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Abstract. Prediction of extreme events is a highly important and challenging problem in science, engineering,
finance, and many other areas. The observed extreme events in these areas are often associated
with complex nonlinear dynamics with intermittent instability. However, due to lack of resolution
or incomplete knowledge of the dynamics of nature, these instabilities are typically hidden. To
describe nature with hidden instability, a stochastic parameterized model is used as the low-order
reduced model. Bayesian inference incorporating data augmentation, regarding the missing path
of the hidden processes as the augmented variables, is adopted in a Markov chain Monte Carlo
(MCMC) algorithm to estimate the parameters in this reduced model from the partially observed
signal. Howerver, direct application of this algorithm leads to an extremely low acceptance rate of
the missing path. To overcome this shortcoming, an efficient MCMC algorithm which includes a
pre-estimation of hidden processes is developed. This algorithm greatly increases the acceptance
rate and provides the low-order reduced model with a high skill in capturing the extreme events due
to intermittency.

Key words. hidden process, intermittency, stochastic parameterized model, data augmentation, MCMC algo-
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1. Introduction. Prediction of extreme events is an important and challenging problem.
Famously, in 1998, the Long Term Capital Management (LTCM) hedge fund was driven into
the ground as a result of the ripple effect caused by the Russian government’s debt default
[38], but none of LTCM’s forecast models were able to predict this event and its subsequent
effects. Another example is a heat wave [31], which is a prolonged period of excessively hot
weather. Albeit rare, severe heat waves are able to cause catastrophic crop damage and
significant loses. However, due to the complexity and uncertainty of the climate system,
precise prediction of heat waves remains unavailable. Furthermore, the El Niño Southern
Oscillation (ENSO), which is a significant climate pattern, triggers extreme weather such as
floods and droughts and seriously affects the agriculture and fishing industry of countries
around the Pacific Ocean [7]. Here, imperfect knowledge of the mechanism of ENSO impedes
the prediction of the occurrence and duration of these extremes accurately.
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648 N. CHEN, D. GIANNAKIS, R. HERBEI, AND A. J. MAJDA

Mathematically, extreme events observed in signals are often associated with intermittency
due to complex nonlinear dynamics with instabilities. However, as mentioned in the heat wave
and ENSO examples, the mechanisms that drive extreme events are typically complicated
and unavailable from observations. That is, the actual dynamics consist of many hidden
and unresolved processes. Due to such uncertainties in the dynamics of nature (“the perfect
model”), it is natural to construct low-order models with adequate prediction skill, which are
nevertheless able to reflect the salient features of observed extreme events, i.e., intermittency
associated with hidden processes.

In the framework of these models, the observed signal corresponds to incomplete obser-
vation of the full state vector. Therefore, it is important to develop systematic methods of
parameter estimation based on incomplete observations. The ultimate goal is to utilize these
low-order models equipped with the estimated parameters for prediction. These are the topics
of the present paper.

Let {u(t), t ≥ 0} be a process of interest. We characterize the intermittency and hidden
processes in {u(t)} using the stochastic parameterization extended Kalman filter (SPEKF)
model [28], given by

du(t) =
(
(−γ(t) + iω)u(t) + f(t) + b(t)

)
dt+ σu dWu(t),(1.1a)

dγ(t) = −dγ
(
γ(t)− γ̂

)
dt+ σγ dWγ(t),(1.1b)

db(t) =
(− db + iωb

)(
b(t)− b̂

)
dt+ σb dWb(t).(1.1c)

In SPEKF models, the process u(t) described in (1.1a) is driven by the stochastic damping γ(t)
and stochastic forcing correction b(t), both of which are specified as Ornstein-Uhlenbeck (OU)
processes as in (1.1b) and (1.1c). Here, Wu(t),Wγ(t), and Wb(t) are independent Brownian

motions and all the parameters ω, ωb, dγ , db, γ̂, b̂, σu, σγ , and σb are scalars. Physically, the
variable u(t) in (1.1a) represents one of the resolved modes (i.e., observable) in the turbulent
signal, while γ(t) and b(t) are hidden processes. In particular, γ(t) and b(t) are surrogates
for the nonlinear interaction between u(t) and other unobserved modes in the perfect model.
This nonlinear system was first introduced in [14, 15] for filtering multiscale turbulent signals
with hidden instabilities and has been used for filtering and prediction in the presence of
model error [3, 4, 5, 6, 16, 23, 30]. The intermittency of the observed variable u(t) is mainly
a consequence of the sign switching of the hidden variable γ(t), alternating between positive
and negative phases, during which the process {u(t)} switches between stable and unstable
regimes. The strength of this intermittency also depends on the forcing correction b(t).

In this paper, as a process model, we consider a simplified version of the unforced SPEKF
model,

du(t) = −γ(t)u(t) dt+ σu dWu(t),(1.2a)

dγ(t) = −dγ
(
γ(t)− γ̂

)
dt+ σγ dWγ(t),(1.2b)

which is complex enough to incorporate intermittency and includes the hidden process γ(t).
Our primary interest is the prediction skill of the simplified SPEKF model (1.2), and in
particular the ability to generate intermittency. This problem is tackled by first estimating
the parameters θ = (dγ , γ̂, σγ , σu) based on discrete-time observations of the {u(t)} process.
Consequently, the prediction step is performed in a probabilistic framework.D
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MCMC PARAMETER ESTIMATION WITH HIDDEN INSTABILITY 649

We use a Bayesian approach, under which the estimation step is based on exploring the
posterior distribution of θ conditionally on observations of the {u(t)} process, via a Markov
chain Monte Carlo (MCMC) approach. As we show in the next sections, the likelihood
function is intractable in this case, and thus standard techniques are unavailable. We suggest
an innovative approach based on data augmentation [39] and treat the unobserved path of the
{γ(t)} processed as missing data.

Roberts and Stramer [34] first applied this idea successfully for parameter estimation in
a nonlinear diffusion model, handling certain technical issues using reparameterization [24] to
circumvent the singularity of the dominating measures for diffusion with different diffusion
coefficients. Other related work and improved algorithms for diffusion models are found in
[1, 8, 9, 11, 13, 25, 32, 35, 36, 37]. However, extra effort is required to handle intermittency and
unresolved processes. Various updating strategies have been proposed in [12, 18, 19, 20, 21, 22]
in the context of well-behaved multivariate diffusion models.

As mentioned above, given that u(t) may switch between different instability regimes,
we expect that an off-the-shelf MCMC approach for estimating θ may fail. To that end,
we suggest an innovative sampling strategy involving a preconditioning step which restricts
the proposed paths of the missing process γ(t) to pass near a discrete set of pre-estimated
values at the observation times. In this manner, the new sampler is able to explore efficiently
and with sufficient accuracy the joint posterior distribution for the parameters and missing
path, despite the fact that γ(t) is infinite-dimensional. Throughout, we exploit the fact that
(1.2a) defines a conditional Gaussian process given the path of {γ(t)}. We demonstrate the
efficiency of the new sampler and predictive skill of the resulting simplified SPEKF models in
perfect-model experiments and experiments with model error.

The rest of the paper is organized as follows. In section 2, we describe the Bayesian
inference approach via data augmentation. For the inference procedure, we are implementing
a standard MCMC algorithm as well as the approach of [22] and discuss their drawbacks in
the context of the model described in (1.2). Our proposed approach is presented in section 3.
Section 4 includes three numerical tests for parameter estimation and prediction skill with the
new algorithm, the first of which is in a perfect model setting, while the other two deal with
model error. Concluding remarks are given in section 5.

2. Preliminaries. We consider the simplified SPEKF model (1.2) and assume that we
observe the process {u(t)} at a collection of discrete time points 0 = t0 < t1 < · · · < tn = T .
Let U = (U0, U1, . . . , Un) with Ui = u(ti). Our goal is to explore the posterior probability
distribution,

(2.1) p(θ |U) ∝ p(θ)p(U |θ),

where p(θ) is the prior distribution on θ and p(U |θ) is the likelihood function. We note that,
abusing notation, we use the generic notation p(·) to denote the probability density/conditional
probability density function for the relevant quantities. Since the processes u(·) and γ(·) are
coupled in a nonlinear way and γ(·) itself is a stochastic process, the likelihood function
p(U |θ) is not available in closed form. Therefore, we adopt a data augmentation approach
[34]. Let γmis = {γmis(t), 0 ≤ t ≤ T} represent the unobserved full path of γ(·), and consider
the augmented state space (θ, γmis). The distribution (2.1) is replaced by the augmentedD
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650 N. CHEN, D. GIANNAKIS, R. HERBEI, AND A. J. MAJDA

posterior distribution

p(θ, γmis | U) ∝ p(θ, γmis,U)(2.2a)

= p(θ)p(γmis,U | θ)
= p(θ)p(γmis | θ)p(U | γmis,θ),(2.2b)

where all the corresponding densities are viewed with respect to appropriate dominating mea-
sures; see [34]. If one is able to explore the probability model specified by (2.2b), the desired
distribution p(θ |U) can be determined by marginalizing over the auxiliary variable γmis. In
light of the Markov property, the likelihood function can be decomposed recursively as follows:

p(U | γmis,θ) =

n∏
i=1

p(Ui |Ui−1, γ
mis
[ti−1,ti]

,θ),

where γmis
[ti−1,ti]

represents the path of γmis in the interval [ti−1, ti]. Conditionally on γmis and

U0 = u(t0), the dynamics of {u(t)} are well understood and the pathwise solution of (1.2a) is
given by

(2.3) u(t) = ρ(t, t0)u(t0) + ρ(t, t0)

∫ t

t0

σuρ
−1(s, t0) dWu(s),

where

(2.4) ρ(t, t0) = exp

(
−
∫ t

t0

γmis(s) ds

)
.

Note that conditionally on u(t0) and γmis, the variate u(t) has a Gaussian distribution with
the mean and variance given, respectively, by

μ(t; t0) = ρ(t, t0)u(t0),

Σ(t; t0) = ρ(t, t0)
2

∫ t

t0

σ2
uρ

−2(s, t0) ds.
(2.5)

Therefore, each term in the product in (2.3) becomes

(2.6) p(Ui|Ui−1, γ
mis
[ti−1,ti]

,θ) = φ
(
Ui;μ(ti; ti−1),Σ(ti; ti−1)

)
,

where φ(x;m, v) is the Gaussian PDF with mean m and variance v evaluated at x. Therefore,
the conditional probability p(U | γmis,θ) in (2.3) is obtained by capturing all the p(Ui |
Ui−1, γ

mis
[ti−1,ti]

,θ) with i from 1 to n.

We now focus on p(γmis |θ), which is viewed as the Radon–Nikodym derivative of the
measure induced by (1.2b) with respect to the Wiener measure scaled by the diffusion coeffi-
cient σγ . Given that two such dominating measures (with different σγ) are singular, a direct
MCMC implementation will result in a reducible algorithm; see [34]. Therefore, we introduceD
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a change of variable to normalize the diffusion coefficient σγ in the governing equation (1.2b).
Setting α(t) = γ(t)/σγ , the governing equation (1.2b) can be rewritten as

(2.7) dα(t) = −dγ
σγ

(σγα(t)− γ̂) dt+ dWγ(t).

Note that the {α(t)} process will have constant quadratic variation on the interval [0, T ], and
thus we now avoid the singularity of the corresponding dominating measures. We also note
that this reparameterization will have to be reflected in (2.6) as well.

Let a(α, t,θ) = −(dγ/σγ) (σγα(t) − γ̂). Using the Girsanov formula [33],

(2.8) p(αmis |θ) ∝ L(αmis;θ),

where

(2.9) L(αmis;θ) = exp

(∫ T

0
a(α, t,θ) dαt

)
exp

(
−1

2

∫ T

0
a(α, t,θ)2 dt

)
.

With these in mind, a standard Metropolis–Hastings algorithm for exploring the poste-
rior distribution (2.2a) will alternate between updating θ conditionally on γmis and U and
updating γmis conditionally on θ and U . Since neither of these conditional distributions are
available in closed form, in our implementation we use Metropolis–Hastings updates. Since
θ is low-dimensional, designing a proposal distribution which will perform well is achievable
either using a univariate or multivariate update strategy. We find that a deterministic scan
univariate updating strategy performs on par with a more sophisticated adaptive approach.
However, designing a good proposal distribution for the αmis(·) component turns out to be
a very challenging task. Since the prior distribution for αmis(·) is an OU process, we exper-
imented simulating OU paths with very limited success. It is well known that independent
proposal distributions for Metropolis–Hastings algorithms are severely inefficient [25, 34]. Our
best implementation resulted in acceptance rates below 0.1%, indicating that the sampler fails
to explore the posterior distribution properly.

We note that in the paragraphs above, we describe an approach which aims to explore the
infinite-dimensional space of the sample paths of the process αmis(·). While the Metropolis–
Hastings formulation is straightforward, designing efficient algorithms is far from it. The
main setback is that it is extremely difficult to design efficient proposal distributions over
infinite-dimensional spaces. Evidently, any computer implementation will require some kind
of finite-dimensional representation for α(·), u(·) as well as a discrete time approximation
for all the intractable integrals present above. A natural idea is to design and simulate
an algorithm which will explore the finite-dimensional corresponding to some discrete-time
approximation for the process described in (1.2). However, it is well documented [21, 34] that
such approximating algorithms become increasingly inefficient as the discretization gets finer.

In the body of work of Golightly and Wilkinson, notably [22] and the references therein,
one finds an extremely general MCMC approach for exploring the posterior distribution, such
as (2.2a). Their approach is based on a very fine time discretization strategy and a data
augmentation approach for the missing paths of both the observed and unobserved variables.
This results in an algorithm exploring an extremely high-dimensional state space, where it isD
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imperative to perform multivariate updates in order to speed up convergence. Their strategy
is to update overlapping missing paths of duration 2Δt. Similarly, Chib, Pitt, and Shephard
[10] suggest an alternative approach for Bayesian inference for discretely observed multivariate
diffusions. Their approach is to update the unobserved paths using a proposal distribution
which is constructed to be close in some sense to the target. Such algorithms have great
generality and have proved useful in a variety of situations, as their authors demonstrate.
In this paper we put forward a simpler strategy which in our case performs very efficiently.
Rather than using a general MCMC strategy, we develop an efficient algorithm specifically for
the SPEKF model. As we explain below, our algorithm leverages the conditional Gaussian
structure and updates the missing paths of only the unobserved variable, thus reducing the
computational cost. Moreover, it operates in simultaneous blocks of length 2Δt, potentially
improving the mixing properties. We have experimented with a basic implementation of the
Golightly and Wilkinson approach, which produced reasonable estimates for the simplified
SPEKF model parameters in (1.2), but at a significantly higher computational cost owing to
the sampling of the u(·) paths. This issue would be further compounded in the applications
of section 4 involving a stochastic phase that requires an additional sampling of the imaginary
part of the u(·) signal.

We introduce the idea of preconditioning by informing the paths of the αmis(·). This can
be done either by incorporating additional prior information or through the available observa-
tions. To that end we take full advantage of several important characteristics of the SPEKF
model (1.2). In the absence of any additional prior information about the unresolved process
αmis(·), we suggest a mean stochastic model (MSM) and use it to inform the unobserved paths.
Critical to our approach is the observation that (1.2) defines a conditional Gaussian process,
thus avoiding the need to carry out an ellaborate time discretization scheme for the {u(t)}
process. The necessary details are given in the next section.

3. Approximate MCMC via preconditioning. To address the deficiencies of a standard
MCMC approach as described above, we put forward a new algorithm which preconditions the
proposed missing path γmis by imposing soft constraints on γ(t) at the observation times ti.
This is in contrast to the typical approach, see [22] and the references therein, where one would
construct clever proposing mechanisms for the unobserved paths. In essence, the precondi-
tioning procedure replaces the samples drawn from the posterior distribution p(θ, γmis | U)
in (2.2b) by samples from the distribution p(θ, γmis,γpre | U), where γpre is a set of pre-
estimated values for γ(t) at ti. That is, instead of targeting the posterior distribution for
the process model in (1.2), our algorithm targets the posterior distribution for a conditional
SPEKF model where the γ(t) process is restricted to pass through the pre-estimated end-
points. This procedure may introduce a bias in the sampled parameters, but at the same
time greatly improves the efficiency of the proposal distribution over the infinite-dimensional
γ(t) paths. Since SPEKF models have been designed from the outset as surrogate models
for complex partially observed processes, it is acceptable to incur a small bias in the esti-
mated parameters if the predictive skill (which is the ultimate goal in this context) is high.
Indeed, as we demonstrate in section 4, simplifed SPEKF models with parameters estimated
via our proposed approximate MCMC strategy have high predictive skill in both perfect- and
imperfect-model scenarios.
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3.1. Pre-estimating endpoints for the missing process. In a first step, carried out offline,
we estimate “plausible” values for the process {γ(t)} at the observation times ti. These values
are computed by assuming that the observed signal u(t) over the interval [0, T ] is governed
by an MSM

(3.1) du(t) = −γbu(t) dt+ σb
u dWu(t).

The role of this model is to estimate “background” damping and noise parameters, γb and
σb
u, respectively. The parameter σb

u can in fact be estimated consistently using the quadratic
variation of the process {u(t)}, as long as the observations are not too sparse. Let

σ̂b
u =

√√√√ 1

T

N∑
i=1

(Ui − Ui−1)2

be a background estimate of σu. Given σ̂b
u, we use a maximum likelihood estimate for γb,

based on the background likelihood function

pmsm(U | γb) =
n∏

i=1

p(Ui |Ui−1, γ
u),

which is available in closed form, given that (3.1) is an OU process. Let

(3.2) γ̂b = argmaxγb∈···pmsm(U | γb).
Consequently, we assume that in each subinterval [ti−1, ti] the u(t) process is governed by a
local MSM,

(3.3) du(t) = −γ̄iu(t) dt+ σ̂b
u dWu(t),

where σ̂b
u is fixed and estimated as above, and γ̄i is estimated as the maximizer of the local

posterior distribution,

(3.4) p(γ̄i | Ui−1, Ui) ∝ p(γ̄i) p(Ui | Ui−1, γ̄i).

Here, we assume that the prior density p(γ̄i) is Gaussian with mean γ̂b estimated from (3.2)
and a large variance cbγ . Our choice is motivated by two reasons. First, we have limited
prior knowledge on γ̄i and therefore the prior distribution should reflect that uncertainty.
In addition, we do expect that some of the estimated γ̄i values are negative to reflect the
intermittent instability in the process {u(t)}. We note that the local posterior distribution
(3.4) is Gaussian, and the maximizer of p(γ̄i | Ui−1, Ui) can be computed directly.

Let ̂̄γi = argmax p(γ̄i | Ui−1, Ui)

be the estimate of γ̄i over the interval [ti−1, ti]. The average values Γi = (̂̄γi−1 + ̂̄γi)/2 in
two neighboring subintervals [ti−1, ti] and [ti, ti+1] are taken as preconditioning values of the
endpoints of γmis at ti for i = 1, . . . , n − 1. For the first and last endpoint (i = 0 and i = n),
we set Γi = ̂̄γi. An illustration of this procedure is provided in Figure 1.D
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Figure 1. Illustration of the pre-estimation of the endpoints of γ using an MSM.

What remains is to switch the estimated endpoints of γmis to those of αmis. To do this,
we regard Γ = (Γ1, . . . ,Γn) as “observations” of the γ(t) process and estimate a background
diffusion coefficient σ̂b

γ using the quadratic variation

σ̂b
γ =

√√√√ 1

T

N∑
i=1

(Γi − Γi−1)2.

Having the estimated diffusion coefficient σ̂b
γ , the endpoints of γmis are switched to those of

αmis via

(3.5) A = (A1, . . . , An) = Γ/σ̂b
γ .

With these in mind, we are ready to introduce our algorithm via preconditioning.

3.2. Proposed algorithm. A key feature of the new algorithm is to use the precondition
values A in (3.5) to construct an informative prior distribution for the unknown quantities.
To that end we split the path of the process αmis as

αmis = αpre ∪ αmis
− ,

where

αpre = [αmis(t0) , α
mis(t1), . . . , α

mis(tn)] ,

αmis
− = αmis

(t0,t1)
∪ · · · ∪ αmis

(tn−1,tn)
.

Moreover, for each subinterval t ∈ (ti−1, ti) we consider a conditional SPEKF model

(3.6a)

du(t) = −σγα(t)u(t) dt + σu dWu(t),

dα(t) = −dγ
σγ

(σγα(t)− γ̂) dt+ dWγ(t)
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with

(3.6b) u(ti−1) = Ui−1, u(ti) = Ui, α(ti−1) = αpre
i−1, α(ti) = αpre

i .

Correspondingly, we now aim to explore the posterior distribution

(3.7) p(θ, αpre, αmis
− |U) ∝ p(θ)p(αpre)p(αmis

− |θ, αpre)p(U |αmis,θ)

with the following prior specifications:
• p(θ) is an uninformative Gaussian prior distribution.
• p(αpre) is an informative Gaussian distribution, centered at A and a diagonal covari-

ance matrix, with small variances.
• p(αmis− |αpre,θ) is a product of OU bridges which are determined by θ and the end-

points given by αpre. The details on how to construct and simulate such OU bridges
are given in [2] and in the appendix.

We note that this prior specification is different from that induced by the OU process (1.2b)
in that the marginal distribution of αpre is now forced to be a very informative Gaussian
distribution. We now describe the Metropolis–Hastings updates.

Our algorithm alternates between updating the parameters θ and the path (αpre, αmis− ).
We initialize the algorithm by simulating θ{0} ∼ p(θ) and αpre,{0} ∼ p(αpre). Consequently, we

generate a path α
mis,{0}
− by simulating a collection of OU bridges using αpre,{0} as endpoints.

Given (θ{k}, αpre,{k}, αmis,{k}
− ), k ≥ 0, we simulate θ∗ from a proposal distribution θ∗ ∼

g(· |θ{k}). The proposed state θ∗ is accepted with probability

(3.8) min

{
1,

p(θ∗)p(αmis,{k}
− , αpre,{k} |θ∗)p(U |αmis,{k},θ∗)

p(θ{k})p(αmis,{k}, αpre,{k} |θ{k})p(U |αmis,{k},θ{k})
· g(θ

{k} |θ∗)
g(θ∗ |θ{k})

}
.

We note that the prior distribution p(αpre) is constructed by first estimating the A values.
This is done through the MSM and using the observations. Our motivation for this approach
is twofold. First, we want to exploit the conditional Gaussian structure of the SPEKF model
and avoid having to construct complex proposal distributions for the missing paths. Second,
we inform the prior on the skeleton αpre in order to help with the exploration of the path
space for the OU bridges αmis− .

3.3. Updating the missing path. To improve the mixing time of our algorithm and ensure
continuity of the missing path at each iteration, we update amis,{k} in temporally interleav-
ing blocks of duration 2Δt. Specifically, we propose a new path amis,∗ using the following
procedure:

1. If k + 1 is odd, select the even time indices I = {0, 2, . . . , }; otherwise, select the odd
indices I = {1, 3, . . .}.

2. For each i ∈ I, simulate a new endpoint

(3.9) αpre,∗
i ∼ pi(α

pre).

3. For each i ∈ I, simulate two adjacent OU bridges αmis,∗
[ti−1,ti]

and αmis,∗
[ti,ti+1]

with end-

points α
pre,{k}
i−1 , αpre,∗

i and αpre,∗
i , α

pre,{k}
i , respectively. The path segment αmis,∗

[ti−1,ti]
is
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A
i

a
i
pre,{k−1}

a
i
pre,{k}

A
i

a
i
pre,{k−1}

a
i
pre,{k}

t0

t0 t1

t1 t2 t4

t4

t5

t5

t6

t6

Block 1

t3

t3

Block 2

Block 2 Block 3
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Figure 2. Illustration of the update procedure for the missing path αmis.

accepted with probability

(3.10) min

{
1,

p(U |αmis,∗
[ti−1,ti]

,θ{k})

p(U |αmis,{k},θ{k})

}
.

Next, we construct the full proposed missing path αmis,∗ by concatenating the subpaths,
i.e.,

αmis,∗ ≡ α
mis,{k}
[t0,t1]

∪ α
mis,{k}
[t1,t2]

∪ · · · ∪ αmis,∗
[ti−1,ti]

∪ αmis,∗
[ti,ti+1]

∪ · · · ∪ α
mis,{k}
[tn−1,tn]

.

The αmis,∗ defined above is then used in the model parameter update in (3.8). In practice, we
represent all the paths above using a fine grid for every time interval [ti−1, ti]. All deterministic
integrals involved in the algorithm are evaluated using a trapezoidal rule. Moreover, the
distribution pi(α

pre
i ) of the endpoints is a Gaussian with zero mean and variance equal to

0.22(σ2
i−1/2 + σ2

i+1/2), where σ2
i−1/2 is the variance of p(γ̄i | Ui−1, Ui) in (3.4).

Observe that by virtue of the conditional model structure in (3.6), the ratio of the prior
densities will cancel the ratio of the proposal densities in (3.10), i.e.,

(3.11)
p(αmis,∗

− , αpre,∗ |θ{k})
p(αmis,{k}, αpre,{k} |θ{k})

· g(α
mis,{k}, αpre,{k} |θ{k})

g(αmis,∗
− , αpre,∗ |θ{k})

= 1,

since the new path is proposed independently of the old path by simulating from the prior
distribution. In particular, (3.11) holds only approximately in the case of the standard (un-
conditional) SPEKF model in (1.2).

We refer the reader to Figure 2 for an illustration of our block update strategy. As
remarked earlier, our updates maintain the continuity of the sample paths corresponding to
the αmis(·) process. Our new sampling algorithm is summarized below.D
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MCMC algorithm with preconditioning.

1. Compute the precondition values Ai for the missing process from (3.5) using the pre-
conditioning algorithm of section 3.1.

2. Set the number of iterations K. Set k = 0. Select the initial parameters θ{0}, and
construct the initial path αmis,{0} =

⋃
i α

mis,{0}
[ti,ti+1]

, where α
mis,{0}
[ti,ti+1]

are OU bridges in the

interval [ti, ti+1 ] with endpoints [α
pre,{0}
i , α

pre,{0}
i+1 ] given by (3.5).

3. In step k + 1, draw the endpoints of αpre,∗
i from (3.9).

4. Construct OU bridges αmis,∗
[i,i+2] with endpoints [α

pre,{k}
i , α

pre,{k}
i+2 ] over the intervals

[t0, t2], [t2, t4], . . . if k + 1 is odd or [t0, t1], [t1, t3], [t3, t5], . . . if k + 1 is even. If the
total number of subintervals is odd, then the last block contains only one subinterval.

5. Accept each of the proposed OU bridges with the probability given in (3.10). If αmis,∗
[i,i+2]

is rejected, then replace it by α
mis,{k}
[i,i+2] .

6. Propose the parameters θ∗ from some proposal function g(θ∗ |θ{k}).
7. Accept θ∗ with probability given by (3.8). If the proposal is rejected, then set θ∗ =

θ{k}.
8. Set k = k + 1. Go to step 3, and repeat until k + 1 = K.

4. Numerical tests. We discuss applications of the algorithm developed in section 3 to
three experiments involving intermittent signals, one in a perfect model setting and two in a
scenario where the signal is generated by a model which lies outside the simplified SPEKF
family (1.2). In addition to parameter estimation, we are interested in assessing the skill of
the SPEKF model estimated through MCMC to reproduce the statistics of test data which
are not part of the dataset used for parameter estimation.

4.1. Information-theoretic measures of predictive skill and model error. We character-
ize predictive skill and model error using techniques from information theory [5, 26, 17, 29].
In particular, we consider that the statistics of the observed signal u(t) at the forecast lead
time t given initial data u0 = u(0) are described by a time-dependent PDF pt(u | u0) with
a well-defined equilibrium peq(u) = limt→∞ pt(u | u0). The MCMC-estimated SPEKF model
produces forecast PDFs pMt (u | u0) and pMeq (u) = limt→∞ pMt (u | u0), but these PDFs will in
general differ from the PDFs of the true signal. Throughout, we use the term “perfect model”
to indicate the model that generates the true signal, and “imperfect model” to represent the
simplified SPEKF model with the parameters estimated through the MCMC algorithm.

Here, we employ three metrics for model assessment which measure (1) predictability of
u(t) in the perfect model; (2) internal predictive skill of u(t) in the MCMC-estimated SPEKF
model; and (3) model error of the estimated model relative to the perfect model. These
metrics are defined as follows.

Intrinsic predictability, Dt. This metric quantifies the information provided by the initial
conditions about the future state of the system beyond the prior knowledge available through
equilibrium statistics. This information gain is computed through the relative entropy between
the time-dependent and equilibrium PDFs, i.e.,

(4.1) Dt = P(pt, peq),D
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where the functional P(p, q) =
∫
p log(p/q) is the relative entropy between two probability

measures.
Internal predictive skill, DM

t . In direct analogy with (4.1), we introduce the relative-entropy
metric

(4.2) DM
t = P(pMt , pMeq ),

which measures information gain in the time-dependent forecast PDF of the imperfect model
beyond the model’s equilibrium. DM

t will convey false predictability if either of pMt or pMeq
are biased away from the truth. Nevertheless, it is an important metric for model assessment
since it measures potential initial-value predictive skill in the model relative to a trivial forecast
drawn from the model’s equilibrium.

Model error, Et. This metric measures the lack of information in the imperfect model
density compared to a perfect statistical forecast. It is defined as

(4.3) Et = P(pt, p
M
t ).

In the following numerical tests, the initial value u0 is set to the mean value at equilibrium.
In separate calculations, we have confirmed that different u0 values lead to qualitatively similar
results.

4.2. Parameter estimation in a perfect-model setting. The first numerical test deals
with a perfect-model environment where both the perfect model that generates the signal and
the imperfect model for parameter estimation and prediction are in the simplified SPEKF
model class. Thus, model error in this example is solely due to poor parameter estimation.

To reflect the wave-like behavior of many signals, a deterministic phase is introduced in
the dynamics of the resolved variable u, leading to the simplified SPEKF model,

du(t) = (−γ(t) + iω)u(t) dt+ σu dWu(t),(4.4a)

dγ(t) = −dγ
(
γ(t)− γ̂

)
dt+ σγ dWγ(t).(4.4b)

Note that there are five unknown parameters in this system. The algorithm for parameter
estimation remains the same as that without phase, except that the variable u(t) and its asso-
ciated stochastic forcing dWu(t) become complex, and both ω and σu need to be incorporated
in the MSM (3.1) for preconditioning.

To generate a signal with intermittency, we set the perfect-model parameter values γ̂∗ =
0.8, σ∗

u = 0.15, σ∗
γ = 0.7, d∗γ = 0.5, and ω = 2. The observation time step is Δt = 0.5, which

is shorter than the averaged decorrelation time of u, τucorr = 1/d∗γ = 2. The training time
series, shown in Figure 3, has length T = 250 and thus contains 501 observations. The large
burst of u around t = 75, 200, and 225, which corresponds to a transient phase of negative γ,
reflects the intermittent instability. The intermittency occurrence is not observed with a high
frequency, but the amplitude of the intermittency is large. Thus, this type of intermittent
instability produces “black swan”-like events.

The variance of the prior distribution (3.4) of γ̄ for preconditioning is chosen to be cbv = 4
so that γ̄ has access to negative values. The scaling coefficient σγ

b to convert the endpoints ofD
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Figure 3. Training time series for the experiment with no model error. The top and middle panels show
the real and imaginary parts of the resolved variable u(t). The bottom panel shows the unresolved stochastic
damping γ(t). Only observations of u(t) (indicated by point markers) are used for parameter estimation via
MCMC. The γ(t) process is hidden from the algorithm.

γmis to αmis via (3.5) is estimated as σb
γ = 0.64. The prior distributions of the five parameters

are

(4.5) σu ∼ Γ(2, 1/2), σγ ∼ Γ(2, 1), ω ∼ Γ(2, 1), γ̂ ∼ N (2, 2), dγ ∼ N (2, 1),

where Γ and N are the PDFs of the Gamma and Gaussian distributions, respectively,

(4.6) Γx(k, θ) =
1

θk
1

Γ(k)
xk−1e−

x
θ , Nx(μ, σ

2) =
1√
2πσ2

e−
(x−μ)2

2σ2 .

Note that apart from prescribing the sign of the diffusions and phase, the prior distribution
has almost no influence on the parameter estimation with our new sampling algorithm. The
proposal function g(θ) in the MCMC algorithm is set to a Gaussian with zero mean and
standard deviation 1/4 and is evaluated for each component separately. The initial MCMC
iterates θ{0} are all set to be twice their true values. The missing paths are generated using
an Euler numerical scheme with time step Δt = 0.01.

Figure 4 displays MCMC trace plots of the five parameters together with the estimated
equilibrium variance of γ. The acceptance rates of γ̂ and dγ are around 70%, and that of
σu, σγ , and ω are around 40%. Moreover, the acceptance rate of the missing path αmis is
around 75%, which is a significant improvement compared to the < 0.1% acceptance rate of
the direct algorithm (see section 2). As shown in Figure 5, the parameters decorrelate after
approximately 50 iterations. Thus, the new algorithm provides a well-mixed Markov chain.

Figure 6 displays the true value, the given prior distribution, and the posterior PDFs
of the five SPEKF parameters, as well as the equilibrium PDF of γ corresponding to the
maximum a posteriori estimates of σγ and dγ . All parameters are estimated accurately and
have small uncertainty. In particular, the equilibrium variance of γ in the imperfect model,D
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Figure 4. Trace plots of the parameters of the simplified SPEKF system (4.4) estimated via the new MCMC
algorithm of section 3, where the true signal is shown in Figure 3. Here, k denotes the MCMC iteration.
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Figure 5. Autocorrelation functions of the parameter traces of Figure 4 computed after a burn-in period of
1000 iterations.

i.e., var(γ) = σ2
γ/(2dγ), agrees well with the true value, σ∗

γ/(2d
∗
γ). As a result, the equilibrium

distribution of γ has access to negative values, enabling the imperfect model to produce
intermittency.

The imperfect model with the parameters from maximum a posteriori estimates via the
MCMC algorithm is able to reproduce both the equilibrium and off-equilibrium statistics of the
perfect model with high skill. As shown in Figure 7, the autocorrelation functions ρu(t) and
ρMu (t) for u in the perfect and imperfect models, respectively, oscillate at the same frequency,
with ρMu decaying only slightly slower than than ρu. Moreover, the internal predictive skill
metric DM

t from (4.2) matches well with the intrinsic predictability from (4.1). Both Dt andD
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Figure 6. Parameter estimation for the simplified SPEKF system (4.4) performed via the new MCMC
algorithm. Panels (a)–(e) show the prior distribution (solid lines), posterior distribution from the MCMC
algorithm (dashed lines), and the true value of the parameters (circles) of γ̂, σu, σγ , dγ , and ω, respectively.
Panel (f) compares the equilibrium PDF of the unresolved variable γ(t) of the perfect model and the model
equipped with the maximum a posteriori estimates of the parameters.
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Figure 7. Perfect-model predictability (left) and predictive skill of the imperfect model equipped with the
maximum a posteriori estimated parameter values from Figure 6. The top and middle panels show the autocor-
relation functions ρu(t) and ρMu (t), the perfect-model predictability score Dt from (4.1), and internal prediction
skill DM

t from (4.2), respectively. The bottom right panel shows the evolution of the model error Et from (4.3).
The bottom left panels display the equilibrium PDF of the perfect model and the model (solid) with the estimated
parameters (dashed) in both linear and logarithmic scales.

DM
t are significantly larger than the model error Et for short-range forecasts with t � 0.5.

The medium-range (0.5 � t � 2) prediction skill of the imperfect model is slightly worse than
the prefect model, but still larger than Et. Both the perfect and imperfect model equilibrate
around t = 3.0, at which point the model error in the equilibrium distribution pMeq (u) becomesD
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negligible. In particular, the imperfect model succeeds in capturing the fat tails of the true
distribution peq(u), which are the outcomes of extreme events. We remark that the residual
errors in the estimated parameters are possibly due to the shortness of the training time series.
More accurate estimation should be achievable using longer training time series.

4.3. Parameter estimation with model error. The more realistic situation for parameter
estimation and prediction is in the presence of model error, i.e., for u(t) signals generated by
models which are not in the simplified SPEKF class. Here, we discuss two such experiments
where intermittent instability in u(t) is the outcome of a two-state Markov jump process
(section 4.3.1) and a nonlinear stochastic process with correlated additive and multiplicative
(CAM) noise (section 4.3.2).

4.3.1. Intermittent instability from a Markov jump process. In this application, the
unresolved variable γ(t) of the perfect model that generates the signal is assumed to be driven
by a two-state Markov jump process, i.e.,

(4.7)
du(t) = (−γ(t) + iω)u(t) dt + σu dWu(t),

γ(t) satisfies a two-state Markov jump process.

The system (4.7) features regime switching and can be utilized to mimic unresolved baroclinic
instabilities in the atmosphere or ocean [28]. Here, the damping γ(t) switches between the
stable phase γ+ = 2.27 and the unstable phase γ− = −0.04. The switching rate from the
stable to unstable phase is ν = 0.1 and that from the unstable to stable phase is μ = 0.2.
Therefore, the time-averaged damping is given by γ̄ = (νγ−+μγ+)/(μ+ ν) = 1.5. The phase
and diffusion coefficients are ω = 1.782 and σu = 0.1095, respectively.

The observed u(t) signal for parameter estimation and the underlying γ(t) process are
shown in Figure 8, where negative γ(t) values corresponds to intermittent instability. The
observation time step is Δt = 0.5, which is shorter than the decorrelation time of u(t). The
length of the observed time series is T = 250, corresponding to 501 observations. The variance
of γ̄ in the preconditioning algorithm of section 3 is set to cbv = 6 to ensure access to negative
values. The scaling coefficient in (3.5) is around σb

γ = 0.8. The prior distributions of the
parameters are the same as in (4.5).

Figure 9 shows a proposal of the missing path γmis constructed by OU bridges in step 6
of the new algorithm (after rescaling αmis,{k} by σb

γ). Clearly, the proposed missing path has
a similar pattern as the true signal, and therefore it succeeds in recovering the intermittency.
Figures 10–12 show trace plots and autocorrelation functions of the MCMC iterations, and
the PDFs for parameter estimation obtained via the new algorithm, respectively. Similar to
the example in section 4.2, the new algorithm has a high acceptance rate and is able to recover
the intermittent instability.

Figure 13 displays the prediction skill resulting from maximum a posteriori estimates of
the parameters obtained via the new algorithm. The autocorrelation function of the imperfect
model has the same oscillation frequency as that of the perfect model, but it decays slightly
faster than its perfect model counterpart. Moreover, the model error Et from (4.3) in the
equilibrium PDF pMeq (u) is small. In particular, the imperfect model has a similar fat-tailed
density as the equilibrium PDF peq(u) in the perfect model, which implies that the imperfect
model is able to capture the extreme events. The imperfect model has good short-rangeD
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γ

t

Figure 8. True signal generated by system (4.7) featuring a two-state Markov jump process. The top and
middle panels show the true signal of the real and imaginary parts of the resolved variable u and the bottom
panel shows that of the unresolved variable γ, which is a two state Markov jump process with stable phase
γ+ = 2.27 and unstable phase γ− = −0.04. Only observations of u (indicated by point markers) are used for
parameter estimation via MCMC. The γ process is hidden from the algorithm.
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Figure 9. A sample of the missing path γmis using the new algorithm (solid) compared with the true
two-state Markov jump process signal (dashed) from (4.7).

internal prediction DM
t from (4.2) skill for t < 0.70. However, its medium-range forecasts

from that model are not accurate in the sense that DM
t , which decays slightly faster than the

perfect model predictability score Dt, is exceeded by the model error. Nevertheless, the model
error remains small at later times, giving a good estimation of the equilibrium distribution.

4.3.2. Intermittent instability with correlated additive-multiplicative noise. We have
also studied an example in which the unresolved variable is driven by a nonlinear and non-
Gaussian dynamics with cubic nonlinearity and CAM noise [27],

du(t) = (−γ(t) + iωu)u(t) dt + σu dWu(t),(4.8a)

dγ(t) = (−aγ(t) + bγ2(t)− cγ3(t) + fγ) dt+ (A−Bγ(t)) dWc(t) + σ dWγ(t),(4.8b)
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Figure 10. Trace plots of the parameters of the simplified SPEKF system (4.4) estimated via the new
MCMC algorithm of section 3, where the true signal is generated by system (4.7) and is shown in Figure 8.
Here, k denotes the MCMC iteration.
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Figure 11. Autocorrelation functions of the parameter traces of Figure 10 after a burn-in period of 1000
samples.

We selected a dynamical regime in which γ(t) is bimodal [see Figure 15(f)]. The training
time series is shown in Figure 14. There, γ(t) is qualitatively similar to two-state Markov
jump process of section 4.3.1 but has a continuous path. The observation time is Δt = 0.5,
which is again shorter than the averaged decorrelation time of u(t). The theoretic optimized
parameters σγ , dγ , and γ̂ can be computed by matching the mean, variance, and decorrelation
time of the cubic model (4.8b) with those of SPEKF model (4.4b) and are illustrated by the
green dot in Figure 15.

Parameter estimation results from the new algorithm are shown in Figure 15. The param-
eters γ̂, σu, and ω are estimated with high accuracy. Both damping dγ and diffusion σγ areD
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Figure 12. Estimation of SPEKF parameters via the new algorithm for an observed signal generated by the
Markov jump process system (4.7). Panels (a)–(e) show the prior distribution (solid line), posterior distribution
from MCMC algorithm (dashed line), and the true parameter values if available (circle) of γ̂, σu, σγ , dγ , and
ω, respectively. Panel (e) shows the equilibrium PDF of the unresolved variable γ of the SPEKF model equipped
with maximum a posteriori estimates of the parameters.
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Figure 13. Perfect-model predictability (left) and predictive skill of the imperfect model equipped with
the maximum a posteriori estimated parameter values from Figure 12. The true signal in 8 is generated by
system (4.7). The top and middle panels show the autocorrelation functions ρu(t) and ρMu (t), the perfect-model
predictability score Dt from (4.1), and internal prediction skill DM

t from (4.2), respectively. The bottom right
panel shows the evolution of the model error Et from (4.3). The bottom left panels display the equilibrium PDF
of the perfect model and the model (solid) with the estimated parameters (dashed) in both linear and logarithmic
scales.

slightly overestimated, but the ratio σ2
γ/(2dγ), which is the variance of γ(t), is very close to

the variance of the Gaussian approximation of the perfect model. The prediction skill results
(not shown here) are qualitatively similar to those in Figure 13 for system (4.7), but in thisD
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Figure 14. True signal generated by system (4.8). The top and middle panels show the true signal of the
real and imaginary parts of the resolved variable u(t) and the bottom panel shows that of the unresolved variable
γ(t), the equilibrium distribution of which is bimodal. Only observations of u(t) (indicated by point markers)
are used for parameter estimation via MCMC. The γ(t) process is hidden from the algorithm.
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Figure 15. Estimation of SPEKF parameters via the new algorithm for an observed signal generated by
the system (4.8). Panels (a)–(e) show the prior distribution (solid line), posterior distribution from MCMC
algorithm (dashed line), and the true parameter values if available (circle) of γ̂, σu, σγ , dγ , and ω, respectively.
Panel (e) shows the equilibrium PDF of the unresolved variable γ(t) of the SPEKF model equipped with maximum
a posteriori estimates of the parameters.

case the continuity of the γ(t) in the perfect model leads to a somewhat smaller model error
of the imperfect model.

5. Conclusions. In this paper, the simplified SPEKF model (1.2) is utilized as a low-
order process model to approximate signals with hidden intermittent instability. Bayesian
inference incorporating data augmentation [39] is applied for parameter estimation in thisD
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class of models via MCMC algorithms. Direct applications of MCMC with data augmentation
[34] were found to result in a low acceptance rate of the missing path and poor parameter
estimation skill. A new MCMC algorithm was developed, which involves a preconditioning
procedure to pre-estimate the unresolved process at the discrete moments that are consistent
with the observations of the resolved variable. This new algorithm provides a high acceptance
rate of the proposed missing path for data augmentation and produces posterior PDFs for
parameter estimation of high accuracy and low uncertainty.

We have performed a suite of numerical tests of the new algorithm in both perfect-model
settings and applications where the observed signal is generated by a model which is not
of SPEKF type. In all cases, the SPEKF models with parameters estimated via the new
algorithm were able to capture the fat-tailed PDFs of the observed signal resulting from
extreme events due to hidden intermittent instability. In a challenging application with model
error where intermittent instability is generated by a discontinuous two-state Markov jump
process, the new algorithm led to SPEKF models of high short-range predictive skill and high
fidelity relative to the true-model statistics in both medium- and long-range forecasts.

Future work will involve generalizing the algorithm to perform parameter estimation in the
full SPEKF model (1.1), as well as the even more complicated case [6] with a stochastic phase
ω(t) in u(t). The full SPEKF model with stochastic phase has 11 explicit parameters and
several implicit parameters in the forcing. Whether some of the parameters are redundant and
how to estimate a large number of parameters with only partial observations in u(t) are both
important research questions. The application of SPEKF models to parameter estimation
and prediction with real-world data with intermittency, such as data for the Madden–Julian
oscillation, ENSO, and planetary boundary layers, will be taken into consideration in the
future.

Appendix. This section summarizes Lemma 3.1 in [2] for sampling the OU bridge. Con-
sider an OU bridge, which is a solution to the stochastic differential equation

dXt = −θXtdt+ σdWt

conditionally on X0 = a and XT = b for some a, b ∈ R.
Lemma 3.1 in [2]. Generate Xt0 ,Xt1 , . . . ,Xtn ,Xtn+1 , where 0 = t0 < t1 < · · · < tn <

tn+1 = T , by X0 = a and

Xti = e−θ(ti−ti−1)Xti−1 +Wi, i = 1, . . . , n+ 1,

where the Wis are independent and

Wi ∼ N
(
0, σ2

(
1− e−2θ(ti−ti−1)

2θ

))
.

Define

Zti = Xti + (b−Xtn+1)
eθti − e−θti

eθtn+1 − e−θtn+1
, i = 0, . . . , n+ 1.

Then (Zt0 , Zt1 , . . . , Ztn , Ztn+1) is distributed like an OU bridge with Zt0 = a and Ztn+1 = b.
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