ψ2−
k2

d
2
(ψ2−ψ1).

Here q j is the potential vorticity in the upper ( j = 1) and lower ( j = 2) layers, kd is the defor-209

mation wavenumber, r is a linear Ekman drag coefficient at the bottom layer of the flows, kβ is210

an nondimensional constant resulting from the variation of the vertical projection of Coriolis fre-211

quency with latitude and the velocity field v j = (u j,v j) = (−∂yψ j,∂xψ j) for the stream function212

ψ j. To stabilize the equation by absorbing a downscale cascade of enstrophy at the smallest scales213

while leaving other scales nearly inviscid for interesting dynamics at large-scales, we use a hyper-214

dissipation ∆4q j with a hyperviscosity ν , which is commonly used in turbulence simulations. To215

maintain nontrivial dynamics of (20) by baroclinic instability, a large-scale zonal vertical shear is216

applied with equal and opposite unit velocities which are related to the terms (−1) j(∂xq j + k2
dv j)217

in (20).218
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Following the experiments in Grooms et al. 2015a and Lee et al. 2016, we test three different219

regimes corresponding to low, mid and high latitude ocean models by changing the β -plane effect220

kβ and the bottom drag r (see Table 1 for the parameter values of the three test regimes). While221

the deformation wavenumber kd is fixed at 25, we use a fine resolution of 256× 256 grid points222

for each layer to generate true signals in our data assimilation experiments. The hyperviscosity ν223

is set to 1.28×10−15 and we use a pseudo-spectral space discretization while the time integration224

uses a fourth order semi-implicit Runge-Kutta method by incorporating an exponential integration225

for the linear stiff dissipation term. Time step is fixed at 2×10−5 for all test regimes.226

In the high latitude case (or the f -plane case), the quasi-geostrophic equation is dominated by227

spatially homogeneous and isotropic flows (see Figure 1 for snapshots of the upper and lower228

layer stream function). In the mid and low latitude cases which have the β -plane effect, the flows229

organize into inhomogeneous and anisotropic structure such as zonal jets.230

b. Forecast models with and without stochastic parameterization231

As a forecast model in data assimilation of the true signal given by (20), we consider two fore-232

cast models on a low resolution 48× 48 grid points, 1) an ocean code which uses only a coarse233

grid without parameterizing the small scales and 2) stochastic superparameterization which pa-234

rameterizes the effect of the small scales by modeling the small scales as randomly oriented plane235

waves (Majda and Grooms 2014; Grooms et al. 2015b). Note that these two forecast models are236

imperfect models as they approximate the true signal on a low resolution grid. Thus in data as-237

similation using ensemble based methods, there is an error from the imperfect model in addition238

to the sampling error due to a small ensemble size.239

The first forecast model, which we call the ocean code, solves the following approximation to240

(20) which replaces the hyper dissipation by a biharmonic dissipation of relative vorticity ω j =241
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∆ψ j242

∂tq1 = −v1 ·∇q1−∂xq1− (k2
β
+ k2

d)v1−ν2∆
2
ω1,

∂tq2 = −v2 ·∇q2 +∂xq2− (k2
β
− k2

d)v2− r∆ψ2−ν2∆
2
ω2. (21)

This replacement is to mimic the biharmonic dissipation commonly used in eddy-permitting ocean243

models (Griffies and Hallberg 2000). By analogy with ocean models and some atmospheric mod-244

els, the ocean code also uses the second order energy- and enstrophy-conserving Arakawa finite245

differencing (Arakawa 1966) for the nonlinear advection terms v j ·∇q j, j = 1,2. For time integra-246

tion, we use a second order Runge-Kutta integration with the same exponential integrator for the247

linear stiff term and a time step fixed at 5×10−4.248

We consider another forecast model called stochastic superparameterization which uses stochas-249

tic parameterization of the subgrid scales using randomly oriented plane waves for the subgrid250

scales. The subgrid scales are generally not zero and influence the evolution of the resolved scales.251

Especially in quasi-geostrophic turbulence which includes regimes with a net transfer of kinetic252

energy from small to large scales (Charney 1971), it is important to accurately model the effects253

of the under-resolved eddies to obtain accurate properties of the system such as energy spectrum.254

Stochastic superparameterization is developed as a multiscale model for turbulence without scale-255

gap between the resolved and unresolved scales (Grooms and Majda 2014; Majda and Grooms256

2014). Among various versions of stochastic superparameterization, we use the most recent ver-257

sion developed in Grooms et al. 2015b to deal with arbitrary boundary conditions using finite258

difference numerics for the large scales.259

The stochastic superparameterization forecast model solves (21) using the same second order260

finite differencing for the nonlinear term but with additional terms SGS j, j = 1,2 obtained from261
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stochastic subgrid scale parameterization262

∂tq1 = −v1 ·∇q1−∂xq1− (k2
β
+ k2

d)v1−ν2∆
2
ω1 +SGS1,

∂tq2 = −v2 ·∇q2 +∂xq2− (k2
β
− k2

d)v2− r∆ψ2−ν2∆
2
ω2 +SGS2. (22)

The parameterization terms SGS j, j = 1,2 are computed by modeling the subgrid scale as ran-263

domly oriented plane waves. Under this modeling of the subgrid scales, stochastic superparame-264

terization replaces the nonlinear terms of the subgrid scale equation using additional damping and265

white noise forcing which yields quasilinear equation conditional to the resolved scale variable.266

We also use the method in Grooms et al. 2015b to impose temporal correlations in the parameteri-267

zation by using a Wiener process model for the orientation of the plane waves. Because the subgrid268

scales are solved in formally infinite domains, this approach has no scale-gap between the resolved269

and subgrid scales. Also, the stochastic modeling of the subgrid scales generate the missing insta-270

bility of the subgrid scales using deterministic parameterization of the subgrid scales. Note that271

we use the same time integration as in the ocean code, thus the difference between the ocean code272

and stochastic superparameterization comes from the parameterization terms SGS j, j = 1,2.273

Figure 2 shows the time averaged kinetic energy (KE) spectra

KE =
1
2

∫
|∇ψ1|2 + |∇ψ2|2

by the direct numerical method (black), stochastic superparameterization (blue) and the ocean274

code (red) using biharmonic viscosity ν4 = 1.0×10−7 and ν4 = 1.6×10−4 obtained by tuning to275

match the energy spectra. Although the ocean code has much weaker dissipation than stochastic276

superparameterization, the ocean code has smaller energies than stochastic superparameterization277

while stochastic superparameterization captures the correct large-scale kinetic energy spectra; the278

small energy of the ocean code cannot be improved further by tuning the biharmonic viscosity279

coefficient. This result implies that the ocean code could have filter divergence by inappropriately280
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capturing the uncertainty in the forecast due to small energy of the resolved scales. On the other281

hand, it is shown that stochastic parameterization can act to reduce model error (Shutts 2005;282

Frenkel et al. 2012) and it increases ensemble spread which yields an effect similar to covariance283

inflation. In the next section, we will see that stochastic superparameterization requires smaller284

covariance inflation than the ocean code as the ocean code has large model errors which cannot be285

improved by covariance inflation.286

5. Catastrophic filter divergence and numerical experiments287

In this section we demonstrate catastrophic filter divergence for all three test regimes regard-288

less of the two forecast models, the ocean code and stochastic superparameterization, with sparse289

high quality observations which are infrequent in time. Catastrophic filter divergence is effectively290

prevented using the adaptive additive inflation for both forecast methods. Stochastic superparam-291

eterization achieves accurate filtering skill with localization while the ocean code fails to achieve292

accurate skill even with localization.293

a. Filtering setup294

For EAKF, we use a sequential update of observations used in Anderson 2001 which avoids295

explicit computation of the SVD in (8) by processing observations individually. The true signal is296

given by a fine resolution solution of (20) using a resolution 256×256 for each layer and a fourth297

order semi-implicit Runge-Kutta integration with a time step 2×10−5. The two forecast models,298

the ocean code and stochastic superparameterization, use the same coarse resolution 48× 48 for299

each layer and a second order semi-implicit Runge-Kutta with a time step 5×10−4.300

We observe only the upper layer stream function, analogous to observation of sea surface height,301

on a sparse 4× 4 uniform grid while the stream function in the lower layer is completely unob-302

served. Observation error variances correspond to 1% of the stream function variance for each test303

regime. Following the idea of Keating et al. 2012, the eddy turnover time Teddy = 2πZ−1/2 (where304

Z is the time-averaged total enstrophy q2
1 +q2

2) is comparable to 0.006 for all test regimes and we305
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use infrequent observations with an observation interval 0.008. Note that using the time step of the306

forecast models, 5×10−4, this observation interval requires 16 time integrations for each forecast307

step. The ensemble size is 17 and thus the prior covariance is not necessarily rank deficient. This308

number is small compared to the dimension of the forecast model which is general in real data309

assimilation.310

For each filtering test, we run 1000 assimilation cycles and take the last 600 cycles to measure311

filter performance using the time averaged RMS error (RMSE)312

time averaged RMSE :=
1

600

1000

∑
n=401

‖vn−un‖ (23)

and pattern correlation (PC)313

time averaged PC :=
1

600

1000

∑
n=401

〈vn,un〉
‖vn‖‖un‖

(24)

respectively where 〈,〉 is the l2-inner product.314

For covariance inflation, we test several combinations of inflation methods - for the inflation315

strength λn in (10), no inflation (noI) λn = 0, constant inflation (CI) λn = cc for a constant cc,316

adaptive inflation (AI) λn by (11) and constant+adaptive inflation (CAI)317

λn = cc + caΘn(1+Ξn)1{Θn>M1 or Ξn>M2} (25)

(see Table 2 for the tuned cc and ca used in this study). The thresholds for adaptive inflation are318

given by the aggressive thresholding (16) and (17) where the benchmark for accuracy, Errorbench is319

given by 10, 166 and 155 for the low, mid and high latitude cases respectively from the reference320

simulations. Along with these inflation methods, we also use covariance localization with the321

compactly supported fifth-order piecewise rational function from Gaspari and Cohn 1999. The322

localization radius (where influence of observation is zero) is set to 8 forecast gird points. The323
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distance between two adjacent observation points are 12 and thus the square region centered at324

each observation point is marginally updated from the other observation points.325

b. Filter experiments - catastrophic filter divergence and stabilization326

If no inflation is applied, EAKF has catastrophic filter divergence for both forecast models.327

Figure 3 shows a sequence of snapshots of the low latitude case upper layer stream function by the328

ocean code without inflation and localization (observation points are marked with black circles).329

At the 570th cycle, the filter still works capturing the meridional structure of the low latitude case330

but as more cycles go on, instability develops at unobserved grid points which eventually diverges331

to machine infinity after the 600th cycle. The first row of Figure 4 shows time series of the RMS332

errors by each forecast method when they suffer from catastrophic filter divergence. The RMS333

errors increase gradually but they eventually diverge to machine infinity. The two forecast models334

run slightly longer with localization but localization fails to prevent catastrophic filter divergence.335

The second row of Figure 4 shows time series of RMS errors with the constant+adaptive inflation336

where the cycles at which adaptive inflation is triggered is marked with dots. In the ocean code337

case with no localization, the adaptive inflation is triggered at the beginning and stops although the338

filter still degrades. Inflation is triggered again when the filter fails to capture the true signal. The339

ocean code with localization triggers the adaptive inflation most of the time and obtains a stable340

result but also fails to achieve accurate filtering skill. In the stochastic superparameterization case341

with adaptive inflation and localization, adaptive inflation is triggered only 99 times out of 1000342

cycles where most of the adaptive inflation is triggered at the beginning and infrequently triggered343

later as the filter is performing well.344

The occurrence percentage of catastrophic filter divergence out of 100 different runs is in Table345

3. With no localization and inflation, the filter suffers from catastrophic filter divergence more than346

75% for both the ocean code and stochastic superparameterization. The constant inflation stabi-347

lizes the filter slightly but it does not prevent catastrophic filter divergence perfectly. The constant348

inflation (CI) with no localization has a higher percentage of divergence than the no inflation case349
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for the stochastic superparameterization forecast model. Through stochastic parameterization of350

subgrid scales, stochastic superparameterization has more variability than the ocean code and thus351

additional constant inflation is not necessary.352

Adaptive inflation (AI) with and without localization significantly decreases the number of oc-353

currence of catastrophic filter divergence but the ocean code fails to prevent catastrophic filter354

divergence entirely. For the constant+adaptive inflation (CAI), all methods are stable even without355

localization. Note that for stochastic superparameterization, both AI and CAI work well pre-356

venting catastrophic filter divergence while the ocean code fails to prevent the divergence in the357

AI case. As we discussed before, stochastic superparameterization has enough ensemble spread358

through stochastic parameterization of the subgrid scales and thus when adaptive inflation is al-359

ready applied, constant inflation plays a marginal role in improving filter skill.360

For the stabilized filters with the constant+adaptive inflation, we compare the filter performance361

using the time averaged posterior RMS errors and pattern correlations (the performance difference362

between the adaptive inflation (AI) and constant+adaptive inflation (CAI) is marginal when there is363

no catastrophic filter divergence). In the low latitude case (shown in Table 4), both the ocean code364

and the superparameterization methods fail to achieve accurate filtering skill without localization.365

The RMS errors are larger than the standard deviation of the stream function and both forecast366

methods do not capture the correlation with the true signal. When localization is combined with367

adaptive inflation, it helps to increase filtering skill for both methods. The superparameterization368

has significantly improved results; RMS error is smaller than 50% of the standard deviation of the369

stream function and pattern correlation is larger than 90% for both layers. Although the lower layer370

stream function is completely unobserved, the adaptive filter achieves accurate filter skill. The371

ocean code result is improved using localization but it still suffers from standard filter divergence372

with RMS error larger than the standard deviation of the stream function.373

In the mid latitude case, the superparameterization still has skillful filtering skill and is superior374

to the ocean code although the perofrmance is slightly degraded compared to the low latitude case375

as the mid latitude is more turbulent than the low latitude case. The RMS error by superparame-376

18



terization with adaptive inflation and localization is about 30% smaller than the standard deviation377

and pattern correlations are larger than 75% (see Table 5 for the mid latitude case RMS errors378

and pattern correlations). On the other hand, the ocean code does not show any significant skill379

even with adaptive inflation and localization. In the mid latitude case, the ocean code using adap-380

tive inflation displays comparable results with and without localization, and both fail to achieve381

meaningful filtering results. For the superparameterization, on the other hand, significantly im-382

provement in filter skill can be achieved using localization (see the second row of Figure 5 the383

time series of RMS errors with adaptive inflation). As the RMS errors are more fluctuating than384

the low latitude case, the adaptive inflation is triggered most of the time for all combination of385

inflation and localization.386

The last test regime, high latitude case, is the most difficult test case as it is strongly turbulent387

and dominated by homogeneous and isotropic vortical flows with no spatial structure. In this test388

regime, stochastic superparameterization with constant+adaptive inflation and localization still389

achieves a smaller RMS error and a larger pattern correlation than the ocean code though the390

improvement by superparameterization is more marginal. The observed upper layer RMS error is391

10% smaller than the standard deviation while the unobserved lower layer RMS error is only 5%392

smaller than the standard deviation (Table 6).393

6. Conclusions394

Ensemble based filtering methods are indispensable tools in atmosphere and ocean science as395

they provide computationally cheap and low dimensional ensemble state estimation for extremely396

high dimensional turbulent systems. But these methods can suffer from catastrophic filter diver-397

gence which drives the forecast predictions to machine infinity especially when the observation398

is sparse, accurate and infrequent although the underlying true signal remains bounded. Using399

an idealized model for the geophysical turbulence of the ocean, the two-layer quasi-geostrophic400

equation with baroclinic instability, and a sparse observation network which is general in real ap-401
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plications, we were able to see catastrophic filter divergence of the ensemble adjustment Kalman402

filter, which is one of the most stable and accurate ensemble methods.403

The constant covariance inflation and localization, which are widely used methods to account404

for the sampling errors due to insufficient ensemble size and model errors from imperfect forecast405

models, stabilize the filter but fail to prevent the catastrophic filter divergence. Increasing the406

observation size or ensemble number can help to prevent catastrophic filter divergence but this407

approach is practically prohibitive and sometimes impossible as it requires enormous amount of408

financial and computer resources to cover the vast surface of the ocean. Instead we followed409

the adaptive inflation approach of Tong et al. 2016 to prevent catastrophic filter divergence. The410

adaptive approach requires a minimal additional computational cost compared to the standard411

ensemble based methods and uses only two low order statistics of the ensemble, the ensemble412

innovation and cross covariance between observed and unobserved variables.413

We tested the adaptive inflation using two forecast models, the ocean code without parameteri-414

zation of the subgrid scales and stochastic superparamterization which parameterizes the subgrid415

scales by modeling them as randomly oriented plane waves. Although both forecast models are416

stabilized with the adaptive inflation, stochastic superparameterization displays filtering skill su-417

perior to the ocean code. When the ensemble method is combined with localization and adaptive418

inflation, stochastic superparameterization achieves RMS errors smaller than the climatological419

error while the ocean code still suffers from the standard filter divergence with RMS errors com-420

parable to the climatological error.421

As we have shown in this study, covariance inflation is an important and useful technique in422

ensemble based methods to improve filtering skill. There are another class of adaptive inflation423

techniques such as Anderson 2007 and Ying and Zhang 2015. Although the adaptive inflation in424

Tong et al. 2016 is based on rigorous mathematical arguments, it would be interesting to test other425

adaptive inflation methods to avoid catastrophic filter divergence like the blended filter (Majda426

et al. 2014; Qi and Majda 2015) that combines a particle filter in a low-dimensional subspace427

and efficient Kalman filter in the orthogonal part. As it is investigated in Harlim and Majda 2010428
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through a linear stochastic model for the forecast, a judicious model error could be alternative to429

prevent catastrophic filter divergence.430
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TABLE 1: Parameters of (20) for three test regimes. Other parameters are fixed at ν = 1.28×10−15

and kd = 25

kβ r

Low k2
d/2 0.5

Mid k2
d/4 2

High 0 8
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TABLE 2: Constant and adaptive inflation parameters cc and ca for each test regime

Ocean SP

cc ca cc ca

Low 3×10−3 5×10−4 1×10−4 5×10−4

Mid 2×10−3 4×10−4 2×10−4 1×10−5

High 3×10−3 1×10−4 1×10−3 1×10−5
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Low Mid High

no localization Ocean SP Ocean SP Ocean SP

noI 78% 84% 98% 97% 90% 85%

CI 63% 87% 80% 76% 45% 57%

AI 3% 0% 2% 0% 5% 0%

CAI 0% 0% 0% 0% 0% 0%

Low Mid High

with localization Ocean SP Ocean SP Ocean SP

noI 40% 24% 19% 38% 44% 64%

CI 15% 11% 9% 12% 22% 8%

AI 1% 0% 0% 0% 0% 0%

CAI 0% 0% 0% 0% 0% 0%

TABLE 3: Occurrence percentage of catastrophic filter divergence out of 100 different runs with
and without localization. No inflation (noI), constant (CI), adaptive (AI) and constant+adaptive
(CAI) inflation methods.
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TABLE 4: Low latitude case. Stream function estimation for both layers. Posterior RMS errors
and pattern correlations in parenthesis

no localization Ocean, CAI SP, CAI Std of stream ftn

Upper layer 4.35 (0.05) 3.18 (0.02) 3.21

Lower layer 4.40 (0.01) 3.24 (0.04) 3.07

with localization Ocean, CAI SP, CAI Std of stream ftn

Upper layer 3.76 (0.62) 1.37 (0.93) 3.21

Lower layer 3.90 (0.50) 1.41 (0.91) 3.07
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TABLE 5: Mid latitude case. Stream function estimation for both layers. Posterior RMS errors
and pattern correlations in parenthesis

no localization Ocean, CAI SP, CAI Std of stream ftn

Upper layer 11.99 (0.26) 11.62 (0.30) 12.59

Lower layer 12.58 (0.23) 12.13 (0.29) 12.03

with localization Ocean, CAI SP, CAI Std of stream ftn

Upper layer 11.24 (0.35) 7.73 (0.78) 12.59

Lower layer 12.26 (0.23) 8.14 (0.77) 12.03
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TABLE 6: High latitude case. Stream function estimation for both layers. Posterior RMS errors
and pattern correlations in parenthesis

no localization Ocean, CAI SP, CAI Std of stream ftn

Upper layer 14.12 (0.25) 11.95 (0.22) 12.71

Lower layer 14.67 (0.24) 12.98 (0.18) 12.21

with localization Ocean, CAI SP, CAI Std of stream ftn

Upper layer 13.01 (0.31) 11.38 (0.43) 12.71

Lower layer 13.21 (0.26) 11.53 (0.42) 12.21

31



LIST OF FIGURES512

Fig. 1. Snapshots of stream functions ψ j, j = 1,2. Upper layer (top row) and lower layer (bottom513

row). Low (first column), mid (second column) and high (third column) latitude cases. . . . 33514

Fig. 2. Time averaged total kinetic energy (KE) spectra by direct numerical reference (black),515

stochastic superparameterization (blue) and ocean code (red) . . . . . . . . . . 34516

Fig. 3. Low latitude case. Snapshots of posterior upper layer stream functions by Ocean code at517

570th, 580th, 590th, and 600th cycles. Observation points are marked with circles. Catas-518

trophic filter divergence is invoked after the 600th cycle. . . . . . . . . . . . 35519

Fig. 4. Low latitude case. Time series of upper layer RMS error. The cycles at which inflation is520

triggered are marked with filled circles. Standard deviation of the stream function in dash521

line. . . . . . . . . . . . . . . . . . . . . . . . . . 36522

Fig. 5. Mid latitude case. Time series of upper layer RMS error. The cycles at which inflation is523

triggered are marked with filled circles. Standard deviation of the stream function in dash524

line. . . . . . . . . . . . . . . . . . . . . . . . . . 37525

Fig. 6. High latitude case. Time series of upper layer RMS error. The cycles at which inflation is526

triggered are marked with filled circles. Standard deviation of the stream function in dash527

line. . . . . . . . . . . . . . . . . . . . . . . . . . 38528

32



Low

0 2 4 6
0

2

4

6

0 2 4 6
0

2

4

6

Mid

0 2 4 6
0

2

4

6

0 2 4 6
0

2

4

6

High

0 2 4 6
0

2

4

6

0 2 4 6
0

2

4

6
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FIG. 2: Time averaged total kinetic energy (KE) spectra by direct numerical reference (black),
stochastic superparameterization (blue) and ocean code (red)
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(a) 570th (b) 580th

(c) 590th (d) 600th

FIG. 3: Low latitude case. Snapshots of posterior upper layer stream functions by Ocean code at
570th, 580th, 590th, and 600th cycles. Observation points are marked with circles. Catastrophic
filter divergence is invoked after the 600th cycle.

35



0 200 400 600 800 1000
0

5

10

15

20

25
Ocean noI

0 200 400 600 800 1000
0

2

4

6

Ocean CAI

0 200 400 600 800 1000
0

5

10

15

20

25
SP noI

localization no localization

0 200 400 600 800 1000
0

2

4

6

SP CAI

FIG. 4: Low latitude case. Time series of upper layer RMS error. The cycles at which inflation is
triggered are marked with filled circles. Standard deviation of the stream function in dash line.
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FIG. 5: Mid latitude case. Time series of upper layer RMS error. The cycles at which inflation is
triggered are marked with filled circles. Standard deviation of the stream function in dash line.
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FIG. 6: High latitude case. Time series of upper layer RMS error. The cycles at which inflation is
triggered are marked with filled circles. Standard deviation of the stream function in dash line.
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