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Understanding the complexity of anisotropic turbulent processes
over a wide range of spatiotemporal scales in engineering shear
turbulence as well as climate atmosphere ocean science is a grand
challenge of contemporary science with important societal impact.
In such inhomogeneous turbulent dynamical systems there is a
large dimensional phase space with a large dimension of unstable
directions where a large-scale ensemble mean and the turbulent
fluctuations exchange energy and strongly influence each other.
These complex features strongly impact practical prediction and
uncertainty quantification. A systematic energy conservation principle
is developed here in a Theorem that precisely accounts for the statis-
tical energy exchange between the mean flow and the related tur-
bulent fluctuations. This statistical energy is a sum of the energy in
the mean and the trace of the covariance of the fluctuating turbu-
lence. This result applies to general inhomogeneous turbulent dynam-
ical systems including the above applications. The Theorem involves
an assessment of statistical symmetries for the nonlinear interactions
and a self-contained treatment is presented below. Corollary 1 and
Corollary 2 illustrate the power of the method with general closed
differential equalities for the statistical energy in time either exactly
or with upper and lower bounds, provided that the negative sym-
metric dissipationmatrix is diagonal in a suitable basis. Implications of
the energy principle for low-order closure modeling and automatic
estimates for the single point variance are discussed below.

mean | fluctuations | interaction statistical symmetries

Understanding the complexity of anisotropic turbulent pro-
cesses over a wide range of spatiotemporal scales in engi-

neering shear turbulence as well as climate atmosphere ocean
science is a grand challenge of contemporary science (1–4) with
important societal impact. In such inhomogeneous turbulent
dynamical systems, there is a large dimensional phase space with
a large dimension of unstable directions where a large-scale
ensemble mean and the turbulent fluctuations exchange energy
and strongly influence each other. These complex features
strongly impact practical prediction and uncertainty quantification.
A systematic energy conservation principle is developed here in a
Theorem that precisely accounts for the statistical energy exchange
between the mean flow and the related turbulent fluctuations. This
statistical energy is a sum of the energy in the mean and the trace
of the covariance of the fluctuating turbulence. This result applies
to general inhomogeneous turbulent dynamical systems including
the above applications. The Theorem involves an assessment of
statistical symmetries for the nonlinear interactions and a self-
contained treatment is presented below. Corollary 1 and Corollary
2 illustrate the power of the method with general closed differ-
ential equalities for the statistical energy in time either exactly or
with upper and lower bounds provided that the negative symmetric
dissipation matrix is diagonal in a suitable basis. Implications of
the energy principle for low-order closure modeling and automatic
estimates for the single point variance are discussed below (5–7).
Most earlier work in statistical turbulence involve assumptions of

homogeneity and isotropy without a mean flow (1, 3, 8) or approx-
imate the nonlinear terms in the equations for the mean flow and
fluctuating interactions by ad hoc linear stochastic models (1, 9).

More complete formulations of statistical energetics for the Navier–
Stokes equations can be found in ref. 10. The advantage of the
energy principle in the Theorem is the exact treatment of the non-
linear statistical energy exchange between the mean and fluctuations,
which are amenable to systematic low-order closure models for
prediction and uncertainty quantification with high skill (5–7, 11).

The Mathematical Structure of Turbulent Dynamical
Systems
Consider the statistical behavior of quadratic systems with con-
servative nonlinear dynamics and unstable directions. In partic-
ular, consider the general turbulent dynamical system:

du
dt

= ½L+D�u+Bðu, uÞ+FðtÞ+ σkðtÞ _Wkðt;ωÞ, [1]

acting on u∈RN. In the above equation and for what follows, re-
peated indices will indicate summation. In some cases, the limits of
summation will be given explicitly to emphasize the range of the index.
In the above equation, we have the following:

• L, being a skew-symmetric linear operator representing the β-
effect of Earth’s curvature, topography, etc., and satisfying,

Lp =−L. [2a]

• D, being a negative definite symmetric operator,

Dp =D, [2b]

representing dissipative processes such as surface drag, radiative
damping, viscosity, etc.
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• The quadratic operator Bðu, uÞ conserves the energy by itself
so that it satisfies the following:

u ·Bðu, uÞ= 0. [2c]

Here and below, the dot product in [2c] is the standard Euclidean
product, and “*” is used for transpose. Finally, FðtÞ+ σkðtÞ _Wkðt;ωÞ
represents the effect of external forcing, such as solar forcing, which
we will assume that it can be split into a mean component FðtÞ and a
stochastic component with white-noise characteristics that can also
mimic unresolved model error crudely. Turbulent dynamical systems
are ubiquitous in geoscience, climate science, and engineering (1–4).
We use a finite-dimensional representation of the stochastic

field consisting a N-dimensional, orthonormal basis, feigNi=1,

uðtÞ=uðtÞ+
XN
i=1

Ziðt;ωÞei,

where uðtÞ≡ huðtÞi represents the ensemble average of the re-
sponse, i.e., the mean field, and Ziðt;ωÞ are stochastic processes.

Exact Equation for Mean and Covariance. The exact mean field
equation is given by the following:

du
dt

= ½L+D�u+Bðu,uÞ+RijB
�
ei, ej

�
+F, [3]

where we have the covariance matrix given by Rij = hZiZj*i and
h · i denotes averaging over the ensemble members. As in typical
turbulence, the mean equation is not closed and depends on the
fluctuations through the covariance matrix.
Moreover, the random component of the solution, u′=Ziðt;ωÞei

satisfies the following:

du′
dt

= ½L+D�u′+B
�
u, u′

�
+B
�
u′, u

�
+B
�
u′, u′

�
−RjkB

�
ej, ek

�
+ σkðtÞ _Wkðt;ωÞ.

[4]

By projecting the above equation to each basis element ei, we obtain
the following:

dZi

dt
=Zj

�½L+D�ej +B
�
u, ej

�
+B
�
ej, u

��
· ei

+
�
B
�
u′, u′

�
−RjkB

�
ej, ek

��
· ei + σk _Wk · ei.

[5]

From the last equation, we directly obtain the exact evolution of
the covariance matrix R= hZZ*i:

dR
dt

=LvR+RLv
p +QF +Qσ , [6]

where we have the following terms in [6]:

i) the linear dynamics operator expressing energy transfers be-
tween the mean field and the stochastic modes (effect due to
B), as well as energy dissipation (effect due to D), and non-
normal dynamics (effect due to L,D, u):

fLvgij =
�½L+D�ej +B

�
u, ej

�
+B
�
ej, u

��
· ei; [7]

ii) the positive definite operator expressing energy transfer due
to external stochastic forcing:

fQσgij = ðei · σkÞ
�
σk · ej

�
; [8]

iii) as well as the energy flux between different modes due to
non-Gaussian statistics (or nonlinear terms) given exactly
through third-order moments:

QF =ZmZnZjBðem, enÞ · ei +ZmZnZiBðem, enÞ · ej. [9]

With energy conservation, the nonlinear terms satisfy the statis-
tical symmetry requirement:

trQF ≡ 0, [10]

because with u′=Ziei, trQF =u ·Bðu, uÞ= 0 by energy conservation.

Detailed Triad Energy Conservation Symmetries. For many appli-
cations in geosciences and engineering, the orthonormal basis ei
consists of Fourier modes or spherical harmonics and the non-
linear term, Bðu, uÞ, satisfies a detailed conservation of energy
principle. To understand this, we consider the dynamics for the
nonlinear terms alone,

ut =Bðu, uÞ,u∈RN , [11]

and the truncation uΛ =P Λu where P Λ is any L2 projection, and
the associated Galerkin truncation dynamics:

ðuΛÞt =P ΛBðuΛ, uΛÞ, [12]

with energy EΛ = ð1=2ÞuΛ ·uΛ. It follows from [2c] that the pro-
jected energy EΛ is also conserved, because with [2c]:

dEΛ

dt
= uΛ ·P ΛBðuΛ, uΛÞ= uΛ ·BðuΛ, uΛÞ≡ 0. [13]

Now consider the 3D Galerkin projection of [12] to the subspace
spanned by the triad, ei, ej, ek. We have the following.

Proposition 1. Consider the 3D Galerkin projected dynamics spanned
by the triad ei, ej, ek for 1≤ i, j, k≤N. Assume the following:

A) The self interactions vanish,

Bðei, eiÞ≡ 0, 1≤ i≤N; [14]

B) The dyad interaction coefficients vanish through the symmetry,

ei · ½Bðel, eiÞ+Bðei, elÞ�= 0, for   any  i, l. [15]

Then the 3D Galerkin truncation in [12] becomes the “triad interaction
equations” for u= ðui, uj, ukÞ= ðuΛ · ei, uΛ · ej, uΛ · ekÞ:

dui
dt

=Aijkujuk, [16a]

duj
dt

=Ajkiukui, [16b]

duk
dt

=Akijuiuj, [16c]

with coefficient satisfying the following:

Aijk +Ajik +Akji = 0, [17]

which is the detailed triad energy conservation symmetry, because

Aijk +Ajki +Akij ≡ ei ·
�
B
�
ej, ek

�
+B
�
ek, ej

��
+ ej · ½Bðek, eiÞ+Bðei, ekÞ�
+ ek ·

�
B
�
ei, ej

�
+B
�
ej, ei

��
= 0. [18]
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The forms in [16a–16c] for [12] is a direct expansion of
em ·P ΛBðu, uÞ for m= i, j, k, using the properties in [14] and [15].
The property in [17] is a direct consequence of the energy con-
servation in [13] for an equation with the form in [16a–16c] because

0≡
dEΛ

dt
=
�
Aijk +Ajki +Akij

�
uiujuk.

The detailed symmetry in [18] follows from [17] for the explicit
expansion coefficients.
To show the importance of the requirements in [14] and [15],

consider the dyad interaction equation:
∂u1
∂t

= γ1u1u2 + γ2u
2
2, [19a]

∂u2
∂t

=−γ1u21 − γ2u1u2. [19b]

These 2D equations conserve energy with [14] and [15] both non-
zero and obviously do not have the form in [16a–16c]. For non-
linear advection term in two dimensions, so that BðuΛ,uΛÞ=
−∇⊥ψΛ ·∇ωΛ suitably scaled where the stream function satisfies
ΔψΛ =ωΛ, the conditions in [14], [15], and the symmetry prop-
erties in [18] are satisfied provided the basis ei is Fourier modes
or spherical harmonics (1, 3, 4, 8). Terms with dyad interactions
naturally arise with inhomogeneities when the orthonormal ba-
sis comes from data such as in empirical orthogonal function
(EOF) analysis. The properties of turbulent dynamical systems
with both dyad and triad interactions have been studied earlier (12,
13). The conceptual model for turbulence introduced in ref. 14 is
an interesting system with only nonlinear dyad interactions.

A General Statistical Energy Conservation Principle
Consider the mean energy first, E= ð1=2Þjuj2 = ð1=2Þu · u. From
[3], we have immediately the following.

Proposition 2. The change of mean energy E= ð1=2Þðu · uÞ satisfies
the following:

d
dt

�
1
2
juj2
�
=u ·Du+u ·F+

1
2
Riju ·

�
B
�
ei, ej

�
+B
�
ej, ei

��
. [20]

The last term represents the effect of the fluctuation on the mean, u.
Now consider the fluctuating energy E′= ð1=2ÞtrðRijÞ. From

trQF = 0 in [10], we have using [6] that

dE′
dt

=
1
2
dtrR
dt

= tr

 
LvR+RLv

p

2

!
+
1
2
trQσ . [21]

With [8],
trQσ =

X
i, k

ðei · σkÞðσk · eiÞ. [22]

Use the formula in [7] to rewrite [21] as follows:

tr

 
LvR+RLv

p

2

!
= tr

 �
~L+ ~D

�
R+R

�
~L* + ~D*�

2

!
+
1
2
tr
�
B
�
u, R̂

�

+B
�
R̂, u

�
+B
�
u, R̂T�+B

�
R̂T , u

��
. [23]

Here ~L and ~D are the linear operator representations under basis
ei, that is,

~Lij = ei ·Lej, ~Dij = ei ·Dej, [24]

with the properties in [2a] and [2b] preserved; R̂ is the tensor
representation of the covariance matrix with u′=Ziei,

R̂=
�
u′⊗ u′

	
=
X
i, j

Rijei ⊗ ej; [25]

the matrix Bðu, R̂Þ is defined as the componentwise interaction with
each column of R̂. Because ~L is skew symmetric trð~LR+R~L*Þ=
trð~LR−R~LÞ= 0, so in [23] and below, the skew-symmetric terms
make no direct contribution to the change in the trace of statistical
energy fluctuations, but directly alter the mean. Next, expand u by
u= uMeM. With [25], we get the identity,

B
�
u, R̂

�
+B
�
R̂,u

�
+ ‘transpose  part’

=RijuM
�
BðeM , eiÞ⊗ ej + ei ⊗B

�
ej, eM

�
+‘transpose  part’�. [26]

So using that trða⊗ bÞ= a · b and [25], we have the following:

1
2
tr
�
B
�
u, R̂

�
+B
�
R̂, u

�
+ ‘transpose  part’

�
=
1
2
RijuM

�
ei ·B

�
eM , ej

�
+Bðei, eMÞ

· ej + ej ·BðeM , eiÞ+B
�
ej, eM

�
· ei
�
. [27]

Now use the detailed triad conservation structure in [18]. The
expression in bracket in [27] is given by the following formula:

ei ·
�
B
�
ej, eM

�
+B
�
eM , ej

��
+ ej · ½BðeM , eiÞ+Bðei, eMÞ�

= −eM ·
�
B
�
ei, ej

�
+B
�
ej, ei

��
.

Now, use u= uMeM and get that the sum in [17] for this contri-
bution to the trace is exactly the following:

−
1
2
Riju ·

�
B
�
ei, ej

�
+B
�
ej, ei

��
. [28]

With [21], [23], and [28], we deduce the following.

Proposition 3. Under the structure assumption in [14] and [15] on
the basis ei, the fluctuating energy, E′= ð1=2ÞtrR, for any turbulent
dynamical system satisfies the following:

dE′
dt

=
1
2
tr


~DR+R~D*

�
+
1
2
trQσ

−
1
2
Riju ·

�
B
�
ei, ej

�
+B
�
ej, ei

��
,

[29]

where R satisfies the exact covariance equation in [6].
Note that the nonlinear energy transfer to the fluctuations by

the mean in Proposition 3 exactly balances the nonlinear energy
transfer from the fluctuations to the mean.
Thus, adding the results in Proposition 2 and Proposition 3, we

have the following.

Theorem. (Statistical Energy Conservation Principle) Under the struc-
tural assumption [14], [15] on the basis ei, for any turbulent dynamical
systems in [1], the total statistical energy, E=E+E′= ð1=2Þu · u+
ð1=2ÞtrR, satisfies the following:

dE
dt

=u ·Du+u ·F+ tr
�
~DR
�
+
1
2
trQσ , [30]

where R satisfies the exact covariance equation in [6].
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Other interesting identities for energy exchange between the
mean and the fluctuations for the Navier–Stokes equation have
been derived (15, 16).

Illustrative General Examples and Applications
We have the interesting immediate corollary of the Theorem.

Corollary 1. Under the assumption of the Theorem, assume D=
−dI, with d> 0, then the turbulent dynamical system satisfies the
closed statistical energy equation for E= ð1=2Þu · u+ ð1=2ÞtrR,

dE
dt

=−2dE+u ·F+
1
2
trQσ . [31]

In particular, if the external forcing vanishes so that F ≡ 0,Qσ ≡ 0,
for random initial conditions, the statistical energy decays exponen-
tially in time and satisfies EðtÞ= expð−2dtÞE0.
Assume the symmetric dissipation matrix, D, satisfies the upper

and lower bounds,

−d+juj2 ≥u ·Du≥ − d−juj2, [32]

with d−, d+ > 0. Typical general dissipation matrices ~D are diag-
onal in basis with Fourier modes or spherical harmonics (4). Now
for any diagonal matrix ~D and any positive symmetric matrix
R≥ 0, we have the a priori bounds,

−d+trR≥ tr

 
~DR+R~D*

2

!
≥ −d−trR. [33]

Thus, with the Theorem and Corollary 1, we immediately have
the following.

Corollary 2. Assume ~D is diagonal and satisfies the upper and lower
bounds in [32], then the statistical energy in [30] in the Theorem,
EðtÞ, satisfies the upper and lower bounds E+ðtÞ≥EðtÞ≥E−ðtÞ,
where E±ðtÞ satisfy the differential equality in Corollary 1 with
d≡ d± . In particular, the statistical energy is a statistical Lyapunov
function for the turbulent dynamical system in [1]. Also, if the ex-
ternal forcings F,Qσ vanish, the statistical energy decays exponen-
tially with these upper and lower bounds.
In standard fashion if some bound is known on the statistical

mean in [31], then this also provides control of the total variance
and in particular trR≡

P
khjZkj2i. Consider the Gaussian approxi-

mation to the one point statistics; recall that u=u+Ziei so at the
location x, the mean and variance are given by the following:

uðxÞ= uMeMðxÞ, varðuðxÞÞ= �ZjZk
p
	
ejðxÞ⊗ ekðxÞ.

We have control over the variance of the average over the
domain, denoted by Ex because ExejðxÞ⊗ ekðxÞ= δjkI; thus, the
average of the single point variance is bounded by trR, which is
controlled by E. See ref. 5 for an explicit demonstration.
In many geophysical applications with strong inhomogeneities

through topography, the symmetric matrix D in [1] from the
background linear operator is neither diagonal nor negative
definite. In these situations, although the equation for R is not
closed according to [6] in general, the Theorem can be used as a
framework for obtaining bounds to imperfect closure models
that overcome the curse of dimensionality for uncertainty
quantification (UQ). Such closure models for turbulent dynam-
ical systems can be combined with an information-theoretic
framework to calibrate the imperfect models in a training phase
(17, 18) for such important problems as the response to the
change in external forcing. This strategy for imperfect models
using such an energy principle has recently been tested on the
Lorenz 96 (L-96) system (19) for a family of low-order closure

models (5) where Corollary 1 above is derived in a different ex-
plicit fashion for these models for homogeneous statistics. Other
examples of using low-order closure for UQ include the modified
quasilinear Gaussian closure (6, 7) and applications include the
L-96 model and linearly unstable two-layer baroclinic turbu-
lence, which is another complex turbulent dynamical system
satisfying all of the assumptions of the Theorem. Other complex
turbulent dynamical systems where the Theorem should prove
useful for UQ include the following turbulent dynamical systems,
which satisfy the assumptions of the Theorem:

A) The turbulent Navier–Stokes equations in two or three di-
mensions with shear, in periodic or channel geometry;

B) Two-layer or even multilayer stratified flows with topography
and shear in periodic, channel geometry or on the sphere (1, 4);

C) The rotating stratified Boussinesq equations with both grav-
ity waves and vortices (1).

The details of these diverse physical settings present intriguing
applications for the near future. Here the use of energy and
enstrophy metrics or these combinations that satisfy the statis-
tical symmetries for the nonlinear terms has been avoided for
simplicity in exposition but could be crucial in these more so-
phisticated applications (1, 4, 8).
We conclude our discussion with a concrete geophysical dem-

onstration. Consider spatially periodic β-plane turbulence in two
dimensions (4) given by the dynamics:

dωΛ

dt
=−P Λ

�
∇⊥ψΛ ·∇ωΛ

�
− βðψΛÞx +DðΔÞωΛ+FΛðx, tÞ

+ _Wkσk,ΛðtÞ,
ΔψΛ =ωΛ. [34]

The equation in [34] is the Galerkin projection of the standard
β-plane equation to a reduced finite dimensional subspace of 2D
Fourier modes, which form the orthonormal basis ei with
P Λu= uΛ, the L2 projection on these Fourier modes. The term
βðψΛÞx is a skew-symmetric operator. DðΔÞ is diagonal in the
Fourier basis and satisfies the assumption in [32] of Corollary 2
for general combination of Ekman damping and hyperviscosity
(4). The nonlinear terms define B with dynamics alone:

∂ωΛ

∂t
=−P Λ

�
∇⊥ψΛ ·∇ωΛ

�
,ΔψΛ =ωΛ,

which satisfy both the conservation of energy, EΛ, and enstrophy,
E Λ (4), with

EΛ =−
1
2

Z
ψΛωΛdx, and EΛ =

1
2

Z
ω2
Λdx. [35]

It is well known that, in a Fourier basis, the symmetry conditions
of Proposition 1 are satisfied for either the L2 inner product for
EΛ or with a rescaled version of EΛ (1, 8):

hu1, u2iE ≡
Z

ω1ω2dx=
Z

Δψ1Δψ2dx,

hu1, u2iE ≡ −
Z

ψ1ω2dx=
Z

∇ψ1 ·∇ψ2dx,

with u=∇⊥ψ . There is a separate statistical energy identity for
both the energy and enstrophy, which should be useful in prac-
tice. Thus, all of the assumptions of Theorem and Corollary 2 are
satisfied for the turbulent dynamical system in [34], so these
general results on statistical energy exchange between mean
and fluctuations apply. It is well-known that there are inter-
esting statistical bifurcations between jets and vortices as
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parameters vary and it is a contemporary challenge to explain
these with statistical theory (4, 20). The systematic statistical
energy and enstrophy principles developed here could be useful to
gain insight on these issues.

Concluding Discussion
A systematic statistical energy conservation principle has been
developed here in a Theorem that assesses the statistical energy
exchange between an ensemble averaged mean flow and the
related turbulent fluctuations. This statistical energy is a sum of
the energy in the mean and the trace of the covariance of the
fluctuations. This result applies to general inhomogeneous tur-
bulent dynamical systems, which are ubiquitous in engineering
and climate atmosphere ocean science. It involves an assessment
of the detailed energy conservation principles of the deterministic
nonlinear dynamics, which induce detailed statistical symmetries for
the nonlinear terms yielding the exact statistical energy conservation
principle. Corollary 1 and Corollary 2 illustrate the power of the
method with general closed differential equalities for the statistical
energy either exactly or bounding the statistical energy in time un-
der the natural hypothesis of a bounded negative definite diagonal
dissipation matrix. In particular, the statistical energy is a stochastic
Lyapunov functional. A concrete example of β-plane turbulence is
briefly discussed here as a simple illustration. In general, the sta-
tistical energy principle is not closed and bounds on the full fluc-
tuating covariance are required. Nevertheless, this formulation of
the energy principle is useful for systematic closure models on
low-order subspaces (5–7), a problem with great practical

interest. The systematic energy principle illustrates the fact that
accurate prediction of the mean with a low-order imperfect
model automatically guarantees accurate prediction of the
mean and variance of the single-point statistics provided the
imperfect model respects suitable statistical symmetries. This
has been demonstrated recently (5) for the 40-mode L-96 model,
which serves as a template for future applications of the energy
principle to realistic complex inhomogeneous turbulent dynamical
systems in engineering and climate atmosphere ocean science.
The statistical energy principle including the statistical energy

of the mean and the trace of the covariance of the fluctuations
has been developed here for finite dimensional inhomogeneous
turbulent dynamical systems. An important mathematical prob-
lem is to extend this to the infinite dimensional setting for the
Navier–Stokes equation and use the statistical Lyapunov func-
tional in Corollary 2 to help prove geometric ergodicity. At the
present time, there is the celebrated proof of geometry ergodicity
of the stochastic Navier–Stokes equations (21) under hypotheses
of minimal stochastic forcing but that make the mean flow
vanish. The only rigorous result with a mean flow and rigorous
small random fluctuations interacting involves the random
bombardment of the Navier–Stokes equations by coherent
vortices (22).
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