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Abstract

Data assimilation or filtering combines a numerical forecast model and observations to
provide accurate statistical estimation of the state of interest. In this paper we are con-
cerned with accurate data assimilation of a sparsely observed passive tracer advected
in turbulent flows using a reduced-order forecast model. The turbulent flows which
contain anisotropic and inhomogeneous structures such as jets are typical in geophys-
ical turbulent flows in atmosphere and ocean science and passive tracers with a mean
gradient can exhibit anisotropic transport with intermittent extreme events as shown
below. Stochastic superparameterization, which is a seamless multiscale method devel-
oped for large-scale models of atmosphere and ocean models without scale-gap between
the resolved and unresolved scales, generates large-scale turbulent velocity fields using
a significantly smaller degree of freedoms compared to a direct fine resolution numerical
simulation. In a large-scale model of the tracer transport, the tracer is advected by the
large-scale velocity field generated by superparameterization with a parameterization of
eddies, an additional eddy diffusion given by an anisotropic biharmonic diffusion. The
turbulent tracer is sparsely observed in space in only the upper surface layer. These
observations naturally mix the resolved and unresolved scales so we develop an ensemble
multiscale data assimilation algorithm which provides estimates of the resolved scales
using the mixed observations. The reduced-order model is 250 times cheaper than the
fine resolution solution and thus enables us to increase the number of ensembles for
accurate predictions of state distributions. Numerical experiments show positive results
in the estimation of the resolved scales of the tracer as well as in capturing anisotropic
intermittent extreme events for the unresolved portions of the tracer field.

Keywords: data assimilation, superparameterization, turbulent tracer, multiscale

∗Corresponding author
Email address: ylee@cims.nyu.edu (Yoonsang Lee)

Preprint submitted to Journal of Computational Physics March 30, 2016



1. Introduction

Turbulent diffusion of passive tracers is a major problem in geophysical science and
engineering. The passive scalar field T (x, t) represents the concentration of the tracer
immersed in the fluid which is advected by a velocity field and dissipated by, for example,
molecular diffusion but does not by itself influence the dynamics of the fluid. When
v(x, t) is a velocity field, the dynamics of the passive tracer T is given by

∂T

∂t
+ v · ∇T = DT (1)

where D is a scale-selective linear dissipation operator. The description of the passive
tracer has applications in, for example, the spread of pollutants in environmental science
and the anthropogenic and natural tracers in climate change science. This model, which
is a linear equation while statistically nonlinear due to the advection flow v, also serves
as a simpler prototype model for a large-scale closure for Navier-Stokes equations [1]
and transport of baroclinic potential vorticity in the ocean [2].

When the velocity field v becomes turbulent, it is important to describe the statis-
tical properties of the tracer such as energy spectra and probability density functions
(PDFs) rather than a single realization of the tracer trajectory. For roughly Gaussian
background velocity v as typically observed in turbulent flows, the interaction of many
complex factors in v can create extreme rare fluctuations in the tracer field. Observa-
tional data [3] and experimental results [4] show the existence of intermittency in the
tracer statistics, which results in fat-tailed PDFs and random spikes in the time series of
the tracer. The fat-tailed PDFs can also be generated by numerical simulations in ide-
alized models of (1) [5, 6] whose mechanism for the intermittent behavior is rigorously
investigated recently in [7].

In the simulation of (1), due to a wide range of scales of v, it is computation-
ally prohibitive to resolve all scales of v. On the other hand, the central quantity of
interest is the tracer statistics rather than the background flow field v, thus the pa-
rameterization of v by simpler approximations is practical and advantageous in real
applications. For coarse resolution numerical models, the turbulent diffusion of passive
tracers is modeled by additional dissipation which is called eddy diffusion in the turbu-
lent literature [1]. Typically, the eddy diffusivity is estimated in some manner, such as
mixing-length theory [8] and isotropic down-gradient diffusion for isotropic flows with
Gaussian randomness. For a data-driven prediction model of the turbulent diffusion of
passive tracers, see [9] which uses empirical information theory to select optimal model
parameters in a training phase.

In this paper we are interested in turbulent diffusion of passive tracers in anisotropic
and inhomogeneous flows, which are typical in atmospheric and oceanic flows. In par-
ticular, we consider flows dominated by jets in a turbulent background, for example, of
β-plane turbulence. Observation data of satellite-tracked drifting buoys show that the
tracer transport along the jet direction is stronger than the transport across the jet [10].
The anisotropic tracer parameterization has been investigated in [11, 12] using statis-
tical turbulence closure models. In [13] and [2], the eddy diffusivities in the across-jet
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and along-jet directions are analyzed using mixing-length theory and shear dispersion
respectively, which supports the observations of larger diffusivity in the along-jet direc-
tion than that in the across-jet direction.

The goal of this paper is to develop reduced-order data assimilation methods of the
turbulent tracer which provides accurate estimation of the tracer statistics through the
combination of sparse noisy spatial observations and a reduced-order forecast model.
In ensemble based filters or particle filters, many ensemble members are required to ac-
curately approximate the prior distributions of the state variables. But due to limited
computing resources, the practical ensemble numbers are limited and insufficient as the
dimensionality of the system increases, which is usually called “the curse of ensemble
size” [14]. The incorporation of a coarse reduced-order forecast model in data assimila-
tion enables us to use a large number of ensemble, which alleviates the curse of ensemble
size. By contrast, the reduced-order forecast model provides only the large-scale estima-
tion of the tracer field and thus we encounter a problem due to the mixed contributions
from both the resolved coarse-scale and unresolved small-scale components in observa-
tions. To overcome these problems, we employ the multiscale data assimilation methods
developed in [15, 16], which update the resolved large-scale variables using the mixed
observations of the resolved and unresolved scale components. In particular, an en-
semble multiscale data assimilation method with covariance localization and inflation
is applied to stabilize the filtering procedure.

To generate turbulent velocity fields which are anisotropic and inhomogeneous with
jets, a two-layer quasigeostrophic equation [14, 17] becomes one desirable choice con-
taining many interesting and important features that can be found in realistic flows.
The model is an idealized system for large-scale geophysical turbulence and includes
regimes with an inverse cascade of kinetic energy. In order to complete the reduced-
order forecast method for the turbulent diffusion of passive tracers, we need a coarse
resolution method to generate turbulent velocity fields which reduces the computational
complexity. For this model, which is nonlinear, there is no straightforward approach
to parameterize the small-scales such as the eddy diffusivity for the passive tracer. In
this study we use the stochastic superparameterization method [18, 19] to generate
coarse-scale approximate turbulent flows. Stochastic superparameterization is a seam-
less multiscale method for the parameterization of the unresolved sub-grid scales by
solving cheap local problems embedded in a coarse grid and has been successfully ap-
plied to the large-scale approximation of the quasigeostrophic equations [18, 20, 19] (see
[18] for a comprehensive review of superparameterization including the conventional
deterministic superparameterization). Through the use of reduced-order models both
for the generation of turbulent velocity fields and the passive tracer, the computational
complexity reduces significantly from 2562 to 482 while robust prediction skills of the
statistical properties of the tracer field are well maintained.

This paper is organized in the following way. In Section 2 the two-layer quasi-
geostrophic equation is described which generates anisotropic and inhomogeneous tur-
bulent flows. Also we describe a turbulent diffusion model of the passive tracer forced
by a large-scale tracer mean gradient. Preliminary direct numerical simulations are
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provided showing non-trivial non-Gaussian statistics of the tracer field. In Section 3
we briefly review stochastic superparameterization for the two-layer quasigeostrophic
equation and discuss an eddy diffusion for the turbulent diffusion of the passive tracer
modeled by an anisotropic biharmonic diffusion. An ensemble multiscale data assimi-
lation method is discussed in Section 4 which updates the resolved large-scale variables
using the mixed observations of the resolved and unresolved sub-grid scales. In Section
5 we test the multiscale data assimilation methods for the passive tracer using sparse
observations of the upper layer tracer field followed by conclusions in Section 6.

2. Model equations and a reference simulation

We consider the turbulent diffusion of the passive tracer (1) in two-dimensional
turbulent flows which generate anisotropic and inhomogeneous structures with jets.
The model to generate the flows is the two-layer quasigeostrophic equation, which is a
classical idealized model of synoptic-scale turbulence in atmosphere and ocean science.
Beginning with a brief review of a reference simulation of the flow equation, which
displays anisotropic and inhomogeneous mean flows with jets, we examine the tracer
turbulent diffusion advected by turbulent flows and forced by a large-scale mean tracer
gradient. In particular, we consider two tracer fields which are in the along-jet and
across-jet directions. In the along-jet tracer field which is forced by the zonal velocity
component, the tracer shows a similar pattern aligned with the jets and non-trivial
Gaussian PDFs which implies intermittency in the tracer field; while in the across-jet
field, the tracer displays no intermittency.

2.1. Two-layer quasigeostrophic equation

The model equation to generate turbulent flows is the following nondimensional
two-layer quasigeostrophic equation in a doubly periodic domain

∂tq1 = −ṽ1 · ∇q1 − ∂xq1 − (k2β + k2d)ṽ1 − ν∆4q1,

∂tq2 = −ṽ2 · ∇q2 + ∂xq2 − (k2β − k2d)ṽ2 − r∆ψ2 − ν∆4q2, (2)

q1 = ∆ψ1 +
k2d
2

(ψ2 − ψ1),

q2 = ∆ψ2 −
k2d
2

(ψ2 − ψ1).

Here qj is the potential vorticity in the upper (j = 1) and lower (j = 2) layers, the
velocity-streamfunction relation ṽj = (ũj , ṽj) = (−∂yψj , ∂xψj), kd is the deformation
wavenumber, r is a linear Ekman drag coefficient at the bottom layer of the flows and ν
is the hyperviscosity to dissipate small-scales. In order to absorb a downscale cascade
of enstrophy while leaving all but the smallest scales nearly inviscid, we use a hyper-
dissipation, ∆4qj which is a common choice in turbulence simulations to suppress some
of the instabilities at small-scales while capturing interesting dynamics of the large-
scales. The nondimensional kβ results from the variation of the vertical projection of
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Figure 1: Snapshots of potential vorticities qj , j = 1, 2. Upper layer (top row) and lower layer (bottom
row). High (first column), mid (second column) and low (third column) latitudes. The fourth column
is the temporally and zonally averaged zonal velocity.

Coriolis frequency with latitude. The equation (2) is forced by an imposed baroclinic
instability; a large-scale zonal vertical shear is applied with equal and opposite unit
velocities which is related to the terms (−1)j(∂xqj + k2dṽj). Thus the total velocity, vj ,
to advect the passive tracer for the upper and lower layers are given by

vj = (−∂yψj + (−1)j−1, ∂xψj), j = 1, 2. (3)

For reference simulations, we consider three different regimes studied in [20, 25].
These regimes correspond to high, mid and low latitude ocean dynamics by changing
the parameters kβ and r. The parameters corresponding to high, mid, and low latitude
regimes are given by

High : kβ = 0 and r = 8,
Mid : k2β = k2d/4 and r = 2,

Low : k2β = k2d/2 and r = 0.5,

while the deformation wavenumber kd and the hyper viscosity ν are fixed at 25 and
1.28 × 10−15 respectively for all three regimes. The reference simulations use pseudo-
spectral numerics with a 256× 256 gird points for each layer. For time integration, we
use a semi-implicit third order Runge-Kutta time integration which uses an exponential
integrator for the stiff linear dissipation term. The time step is fixed at 2× 10−5.

Figure 1 shows snapshots of the upper and lower layer potential vorticities qj , j =
1, 2 for three different regimes along with the temporally and zonally averaged zonal
velocities. In the high latitude case, which corresponds to a f -plane case, the flow is
dominated by small-scale vorticities with spatially homogeneous and isotropic statistics.
In the mid and low latitude cases (β-plane), the flows organize into two and three zonal
jets respectively, which are anisotropic and inhomogeneous.

2.2. Passive tracer fields with a mean gradient in turbulent flows with jets

Now we consider the passive tracers Tj , j = 1, 2, which are advected by the upper
and lower turbulent flows of (2). In particular, for the scale-selective dissipation DTj
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of (1), we choose the same hyper dissipation −κ∆4Tj with a hyper diffusion coefficient
κ so that the down-scale cascade of the tracer is absorbed in the smallest scales while
the large-scales are marginally dissipated

∂Tj
∂t

+ vj · ∇Tj = −κ∆4Tj . (4)

For a tracer field with a large-scale mean tracer gradient, Tj = T ′j + ajx + bjy, the
deviation tracer T ′j is advected by

∂tT
′
j + vj · ∇T ′j = −aj(ũj + (−1)j−1)− bj ṽj − κ∆4T ′j . (5)

whose tracer variance is maintained by the zonal and meridional velocity components
ũj + (−1)j−1 and ṽj respectively. The zonal velocity component ũj + (−1)j−1 has non-
zero mean, which is (−1)j−1. To solve the equation (5) in a doubly-periodic domain,
we also include external forcing F jext := aj(−1)j−1 on the right hand side of (5), which
removes the non-zero-mean term

∂tT
′
j + vj · ∇T ′j = −aj(ũj + (−1)j−1)− bj ṽj − κ∆4T ′j + F jext

= −aj ũj − bj ṽj − κ∆4T ′j
(6)

Note that from the linearity of (6), the deviation tracer T ′j can be reconstructed from

T ′j = ajχj + bjφj (7)

where χj and φj are the solutions to the along-jet and across-jet tracer equations

along-jet : ∂tχj + vj · ∇χj = −ũj − κ∆4χj , (8)

across-jet : ∂tφj + vj · ∇φj = −ṽj − κ∆4φj . (9)

Note that ũj and ṽj are the zero-mean fluctuation parts of the total velocity field
vj = (uj , vj) = (ũj + (−1)j−1, ṽj).

In the same doubly periodic domain as in the flow advection equation (2), we com-
pute a reference simulation of (8) and (9) using the same method as in the flow equation,
that is, the pseudo-spectral method with the semi-implicit 3rd Runge-Kutta method.
The spectral resolution uses 256 × 256 computational grid for both layers with a time
step 2 × 10−5. The hyper-diffusivity κ is set to 10−10. Figure 2 shows the temporally
and zonally averaged along-jet χj and across-jet φj tracer fields for both layers along
with the spectra of tracer variance about the mean. In the β-plane cases (kβ 6= 0), as
the along-jet tracer is forced by the zonal velocity component ũj with jets, tracer fields
show patterns aligned with the jets. On the other hand, the across-jet tracer fields,
which is forced by the meridional velocity component ṽj with no jets, displays no sig-
nificant spatial patterns aligned with the jets although it is advected by velocity fields
with jets. In the high latitude case (kβ = 0), as we expect from the flows dominated
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Figure 2: (Top) Temporally and zonally averaged along-jet χj , j = 1, 2, and across-jet, φj , j = 1, 2
tracer fields. (Bottom) Tracer variance spectra about the mean.

by isotropic small-scale fluctuations, both the along-jet and across-jet tracer fields are
comparable with no spatial structure.

To check the intermittency in the tracer fields, Figure 3 shows the log-scale prob-
ability distributions of the tracer fields subtracting the mean. In the β-plane cases,
the interactions of complex structures in the turbulent flows and tracer fields generate
intermittency in the tracer fields. In the low latitude case, which has the strongest
β-plane effect, the tracer fields in the along-jet direction, χj , have fat-tailed PDFs both
for the upper and lower layers [11, 21, 4, 6, 1, 3, 9]. The other tracer fields in the
across-jet direction, on the other hand, have almost Gaussian tails as they are forced
by an isotropic meridional velocity component. If the β-plane effect diminishes, the
intermittency in the along-jet tracer fields also disappear. In the high latitude case, no
along-jet tracer field shows significantly fat-tailed PDFs.

3. Reduced-order forecast model

Turbulent flows contain a wide range of scales which require large computational
resources and long computational time. In ensemble data assimilation, which provides
statistical prediction of the state variables by combining numerical forecast models and
observations, a large number of ensemble members is required to obtain accurate prior
statistical description of the state. Thus it is essential to develop and apply reduced-
order models for turbulent systems to reduce the computational costs and increase the
ensemble numbers for accuracy. In Section 3.1, we briefly review stochastic superpa-
rameterization [20, 19, 18] which is a seamless multiscale method to generate large-scale
velocity fields with significantly reduced computational complexity. In Section 3.2, the
passive tracer transports in the along-jet (8) and across-jet (9) directions are approxi-
mated by additional anisotropic biharmonic eddy diffusion.
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Figure 3: Probability distributions of the along-jet (χ′j) and across-jet (φ′j) tracer fields subtracting the
mean. The dashed lines are Gaussian fits using the same tracer field variances. Note the log-scale in
the vertical axis.

3.1. Stochastic Superparameterization

Quasigeostrophic turbulence includes regimes with a net transfer of kinetic energy
from small to large scales [22], which is also confirmed in our reference simulations
(see Figure 4 for energy spectra of the reference simulations along with the spectra by
superparameterization). Thus it is important to accurately model the effects of the
unresolved eddies, which is crucial in obtaining correct properties of the resolved large-
scales such as energy spectra. To derive a reduced-order model for the quasigeostrophic
turbulent flows, we apply a low-pass spatial filter denoted by (̄·) to (2) while the hyper-
viscous diffusion is replaced by a biharmonic vorticity diffusion to mimic the biharmonic
viscosity commonly used in eddy permitting ocean models [23]

∂tq̄1 = −¯̃v1 · ∇q̄1 − ṽ1 · ∇q1 − ∂xq̄1 − (k2β + k2d)v̄1 − ν∆2ω̄1,

∂tq̄2 = −¯̃v2 · ∇q̄2 − ṽ2 · ∇q2 + ∂xq̄2 − (k2β − k2d)v̄2 − r∆ψ̄2 − ν∆2ω̄2.
(10)

Here ωj = ∆ψj is the relative vorticity. This equation is not closed under the large-
scale variables due to the effects of the eddy terms ṽ1 · ∇q1 and ṽ2 · ∇q2. As there is
an inverse energy cascade, these filtered eddy terms must be parameterized to recover
the correct dynamics of the resolved large-scale variables.

The idea of superparameterization [20, 19, 18] is to find an efficient way to compute
these effects. Among various versions of superparameterization, we choose the stochas-
tic superparameterization method using Gaussian closure for the large-scale equation
[20, 19]. Stochastic superparameterization models the eddy variables as randomly ori-
ented plane waves in a direction θ and replaces the nonlinear terms in the eddy equa-
tions by additive stochastic forcing and linear deterministic damping. Thus the eddy
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Figure 4: Total kinetic energy (KE) and available potential energy (APE) by direct numerical reference
and Superparameterization simulations

equations become quasilinear conditional to the large-scale variables. By solving the
quasilinear equations in formally infinite domains, this approach has no scale-gap be-
tween the resolved large-scale and unresolved small-scale while conventional superpa-
rameterization, which solves deterministic eddy equations in local periodic domains,
has scale-gap in the estimation of the eddy terms. Also, the missing instability of the
eddy terms in conventional superparameterization can be recovered through stochastic
modeling of the eddy terms. Note that similar approximations have often been made
in quasigeostrophic tubulence (see [24] and references therein) but stochastic superpa-
rameterization uses stochastic approximations only for the eddy variables.

Under this modeling of the eddy terms (randomly oriented plane waves and stochas-
tic modeling of nonlinear dynamics of eddy variables), the effects of the eddy terms on
the large-scale dynamics take the following form

AI
{

1

2
(∂2y − ∂2x)[Fu,j sin(2θ)]− ∂xy[Fu,j cos(2θ)] + ∂x[Fb,j sin(θ)] + ∂y[Fb,j cos(θ)]

}
,

(11)
where A is a tunable eddy amplitude and I is a spatial smoothing operator to smooth
out the smallest scales of the forcing [19]. Here the two functions Fu,j and Fb,j are
computed using quasilinear stochastic models of eddies which are conditioned to the
large-scale variables. The temporal variation of the eddy terms is modeled a random
equation θ in (11),

dθ = σdW (12)

where W is a Wiener process on the circle and independent of other coarse grid points.
In simulations, the parameter σ is approximated using the decorrelation time of the
eddy terms from the reference simulation, which yields σ2 = 250, 167.6 and 67.5 for the
high, mid and low latitude cases respectively. Note that weaker β-plane case has a larger
σ as there is more energy and the subgrid-scale terms decorrelate faster. More details
of the version of stochastic superparameterization used in this study can be found in
[19] and [25].

The parameter, A, is tuned to match the total kinetic energy (KE) 1
2

∫
|∇ψ1|2 +

|∇ψ2|2 and the available potential energy (APE)
k2d
2

∫
(ψ1 − ψ2)

2 which yields A =
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Figure 5: Temporally and zonally averaged zonal velocity components for the mid (left two) and low
(right two) latitude cases

6750, 1700, and 350 for the high, mid, and low latitude cases respectively. The kinetic
and potential energy spectra by stochastic superparameterization using the tuned eddy
amplitude and a resolution of 482 for each layer are shown in Figure 4 for all three
regimes. Stochastic superparameterization, which uses 250 less computational resources
than the reference simulation, captures the correct energy spectra of the large-scales.
The zonal jets in the β-plane cases are also captured by stochastic superparameterization
(see Figure 5 for the temporally and zonally averaged zonal velocity components). By
matching the energy spectra, stochastic superparameterization also provides the correct
amplitude and position of the zonal jets.

3.2. Turbulent diffusion using anisotropic biharmonic eddy diffusion

The large-scale approximation of the turbulent diffusion of passive tracers is com-
monly obtained by adding additional diffusion, which is called ‘eddy diffusion’, while
tracers are advected by large-scale velocity fields. For turbulent diffusion of passive trac-
ers in anisotropic and inhomogeneous turbulent flows with jets, the jets act as barriers
to meridional tracer transport. Thus, the transport in the along-jet direction becomes
stronger than the one in the across-jet direction (see [2] for analysis of along-jet and
across-jet diffusivity).

For the reduced-order models of the tracer transport in the along-jet (8) and the
across-jet (9) directions, the following tracer transport model is proposed which is ad-
vected by the large-scale velocity fields from SP, vSP,j , j = 1, 2,

along-jet : ∂tχj + vSP,j · ∇χj = −ũj − κ∆4χj − κanisoD2
anisoχj , (13)

along-jet : ∂tφj + vSP,j · ∇φj = −ṽj − κ∆4φj − κanisoD2
anisoφj . (14)

The eddy diffusion is modeled by an anisotropic biharmonic diffusion

−κanisoD2
aniso

where κaniso is a diffusion coefficient and the linear dissipation Daniso is given by

Daniso = α∂xx + ∂yy (15)

with a tunable parameter α controlling the anisotropy of the diffusion. The biharmonic
diffusion −D2

aniso is commonly used in ocean models [23] to account for the effect of
eddies on the large-scale dynamics.
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High Mid Low

κaniso 1.1E-3 3.0E-4 1.0E-4
α 1.0 1.1 1.4

Table 1: Tuned parameters, diffusion coefficient κaniso and α, of the anisotropic biharmonic eddy
diffusion (15)

The reduced-order model for the tracer turbulent diffusion, (13) and (14), is solved
using the same numerical method as the full-resolution simulation in Section 2 except
that only 48×48 computational grids are used in each layer, which is the same resolution
of the stochastic superparameterization simulation. The tunable parameters κaniso and
α which determine the strength of the anisotropic biharmonic diffusion, are obtained
by tuning the tracer variance spectrum. In the β-plane cases, the across-jet tracer has
much smaller variance than the along-jet tracer and thus we mainly focus on matching
the along-jet tracer variance. The tracer variance is shown in Figure 6 (see Table 1 for
the tuned parameters). In the high latitude case, as there are no jets, the tracer variance
spectra of χj and φj are well reconstructed from the reduced-order velocity fields by the
superparameterization algorithm. In the β-plane cases (mid and low latitude cases),
the along-jet tracer variance spectra show comparable results between the reference
and low order simulations. For the across-jet tracer, on the other hand, it is difficult to
reconstruct accurate spectra as the variance in the across-jet direction is much smaller
than in the along-jet direction. The reduced-order forecast model has biases in the
temporally and zonally averaged mean states shown in Figure 7. The mean states by
the reduced-order model capture the meridional variation of the true signal as it is
related to the velocity fields which maintain the tracer variance, but the amplitude of
the mean states are not captured correctly, which is a difficult task using a reduced-
order forecast model as there are model errors in the velocity fields and the tracer
fields. In Section 5, we will see that the multiscale data assimilation described in the
next section significantly improves the mean state estimation by incorporating noisy
sparse observations.

Another important feature to generate using a reduced-order method is the tracer in-
termittency illustrated by the fat-tailed probability distribution functions of the tracer
field. The PDFs by the direct numerical reference simulation in Section 2 and the
reduced-order method are compared in Figure 8 for the representative low latitude case
(the other two cases have almost Gaussian distributions). In the along-jet tracer case,
which has fat-tailed PDFs, the reduced-order tracer field advected by superparameter-
ization velocity field has PDFs comparable to the reference simulation. Also note that
the low order methods have fake fat-tails in the across-jet tracer PDFs but the variance
of the tracer in the across-jet direction is significantly smaller than in the along-jet
direction.

11



Figure 6: Tracer variance spectrum in the along-jet and across-jet directions by the direct numerical
reference simulation (DNS) and reduced-order model advected by superparameterization velocity fields
(SP)

4. Multiscale Data Assimilation

Though the reduced-order forecast model displays high skill in capturing many cru-
cial features in the tracer fields, large errors may still appear due to the insufficient
characterization of the unresolved small-scale dynamics. In this study we are concerned
with using data assimilation of the passive tracer to further improve the imperfect
model prediction skill with the observations of the tracer and the reduced-order method
as the forecast model. During data assimilation process using a reduced-order model
as the forecast method, which provides prior distributions only for the resolved scales,
we encounter an important difficulty because the observation contains contributions
both from the resolved scales and the unresolved small-scales while only large-scale pre-
dictions are available from the forecast model. To alleviate this difficulty, a general
multiscale data assimilation framework was proposed in [15] providing the improved
estimations for the resolved scales from the mixed observations of both the large- and
small-scales. In particular, the ensemble multiscale data assimilation method [16, 15] is
used to achieve accurate estimation about the large-scale statistics. In comparison with
the particle method in [15], the ensemble method we use here is easy to implement and
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Figure 7: Temporally and zonally averaged tracer mean in the along-jet (χj) and across-jet (φj) di-
rections by the direct numerical reference simulation (DNS) and reduced-order model advected by
superparameterization velocity fields (SP)

can be applied to general cases when the dimension of the resolved variables is as large
as the tracer transport considered here.

4.1. Treatment for multiscale observation data

For a tracer field c, let us assume that the full state has a decomposition into the
following form

c = (c̄, c′) (16)

where c̄ and c′ represent the resolved and unresolved scale components respectively.
Although the general multiscale framework of [15] can be applied to nonlinear obser-
vations, we consider the case when the observation w is linearly related to the full
state

w = Ḡc̄+G′c′ + ξo. (17)

Ḡ and G′ are observation matrix corresponding to the resolved and unresolved scales and
ξo is observation noise which is Gaussian with zero-mean and a covariance roI (I is the
identity matrix in the observation space) uncorrelated in space and time. To derive an
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Figure 8: Log-scale probability distributions of tracer fields without (temporally and zonally averaged
)mean state by the direct numerical reference simulation (DNS) and the reduced-order model advected
by superparameterization velocity fields (SP). Low latitude case. χ′j : along-jet tracer around the mean.
φj : across-jet tracer around the mean

update formula for the resolved large-scale c̄, the large-scale is assumed to be Gaussian
while the small scale variance is Gaussian conditional to the large-scale with covariances
R and R′(c) respectively. Although the unresolved scale is Gaussian conditional to
the resolved large-scale, the interaction between the resolved and unresolved scales
through the dependence of the unresolved scale on the resolved scale makes interesting
statistics other than Gaussian statistics. Note that the unresolved scale is driven by
the resolved scale and the interaction between them makes non-trivial statistics. But
it is demonstrated in [16] that for zero-mean c′ conditionally Gaussian to c, there is no
correlation between between c and c′. Thus, the full state covariance R can be put in
the following form

R =

(
R̄

R′(c)

)
. (18)

Under the previous assumptions, a direct application of the Bayes rule to the prior
forecast state cf with a prior covariance Rf in the form of (18) yields the following for-
mula for the update of the resolved scale c̄ in the analysis step of the filtering procedure

c̄a = c̄f + K̄(w − Ḡc̄)
K̄ = R̄f ḠT (ḠR̄f ḠT +G′R′fG′T + roI)−1

R̄a = (I − K̄Ḡ)R̄f

(19)

where f and a denote the prior and posterior variables. Although the Bayes rule provides
the update for the unresolved state, no update for the unresolved scale is necessary as
the reduced-order model for the tracer transport does not involve the unresolved small-
scale.

The formula (19) is the standard Kalman update formula for c̄ with the same obser-
vation w and an increased observation variance G′R′G′T + roI is added to the Kalman

14



gain matrix due to the effect from the unresolved scales. The difference being the
additional observation error G′R′G′T from the unresolved scale is known as the “repre-
sentative error” [26]. In other words, the resolved scales trust the forecast more than
without the representative error. To update c̄ we need the covariance of the unresolved
scales which is not provided by the forecast model. Instead, we employ the climatological
variance of the unresolved scales and use it to reconstruct a diagonal covariance matrix
of the unresolved scales, that is, the variances of the unresolved scales at each coarse
grid points and different observation time set to be identical to the climatological value.
The covariance matrix of the unresolved scale is diagonal thus the additional observa-
tion error covariance also becomes diagonal. With this constant additional observation
variance at each observation points, we can use standard ensemble data assimilation
methods to update c̄ using (19) without any difficulties.

4.2. Covariance inflation using additive noise

The reduced-order model is an imperfect forecast model and thus model errors are
unavoidable in the data assimilation. Imperfect model errors yield underestimation of
the uncertainty in the forecast model and thus filter trusts the forecast more confident
than observations. The covariance inflation in ensemble methods is an effective remedy
of particle collapse and mitigates the problem related to model errors which increases
the uncertainty in the forecast model by inflating the prior covariance [27, 28]. Here
we employ an additional covariance inflation which adds noise to the prior ensemble
members

c̄k ← c̄k + ξa (20)

where ξa is Gaussian with zero mean and a variance r2a and i.i.d in space and time. This
is equivalent to adding r2aI to the prior covariance matrix P̄ f . The additional noise
can be regarded as the zero-correlation time limit of the random forcing given by a OU
process which is commonly used to improve the controllability and thus the stability of
the filter [14]. In the next section, we see that the covariance inflation using additive
noise plays an important role in improving the filtering skills.

Now we summarize the general strategy for the multiscale filtering with SP Algo-
rithm (Multiscale SP filter)

1. Forecast step

(a) Run SP flow model following (10) and (11)
(b) Get tracer field prediction from (13) with biharmonic diffusion in (14)

2. Analysis step

(a) Inflate the covariance with additive noise (20)
(b) Update the prediction with the observation data using proper DA scheme

(19)
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High Decor time Total var Large-scale var Small-scale var

χ1 0.013 1.40 1.09 0.31
χ2 0.014 1.46 1.13 0.33
φ1 0.015 1.68 1.35 0.33
φ2 0.014 1.53 1.21 0.32

Mid Decor time Total var Large-scale var Small-scale var

χ1 0.017 20.39 17.58 2.81
χ2 0.018 18.22 15.44 2.78
φ1 0.010 0.37 0.30 0.07
φ2 0.009 0.46 0.35 0.11

Low Decor time Total var Large-scale var Small-scale var

χ1 0.022 1448 1415 33
χ2 0.020 1412 1378 34
φ1 0.008 0.040 0.031 0.009
φ2 0.007 0.042 0.034 0.008

Table 2: Stationary state statistical properties of the reference simulation

5. Filter performance

The ensemble multiscale data assimilation described in the previous section is tested
for the passive tracer in the along-jet (8) and the across-jet (9) directions. The true
signal is generated by the direct numerical method as in Section 2, a fine resolution of
256 × 256 grid points in each layer and a time step of 2 × 10−5. The reduced-order
prediction models for both the two-layer quasigeostrophic equation (2) and the tracer
model use a coarse resolution of 48 × 48 for each layer and a time step of 1 × 10−4.
Thus the computational cost for the forecast model is 250 times less than that of the
direct full-resolution method. From the reference true signal, we define the large-scale
variable as the Fourier truncated variable with a cutoff wavenumber k = 24 which is
the Nyquist wavenumber of the coarse grid points.

In Table 2, the stationary state statistical properties of the true signal are shown for
the three different test regimes. As the β-plane effect (kβ) increases, the along-jet tracer
fields have longer decorrelation times and larger variances than the across-jet tracer
fields. We observe only the upper layer tracer fields on a 48 × 48 network coinciding
with the coarse grid points of the forecast model which is sparse compared to the full
true signal. The tracer dynamics in the lower layer is completely unobserved. Based
on the stationary state properties of the true signal, the observation intervals are set to
0.01 for all three test regimes, which are comparable to or shorter than the decorrelation
time of the along-jet tracer fields. Raw observation errors are 0.07, 1.00 and 72 for the
high, mid and low latitude cases corresponding to 5% of the upper layer tracer field
variances. In the estimation of the large-scale variables, the small-scale variables add
additional observation errors and thus the effective observation errors for the large-scale
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variables are given by a combination of these two parts

effective obs error =
√

raw obs error variance + small-scale variance. (21)

We expect that the qualitative results are not strongly dependent on a particular
choice of ensemble Kalman filters. In this study the ensemble adjustment Kalman filter
[29] is applied to update the large-scales in the analysis step (19) with a sequential
update of observations and an additional observation error variance given by the small-
scale variance. 50 ensemble members are used and as observations are available at each
coarse grid point, an extreme localization which ignores influences from other grid points
is applied. Each test runs 500 assimilation cycles and the first 200 cycles are ignored
in measuring filter performance. Filter performance is measured using two statistics
on the posterior mean estimate; time-averaged RMS errors and time-averaged pattern
correlations (PC) between the posterior mean and the true signal. For the large-scale
posterior mean cam and true signal ctm at the m-th cycle, the time-averaged RMSE and
PC are defined as

time-averaged RMS error =
1

M −m0

M∑
m=m0+1

‖cam − ctm‖ (22)

and

time-averaged PC =
1

M −m0

M∑
m=m0+1

∑
xi
camc

t
m

‖cam‖‖ctm‖
(23)

where ‖·‖ represents the l2 norm on the coarse grid points {xi}, m0 = 200 and M = 500.

5.1. Filter performance without additional covariance inflation

First we present filtering results without additional covariance inflation. Time-
averaged RMS errors and pattern correlations are shown in the first column of Table 3
for all three test regimes. The upper layer effective observation error (21) and standard
deviation of the stationary state large-scale variables are in the third and fourth columns
respectively. Note that the standard deviation of the stationary state large-scale vari-
ables is an expected error when the prediction trusts the spatially homogeneous mean
0.

Without covariance inflation, the data assimilation method is unable to generate
accurate posterior estimates for the large-scale variables. In the high latitude case
RMS errors are worse than the standard deviation of the stationary state with no
meaningful correlations between the posterior mean and the true signal. As the β-plane
effect increases which has stronger and more stable zonal jet structures, the pattern
correlations increases. This result is expected as the prediction model better captures
the anisotropic and inhomogeneous structures as the β-plane effect increases. But still
the RMS errors are worse than or comparable to the standard deviation of the stationary
state.
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High without inflation with inflation Effect obs error stationary std

χ1 1.56 (0.01) 0.51 (0.87) 0.60 1.04
χ2 1.61 (-0.01) 0.92 (0.65) N/A 1.06
φ1 1.65 (-0.00) 0.55 (0.88) 0.62 1.16
φ2 1.70 (0.00) 0.99 (0.57) N/A 1.10

Mid without inflation with inflation Effect obs error stationary std
χ1 4.55 (0.15) 1.75 (0.90) 1.95 4.19
χ2 4.21 (0.13) 2.83 (0.77) N/A 3.93
φ1 0.91 (0.11) 0.28 (0.88) 0.29 0.55
φ2 0.85 (0.10) 0.52 (0.60) N/A 0.60

Low without inflation with inflation Effect obs error stationary std
χ1 25 (0.65) 6.77 (0.98) 10.24 37.62
χ2 23 (0.61) 17.1 (0.96) N/A 21.50
φ1 0.18 (0.08) 0.10 (0.86) 0.10 0.18
φ2 0.29 (-0.01) 0.68 (0.57) N/A 0.24

Table 3: RMS errors and pattern correlations in parenthesis of the posterior mean in the estimation of
the large-scale variables

5.2. Filter performance with additional covariance inflation

Now we consider the results using the additive covariance inflation (20) in order to
recover accurate filtering skill. As the along-jet and across-jet tracer fields are indepen-
dent of each other and the tracer fields have different statistical properties in different
directions, the additional variance levels r2a are picked depending on the different direc-
tions. In the along-jet direction tracer field, r2a are set to 1.5, 10 and 25 for the high,
mid and low latitude cases. In the across-jet direction tracer field, r2a are set to 1.5, 0.3
and 0.01 for the high, mid and low latitude cases (note that tracer fields are isotropic in
the high latitude case). These values are comparable to the variances of the fluctuation
tracer field components after subtracting the temporally and zonally averaged mean
state. The additional noise is independent at different coarse grid points but to recover
skillful estimation in the lower layer tracer field, the upper layer and lower layer use the
same additional noise which yields perfectly correlated noise between different layers.

As can be found in the second column of Table 3, additive covariance inflation
using additional noise significantly improves the filtering skills in the estimation of the
large-scale variables. In the high latitude case, the upper layer tracer field estimation
have RMS errors more than 10% smaller than the effective observation errors while the
posterior mean and the true signal are correlated more than 87%. The lower layer tracer
field estimation is not as skillful as the upper layer as there is no direct observation of
the lower layer. But the posterior RMS errors are smaller than the standard deviation
of the stationary state. Also the estimation is correlated with the true signal more than
55%.

If the β-plane effect increases, skill in the along-jet tracer field estimation increases.
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In the mid latitude case, the posterior estimate and the true signal are correlated more
than 90% and the RMS error is about 10% smaller than the effective observation error.
In the low latitude case, the filtering performance is even better; RMS error is more
than 30% smaller than the effective observation and pattern correlation is larger than
98%. Using the identical additional noise for both layers, the lower layer estimation of
the along-jet tracer field has smaller errors than the standard deviation of the stationary
state and high pattern correlations. Note that if the additional noise are uncorrelated
between different layers, the filter shows no skill in the lower layer estimation (results
are not shown here).

The large-scale estimation in the across-jet tracer fields (of the mid and low latitude
cases), on the other hand, has no improved filtering skill even with the additive covari-
ance inflation. This result is expected from the poor performance of the reduced-order
forecast model in recovering the tracer variance spectra in Section 3.2. The across-jet
tracer fields have very small variances in comparison with the along-jet tracer fields
and thus it is a difficult task to recover accurate filtering skill for the across-jet tracer
fields. The RMS errors are comparable to or worse than the effective observation error
(when it is available) or the standard deviation of the stationary state although still the
pattern correlations of the observed upper layer field is higher than 85%.

We have seen in Section 3.2 that the forecast model without filtering has model er-
rors, the biased temporally and zonally averaged mean states with incorrect amplitudes
(Figure 7). Due to the model errors by an imperfect forecast model, it was essential to
use additive covariance inflation to achieve meaningful filtering skill. Figure 9 shows the
temporally and zonally averaged mean state of the posterior estimate with the additive
covariance inflation. The filtering improves the mean state estimation significantly for
the upper layer tracer fields which are on top of the true signal without any significant
bias. The unobserved lower layer tracer fields have biased mean states compared to the
observed upper layer but the filtered lower layer mean state estimation is significantly
improved in comparison with the estimation without filtering.

In the low latitude case, the along-jet tracer fields show non-Gaussian fat tails.
In Section 3 we see that the reduced-order prediction model is able to generate non-
Gaussian fat tails but the tails are weaker and narrower than the true signal (Figure
8), which implies the prediction model has narrower range of variability than the true
signal and thus covariance inflation is necessary in recovering meaningful filtering skill.
Figure 10 shows the log-scale PDFs of the posterior estimates in the low latitude case.
The filtered signal recovers the full range of the true signal with non-Gaussian fat tails
in the along-jet tracer fields. In the filtered posterior across-jet tracer fields, where the
prediction model generates fake fat-tails in Figure 8, the fake fat-tails are corrected in
the posterior estimation.

6. Conclusions

This paper has been concerned with data assimilation of passive tracer advected by
turbulent flows with jets. The forecast is given by a computationally cheap but robust
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Figure 9: Temporally and zonally averaged tracer in the along-jet (χj) and across-jet (φj) directions of
true signal and filtered posterior mean

Figure 10: Log-scale probability distributions of tracer fields without (temporally and zonally averaged)
mean state. True signal (top row) and posterior estimation (bottom row). Low latitude case. χ′j :
along-jet tracer around the mean. φ′j : across-jet tracer around the mean

reduced-order method which provides predictions for the large-scale component resolved
on coarse grid points. To generate large-scale velocity fields, stochastic superparame-
terization is applied to the two-layer quasigeostrophic equation which is an idealized
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model for geophysical turbulent flows in atmosphere and ocean. The large-scale model
of the passive tracer transport is then advected by the superparameterization large-scale
velocity fields with an additional eddy diffusion term. In the f -plane case when the ve-
locity fields are isotropic with no jets, the eddy diffusion is accurately modeled by an
isotropic biharmonic diffusion. In the β-plane case with jets, an anisotropic diffusion is
necessary as the jets act as barriers to meridional tracer transport; the zonal diffusion
is much stronger than the meridional diffusion.

The reduced-order forecast method reduces the computational complexity signifi-
cantly compared to a direct numerical forecast model but it requires a treatment for
mixed observations of the resolved and unresolved scale components in applying data
assimilation. In this study we have employed an ensemble multiscale data assimilation
method which provides the large-scale update using the mixed observations. The mul-
tiscale data assimilation method treats the unresolved scale component of the tracer as
representative error which enables us to use conventional single-scale ensemble filters.
We have tested the multiscale data assimilation for three different test regimes with or
without jets and numerical results show skillful estimation of the large-scale variable;
the intermittency in the low latitude case is also captured by the reduced-order data
assimilation approach. Due to large dissipation and model error in the reduced-order
forecast method, covariance inflation by additional noise has played an crucial role in
obtaining skillful filtering results. Using additional noise correlated between different
layers, the data assimilation also achieves large-scale estimation skill for the unobserved
lower layer tracer field using the observation of the upper layer tracer field.

An improved reduced-order prediction skill of tracer fields by empirical information
theory has been developed [9] which fits the autocorrelation function of tracer fields
and finds optimal model parameters in a training phase. Thus it is natural to speculate
whether this improved prediction skill can achieve better filtering skills than the reduced-
order model using eddy diffusion studied in this paper. Also there is an adaptive inflation
technique which improves stability preventing catastrophic filter divergence and also
increases filtering skills [30]. This technique could be another approach to improve
the filtering performance by adaptively controlling the additional noise level which is
essential to obtain meaningful filtering skills in our study.

The incorporation of the reduced-order forecast method for the ensemble multiscale
method has been limited to the large-scale estimation as there is no prediction method
for the unresolved small-scales. We have modeled the unresolved small-scales as station-
ary spatially homogeneous variables and thus used the climatological variance as the
representative error in the multiscale data assimilation. We expect that an improved
filtering performance could be obtained by using efficient models also for the unresolved
scales such as linear stochastic models [14] or dynamic stochastic super-resolution meth-
ods [31].
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