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Abstract

This work focuses on elucidating issues related to an increasingly common technique of Multi Model
Ensemble (MME) forecasting. This approach is aimed at improving the statistical accuracy of imperfect
time-dependent predictions by combining information from a collection of reduced-order dynamical models.
Despite some operational evidence in support of the use of the MME strategy for mitigating the prediction
error, the mathematical framework justifying this approach has been lacking. Here, this problem is
considered within a probabilistic/stochastic framework which exploits tools from information theory to
derive a simple criterion for an improvement of probabilistic predictions within the MME framework
relative to single model predictions. The emphasis is on a systematic understanding of the benefits and
limitations associated with the MME approach, on uncertainty quantification, and on the development
of practical design principles for constructing an MME with an improved predictive performance. The
condition for prediction improvement via the MME approach stems from convexity of the relative entropy
which is used here as a measure of the lack of information in the imperfect models relative to resolved
characteristics of the truth dynamics. It is also shown how practical guidelines for MME prediction
improvement can be implemented in the context of forced response predictions from equilibrium with
the help of the linear response theory utilizing the fluctuation-dissipation formulas at the unperturbed
equilibrium. The general theoretical results are illustrated using exactly solvable non-Gaussian test models.

1 Introduction

Dynamical prediction of complex multi-scale systems based on imperfect models and spatio-temporally
sparse observations of the truth dynamics is a notoriously difficult problem which is, nevertheless, essential
in many applications such as climate-atmosphere science [14, 61], materials science [10, 30], neuroscience
[62], or systems biology and biochemistry [57, 66, 12, 29]. Due to the high-dimensional, multi-scale nature
of such time-dependent problems, it is challenging to obtain even statistically accurate predictions of the
coarse-grained characteristics of the truth dynamics. Advances in computing power and new theoreti-
cal insights have spurred the development of a plethora of reduced-order models (e.g., [15, 14, 56, 61])
and data assimilation techniques (e.g., [3, 28, 27, 16, 52]). Various ways of minimizing uncertainties in
imperfect predictions and validating the reduced-order models have been developed in this context (e.g.,
[49, 40, 50, 8, 48, 9]). Data assimilation aside, one of the most important challenges in improving imperfect
predictions concerns the mitigation of model error in reduced-order dynamical models. Recent develop-
ments provide new techniques for mitigating coarse-graining errors, and for counteracting errors due to
neglecting nonlinear interactions between the resolved and unresolved processes in reduced-order mod-
els; these include the stochastic superparameterization [24, 51] and reduced subspace closure techniques
[64, 65, 63].

This work focuses on elucidating issues related to an increasingly common technique of Multi Model
Ensemble (MME) predictions which is complementary to improving individual imperfect models. The
heuristic idea behind MME prediction is simple: given a collection of models, consider the prediction
obtained through a linear superposition of individual model forecasts in the hope of mitigating the overall
prediction error. While there is some evidence in support of the MME approach for improving imperfect
predictions, particularly in atmospheric sciences (e.g., [60, 67, 13, 25, 70, 71, 68, 69]), a systematic frame-
work justifying this approach has been lacking. In particular, it is not obvious which imperfect models,
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and with what weights, should be included in the MME forecast in order to improve imperfect predictions
within this framework. Consequently, virtually all operational MME prediction systems for weather and
climate are based on equal-weight ensembles [25, 70, 68, 71, 69] which are likely to be far from optimal [13].

The main focus of the present work is on a systematic understanding of benefits and limitations
associated with the MME approach to improving imperfect predictions; important practical issues in this
context are the following:

(a) How to measure the skill (statistical accuracy) of dynamic MME predictions relative to single model
predictions?

(b) Is there a condition guaranteeing an improvement of predictions via the MME approach relative to
single model predictions?

(c) How to construct an MME for best prediction skill at short, medium and long time ranges?

Here, we consider the MME prediction within a probabilistic/stochastic framework which exploits tools
from information theory in order to systematically understand the characteristics of such an approach.
This probabilistic framework can be utilized in two different contexts: First, when dealing with deter-
ministic imperfect models, one can consider a time-dependent probability density function constructed
by initializing the models from a given distribution of initial conditions. Second, the probabilistic pre-
diction framework arises naturally when using stochastic reduced-order models in imperfect predictions
which is an increasingly common approach (e.g., [15, 59, 60, 47, 45, 36, 37, 38]). In many operational
settings dynamic predictions can be obtained through a weighted superposition of forecasts obtained from
a collection of imperfect models (e.g., [25, 70, 68, 71, 69]). However, the individual imperfect models are
usually highly complex and not easily tuneable and it is desirable to consider the possibility of prediction
improvement by adjusting only the ensemble weights. In order to shed light on the issues (a)-(c) above,
we set out an information-theoretic framework capable of

(i) quantification of uncertainty and improving the imperfect predictions via the MME approach;

(ii) providing practical guidelines for improving dynamic MME predictions given a small collection of
available imperfect models.

In this work we derive a simple criterion for improving probabilistic predictions via the MME approach.
Moreover, we provide a simple justification of why the MME prediction can have a better prediction skill
than the single best model in the ensemble. Finally, we derive systematic guidelines for constructing
finite model ensembles which are likely to have a superior predictive skill over any single model in the
ensemble. These results stem largely from the convexity of relative entropy (e.g., [11]) which is used
here as a measure of a lack of information in the imperfect models relative to the resolved characteristics
of the truth dynamics. We show that the guidelines for MME prediction improvement in the context
of a forced perturbation from an equilibrium can be implemented with the help of the linear response
theory and the ‘fluctuation-dissipation’ approach for forced dissipative systems [47, 35, 2, 41, 23, 50, 39]);
this approach follows from the earlier work on improving imperfect predictions in the presence of model
error in the single-model setup (see, for example, [32, 42, 33, 49, 40, 50, 18, 8, 48]). When considering
prediction improvement for the initial value problem the practical implementation of the condition for skill
improvement through MME can be carried out in the hindcast/reanalysis mode (e.g., [31]). Although we
focus here on mitigating prediction error via the MME approach, it is worth stressing that the ultimate goal
in imperfect reduced-order prediction should involve a synergistic approach that combines improvement
reduced-order models with an MME framework for both data assimilation and prediction.

This paper is structured as follows: First, in section 2 we motivate the need for a systematic analysis
of MME prediction. In section 3 we derive the information-theoretic criterion for improving the skill of
MME predictions relative to single model predictions. A set of particularly useful results is discussed
in §3.2 where Gaussian models are used in MME; this approach provides a helpful intuition for dealing
with the general results of §3. Section 4 combines the analytical estimates of §3 with simple numerical
tests which are based on statistically exactly solvable models described in §4.1. We conclude in §5 by
summarizing the most important results and discuss directions for further research in this area, including
extensions to a multi model ensemble approach to data assimilation. Technical details associated with the
analytical estimates derived in §3 are presented in Appendices.
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Figure 1: Dependence of the prediction error within the MME framework on the nature of the non-Gaussian truth dynamics
(given by (36) in §4.1.2); here, the MME mixture density (1) contains Gaussian models (24) with correct statistics of the
initial conditions and correct marginal equilibrium for the resolved dynamics. Top-row insets show the evolution of the
error via the relative entropy (2) for predicting the resolved truth dynamics with: (Left) symmetric fat-tailed equilibrium
density with initial statistical conditions in a stable regime of the truth dynamics; (middle) symmetric fat-tailed equilibrium
density with initial conditions in an unstable regime of the truth, (right) skewed equilibrium density with initial conditions
in a stable regime of the truth. The bottom insets show the weights αi in MME density (1); the optimal-weight MME
(9) minimizes the time-averaged relative entropy by adjusting the ensemble weights. Note that the performance of MME
prediction, as well as the structure of the optimal-weight MME, depend strongly on the nature of the truth dynamics.

2 Motivating examples

Consider the dynamics of a high-dimensional, nonlinear system where only a small subset of its dynamical
variables can be reasonably modelled or accessed through empirical measurements. The resolved dynamics
of the full system is affected by nonlinear, multi-scale interactions with unresolved processes which cannot
be observed or even correctly modelled (e.g., [44]). Nevertheless, we are interested in a statistically accurate
prediction of the resolved dynamics using a collection of imperfect reduced-order dynamical models which
approximate or neglect the interactions between the resolved and unresolved dynamics. To this end,
assume that the state vector of dynamical variables in the true high-dimensional system decomposes as
v = (uuu,vvv), where uuu ∈ IRK ,K < ∞, denotes the resolved variables and vvv ∈ IRN denotes the unresolved
variables; we tacitly assume thatK � N which is natural when dealing with complex multi-scale dynamics
such as the turbulent dynamics of geophysical flows (e.g., [44]). The time-dependent probability density
associated with the Multi Model Ensemble (MME) of imperfect reduced-order models on the subspace of
resolved variables uuu is given by a convex superposition of the model densities in the form

πmme
ααα,t (uuu) ≡

∑
i=1

αiπ
mi
t (uuu),

ˆ
duuuπmme

ααα,t (uuu) = 1,
∑
i=1

αi = 1, αi � 0, (1)

where πmi
t represent probability densities associated with the imperfect models mi in some class M. We

are particularly interested in mitigating the prediction error via the MME approach by adjusting the
model weights αi in (1) with fixed characteristics of the individual imperfect models mi ∈ M. The lack
of information at time t between the MME and the truth statistics on the resolved subspace of variables
is measured using the relative entropy [34]

P(πt, π
mme
ααα,t ) =

ˆ
duuuπt ln

πt

πmme
ααα,t

. (2)

This non-negative functional satisfying P(πt, π
mme
ααα,t ) = 0 only when πt = πmme

ααα,t is not a proper metric.
However, it possesses a number of desirable properties such as convexity in the pair (π, πmme) and it
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satisfies a ‘triangle equality’ for a certain class of densities discussed later (see also [47, 8, 48]); moreover,
the relative entropy is invariant under general changes of variables [42, 44] which is a desirable from a
measure of model error in applications. We use the relative entropy (2) as an information-based measure of
the time-dependent error in imperfect probabilistic predictions; additional measures of predictive skill were
introduced earlier in the context of uncertainty quantification in the single model context are discussed in
§4.3.1 (see also [40, 50, 45, 8, 48]). Here, we show that the information-theoretic approach is very useful
when considering improving imperfect predictions in the MME context. In particular, this setting helps
address the following general questions:

• What characteristics of a MME lead to uncertainty reduction relative to a single imperfect model?

• How to construct a MME for best prediction at short, medium and long time ranges?

In the subsequent sections we derive a simple condition for improvement of dynamical predictions via
the MME approach relative to the best single imperfect model. However, before embarking on a detailed
analysis, some motivating examples are presented in figure 1 which shows that not every MME prediction
is superior to the single model prediction, and the structure of the optimal-weight MME depends on both
the truth dynamics and the imperfect models in the ensemble. The top-row insets show the evolution of
the prediction error in terms of the relative entropy (2) in three different dynamical regimes of a non-
Gaussian truth dynamics (described later in §4.1.2). In all cases the statistics of the initial conditions and
the marginal equilibrium for the resolved dynamics in the imperfect Gaussian models mi coincide with
those of the truth dynamics; in addition, the single model predictions are carried out with an imperfect
model tuned to have the correct correlation time τ trth of the resolved dynamics at equilibrium. The bottom
row in figure 1 shows the weight structure of the MME with individual models in the ensemble labelled by
the correlation time τ of their equilibrium dynamics; the optimal-weight MME is obtained in this case by

minimizing the average relative entropy 1
T

´ T

0
P(πt, π

mme
t )dt over the whole time interval considered. Note

that the error of the MME prediction relative to the single model prediction varies significantly between
the three configurations in (a)-(c); moreover, the structure of the optimal-weight MME changes drastically
from an MME containing only models with τmi > τ trth in (a), to an MME with τmi < τ trth in (b), to an
MME containing a single imperfect model with the smallest correlation time in the ensemble in (c). The
difference between the configuration in (a) and (b) lies in the initial statistical conditions: in (a) the initial
conditions are such that the resolved dynamics is in a stable regime, while in (b) the resolved dynamics
is initially in a transient unstable phase. The configuration shown in figure 1c corresponds imperfect
predictions of the resolved non-Gaussian dynamics when the truth equilibrium statistics is significantly
skewed. (See §4.3.2 for more details.)

Clearly, the performance of the MME approach for improving imperfect predictions depends on both
the structure of the MME and on the nature of the truth dynamics. The above examples highlight the
need for a more analytical insight which would allow to understand when and why the MME approach
leads to improved predictions. In the next section we focus solely on this topic and we obtain a sufficient
condition for prediction improvement via the MME approach. The general theoretical results derived in §3
are discussed further in §4 based on two simple but revealing test models described in §4.1.

3 Information-theoretic estimates of the predictive skill of MME

Here, we develop an information-theoretic framework for assessing the potential improvement of imperfect
predictions through the Multi Model Ensemble (MME) approach. First, in §3.1 we derive a condition
for improving the predictive skill within the MME framework; it turns out that this condition requires
evaluating only certain least-biased estimates of the truth which are obtained by maximizing the Shannon
entropy subject to moment constraints, making this approach amenable to applications. Implications of
this information-based criterion are discussed in §3.1.3 for both the initial value problem and the forced
response prediction. More insight and intuition can be gained by restricting the MME prediction problem
to the Gaussian mixture configuration which is discussed in §3.2. The results presented here exploit the
convexity of the relative entropy (2) between the truth and the MME density in (1) which measures the
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lack of information in the MME density relative to the truth. Further details, along with some simple
proofs of the facts established below, are relegated to Appendix A.

3.1 Improving predictions through MME framework

Consider imperfect probabilistic predictions of the truth dynamics on the subspace of resolved variables
uuu ∈ IRK based on the Multi Model Ensemble (MME) with density πmme

ααα,t in (1). As in §2, we assume

that the truth dynamics has a probability density function denoted by pt(uuu,vvv), vvv ∈IRN , K�N , and the
corresponding marginal density on the resolved subspace is πt(uuu) =

´
pt(uuu,vvv)dvvv. Given some class M of

reduced-order models for the resolved dynamics uuu(t), the best single model, m∗, for making predictions at
time t is given by

P(πt, π
m∗
t ) = min

m∈M
P(πt, π

m
t ), P(πt, π

m
t ) =

ˆ
duuuπt ln

πt

πm
t

, (3)

where πt is the truth density, πm
t represents the probability density associated with the models m ∈ M,

and the relative entropy P(πt, π
m
t ) measures the lack of information in πm

t relative to the truth marginal
density πt (see [49, 40, 50, 8, 48]). The best single model m∗

I ∈ M for making predictions over the time
interval I, is given by

PI(π, πm∗
I ) = min

m∈M
PI(π, πm), (4)

where PI(π, πm) :=
ffl
I P(πt, π

m
t )dt measures the average lack of information over the time interval I. We

introduce the following information measure to quantify the performance of the MME prediction relative
to the single-model prediction with model m�

Pmme,m�
α,M,I =

 
I

(
P(πt, π

mme
t )− P(πt, π

m�
t )

)
dt =

 
I

(
P(πl

t , π
mme
t )− P(πl

t , π
m�
t )

)
dt; (5)

where
ffl
I denotes the integral average over the time interval I and the second important equality in (5)

arises from the ‘triangle equality’ satisfied by the relative entropy (e.g., [47]), namely

P
(
πt, π

m
t

)
= P

(
πt, π

l
t

)
+ P

(
πl
t , π

m
t

)
, (6)

where πl
t is the practically measurable, least-biased density associated with the resolved truth dynamics

which maximizes the Shannon’s entropy given l moment constraints at time t (see (12) below and [55, 47,
40, 50, 8]). We now have the following:

INFORMATION CRITERION I. The MME prediction over the time interval I has a smaller error
than the single model prediction with m� if

Pmme,m�
α,M,I < 0 . (7)

This simple information-based criterion circumvents the need for the truth density π and it implies that
if the lack of information in the MME prediction πmme

α relative to the least-biased estimate πl of the truth
is smaller than the lack of information in the single model density πm� relative to πl, the same holds for
the truth density π in lieu of πl. Note also that the single model m� in (5) does not have to coincide with
the best imperfect model m∗

I in (4) which is unknown in practice. For example, one might consider m� to
be the best single model m∗

I,l relative to the least-biased truth estimate which is defined as

PI
(
πl, πm∗

I,l

)
= min

m∈M
PI

(
πl, πm

)
, (8)

and it clearly depends on the l moment constraints used to estimate the truth density; note that even
if PI(πl, πm∗

I,l) = 0, there might exist an information barrier PI(π, πm∗
I,l) = PI(π, πl) in the imperfect

predictions which can be reduced if more detailed truth estimates are considered [40, 50, 8]. We now have
the following two useful facts:
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FACT 1. Consider the best model m∗
I,l in (8) for predicting the resolved truth dynamics uuu(t) over the

time interval I. The prediction of the MME with {mi} ∈ M can be superior to the prediction with m∗
I,l

unless the density of m∗
I,l coincides with the least-biased marginal density πl; i.e., there might exist a set

of models {mi} ∈ M and the corresponding weights {αi} such that P
mme,m∗

I,l

ααα,M,I < 0 in (7).

FACT 2. Consider the optimal-weight MMEoptimal-weight MMEoptimal-weight MME for a given set of imperfect models {mi} ∈ M which is
defined relative to the least-biased truth estimate πl as

PI
(
πl, πmme

ααα∗
I,l

)
= min

ααα
PI

(
πl, πmme

ααα

)
, (9)

where ααα is the vector of weights in the MME mixture density (1) containing fixed models {mi} ∈ M.
For a fixed number of constraints l the lack of information PI(πl, πmme

ααα∗
I,l

) corresponds to an information

barrier for MME predictions with models {mi} ∈ M over the time interval I. Moreover, if the predictive
skill cannot be improved via the MME approach, then πmme

α∗
I,l

= πm∗
I,l , and the information barriers in the

single model and MME predictions coincide.

Simple justification of the above facts is illustrated in figure 2 and it follows immediately from the
convexity of the relative entropy in the second argument (e.g., [11])

PI
(
π,

∑
i

αiπ
mi

)
�

∑
i

αiPI
(
π, πmi

)
, αi � 0,

∑
αi = 1, (10)

the ‘triangle equality’ satisfied by P in (6), and the definition in (8). Fact 1 becomes obvious upon
considering the fixed-time configuration sketched in figure 2a in the case when P(πl, πm∗

) > 0 for the
best model in the ensemble (extension of these arguments to the whole time interval I is straightforward

due to the linearity of integration and the fact that P � 0). If PI(πl, πm∗
I,l) = 0 then πl

t = π
m∗

I,l

t by the
properties of the relative entropy. Fact 2 is established by considering the two fixed-time configurations
in figure 2. In figure 2b the MME information barrier (9) at time t (red shaded) is the same as that of the
single model prediction and equal to P(πt, π

m∗
t ), while the MME information barrier of MME in figure 2a

is reduced to P(πt, α
∗πm∗

t +(1−α∗)πm1
t ) < P(πt, π

m∗
t ). Clearly, the choice of the imperfect models in MME

is important for its improved performance over the single model m�. (Examples of prediction improvement
via MME without reducing the single model information barrier are shown in different configurations in
figures 3,6 and 7 discussed in the subsequent sections.)

Clearly, the above general facts relate to important practical issues in prediction problems, such as:

(i) Assessment of prediction improvement for a given MME containing a discrete collection {mi} ∈
M of imperfect models, based solely on the prediction errors P(πt, π

mi
t ). Ideally, one would like

to optimize the MME weights, αi, via a minimization of P(πt,
∑

i αiπ
mi
t ); however, this requires

repeated evaluations of the relative entropy P which might be not feasible for realistic problems.

(ii) Derivation of guidelines for constructing an MME from a given set of imperfect models that would
guarantee prediction improvement when only partial knowledge of the truth dynamics is available.

It turns out that a significant insight into the above issues can be derived within the information-theoretic
framework by exploiting the condition (7) and the convexity of the relative entropy in (10) which leads to
the following simplified but practical criterion:

INFORMATION CRITERION II. Consider improving imperfect predictions via the MME approach
in the case when only the fidelity PI(πl, πmi) of individual ensemble members mi ∈ M can be estimated.
MME prediction is preferable to single model predictions with m� ∈ M if

PI(πl, πm�) + Δ >
∑
i �=�

βi PI(πl, πmi), βi = αi (1− α�)−1,
∑
i �=�

βi = 1. (11)

where Δ � 0 is the uncertainty parameter and πl
t is the least-biased density maximizing the Shannon’s

entropy given l constraints, as in (6).

Remarks:
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P
(
πl
t , π

m
t

)

P
(
πl
t ,

1
2 (π

m�
t + πm3

t )
)m∗m1 m2 m3 m4

a)
M =

{ }

m∗m1 m2

b) M =
{ }

P
(
πl
t ,

1
2 (π

m�
t + πm3

t )
)

m∗m1 m2 m3 m4

Δ

c) M =
{ }

Figure 2: Consequences of the convexity of the relative entropy P in (10) which are exploited in considerations of prediction
improvement within the Multi Model Ensembles (MME) framework with probability density function πmme

t in (1). One-
dimensional (left column) and two-dimensional (right column) sketches are shown for a fixed time in order to illustrate two
distinct possibilities in MME prediction which depend on the class of available models M: (a) MME can perform better
than any individual model in the ensemble M (e.g., πmme = 1

2
(πm� + πm1 ) see FACT 1), (b) MME cannot outperform the

best single model m∗ in M. In (a) the information barrier in MME prediction is smaller than the barrier in the single model
prediction (see FACT 2). Note also that the error of MME prediction cannot exceed that of the worst model in the ensemble.
The configuration in (c) illustrates the information criterion in (11) and the need for introducing the uncertainty parameter
Δ � 0 when only the estimates on the prediction error P(πl, πmi ) of individual models mi ∈ M are known.

• The uncertainty parameter Δ plays an important role in the above setup. For m�,mi ∈ M the
condition (11) implies that 0 � PI(π, πmme) � PI(π, πm�) + Δ (see Appendix A). For Δ = 0
(11) provides a sufficient condition for prediction improvement which is too restrictive, in light of
FACT 1, since for m� = m∗

I,l no MME would satisfy it (see figure 2c). For Δ �= 0 the condition
in (11) is no longer sufficient for reducing the prediction error; however, it allows for a possible
improvement of the predictive performance via the MME approach at the risk of increasing the
prediction error by a controllable value Δ relative to PI(π, πm�) which is also true when m� = m∗

I,l
(compare the configurations πmme = απm∗

+ (1 − α)πm1 with πmme = απm∗
+ (1 − α)πm2 when

P(πl, πm1) = P(πl, πm2)). Guidelines for generating the ensemble models and for probing the local
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geometry of PI(πl, ·) are presented in §3.1.4.

• The formulation (11) is particularly useful when considering the improvement of the forced response
prediction from equilibrium πeq, since then πl

t in (11) can be directly estimated based on the linear
response theory and the fluctuation-dissipation formulas which utilize the information from the
unperturbed equilibrium (see §3.1.2 and [47, 2, 41, 22, 23, 50, 39])).

3.1.1 Condition for improving imperfect predictions via the MME approach based on the
least-biased density representation

It turns out that a significant insight can be gained by representing the condition (11) through the least-
biased densities of the imperfect models in the MME density (1); the least-biased approximation, πl, of
the true density π given a set of l statistical constraints belongs to the exponential family of densities
which maximizes the Shannon entropy S = − ´

πl lnπl subject to (see, e.g., [55, 47])

ˆ
πl(uuu)Ei(uuu)duuu =

ˆ
π(uuu)Ei(uuu)duuu, i = 1, . . . , l,

where Ei are some functionals on the space of the resolved variables uuu; here we assume these functionals
to be i-th tensor power of uuu, i.e., Ei(uuu) = uuu⊗ i, so that their expectations yield the components of the
first l statistical moments of π about the origin. Consequently, the least-biased densities of the truth and
of the imperfect models are given by (see, e.g., [55, 1, 47, 49])

a) πl1
t = C−1

t exp
(
−

l1∑
i=1

θi(t)Ei(uuu)
)
, b) πm,l2

t =
(
Cm

t

)−1
exp

(
−

l2∑
i=1

θmi (t)Ei(uuu)
)
, (12)

where the normalization factors Ct and Cm
t are chosen so that

´
πl1
t duuu =

´
πm,l2
t duuu = 1. While the

Gaussian approximations of any density π can always be obtained, existence of πl for l > 2 is not
guaranteed [55]. We denote the expected values of the functionals Ei in (12) with respect to πl1

t as Ēi

and with respect to πm,l2
t as Ēm

i ; it is convenient to write these expectations in the vector form as

a) EEE =
(
Ē1, . . . , Ēl1

)T
, b) EEE

m
=

(
Ēm

1 , . . . , Ē
m
l2

)T
; (13)

note that θθθt = θθθ
(
ĒEEt

)
and θθθmt = θθθm

(
ĒEE

m
t

)
in (12) so that the normalization factors in the least-biased

densities are functions of the time-dependent statistical moments, i.e, Ct = C
(
ĒEEt

)
and Cm

t = Cm
(
ĒEE

m
t

)
.

Based on the least-biased representations (12) of the truth and model probability densities, the criterion
(11) for improvement of imperfect predictions via the MME approach can be written in a form which is
particularly suited for further approximations (see Appendix A for a simple proof):

FACT 3. The criterion (11) for improving imperfect predictions via the MME approach with uncertainty

Δ � 0 can be expressed in terms of the statistical moments EEE,
{
EEE

mi}
of the truth and models as

Aβββ,I
(
πl1 ,

{
πmi,l2/πmi

})
+ Bβββ,I

({
EEE

mi})
+ Cβββ,I

(
EEE,

{
EEE

mi})
+Δ > 0, (14)

where

Aβββ,I =

 
I
dt

ˆ
duuuπl1

t (uuu)M(uuu), M(uuu) =
∑
i �=�

βi

[
log

πmi,l2
t (uuu)

πmi
t (uuu)

− log
πm�,l2(uuu)

πm�
t (uuu)

]
, (15)

is non-zero only for those model densities which are not in the least-biased form, i.e., if πmi,l2
t �= πmi

t , and

Bβββ,I =
∑
i �=�

βi

 
I
log

[
Cm�,l2

(
EEE

m�
t

)
/Cmi,l2

t

(
EEE

mi

t

)]
dt , Cβββ,I =

∑
i �=�

βi

 
I

[(
θθθm�
t − θθθmi

t

)
· ĒEEt

]
dt ,

8



where the weights βi are defined in (11) and the vectors of the Lagrange multipliers are given by

θθθ
(
EEE
)
=

{
(θ1, . . . , θl1)

T,

(θ1, . . . , θl1 , 0, . . . , 0l2)
T,

θθθm
(
EEE

m)
=

{
(θm1 , . . . , θ

m
l2 , 0, . . . , 0l1)

T, if l1 � l2,

(θm1 , . . . , θ
m
l2)

T, if l1 < l2.

Remarks:

• The second term, Bβββ,I , in (14) is independent of the truth density and it involves only the model
densities, πmi

t , in MME.

• The last term, Cβββ,I , in (14) depends linearly on the expectations, EEEt, with respect to the least-biased
truth density πl1

t ; these can be estimated in the hindcast mode in the initial value problem con-
text or from the ‘fluctuation-dissipation’ formulas when considering improvement of forced response
predictions, as discussed below in §3.1.3.

• The expected value in Aβββ,I can be evaluated as long the least-biased approximation, πl1
t , of the

truth πt is known. Moreover, Aβββ,I = 0 if the MME contains only least-biased models.

We will exploit the consequences of the above result extensively in the following sections; the main ad-
vantage of the above ‘least-biased’ representation of the condition (11) lies in the fact that it depends
explicitly and linearly on the statistical moments EEEt of the truth which are, in principle, amenable to
approximations and estimates through the fluctuation-dissipation formulas when considering the forced
response prediction (see [47, 2, 41, 22, 23, 49, 40, 50, 39], as well as §3.1.3).

3.1.2 Predictive skill of MME

Here, we represent the general criterion (11) for improving imperfect predictions via the MME approach in
the formulation suitable for various time-asymptotic estimates in the context of the initial value problem.
This is obtained by using the representation (14) in terms of the least-biased densities (12) which provides
a formulation that is amenable to practical approximations especially when considering the forced response
predictions.

Consider the evolution of the marginal density πt associated with the truth dynamics on the resolved
subspace of variables in the form

πt(uuu) = π0(uuu) + δπ̃t(uuu), π̃0 = 0,

ˆ
π̃t(uuu)duuu = 0, (16)

which separates the initial statistical conditions from the subsequent evolution of the marginal probability
density for the resolved dynamics; the parameter δ in (16) is arbitrary at this stage but it plays the role of
an ordering parameter in the time-asymptotic considerations discussed later in §3.2. The mixture density,
πmme
t , in (1) associated with a Multi Model Ensemble of imperfect models mi contained in a class M can

be written in the same form as (16) so that

πmme
t =

∑
i

αiπ
mi
t , πmi

t (uuu) = πmi
0 (uuu) + δπ̃mi

t (uuu), π̃mi
0 = 0,

ˆ
π̃mi
t (uuu)duuu = 0. (17)

Based on decompositions (16) and (17), evolution of the statistical moments EEEt, EEE
mi

t of the truth and the
models can be written as

EEEt = EEE0 + δẼEEt, EEE
mi

t = EEE
mi

0 + δẼEE
mi

t , ẼEE0 = ẼEE
mi

0 = 0. (18)

Consequently, the condition (14) for improving the imperfect predictions via the MME approach can be
written in a form which is more amenable to practical estimates.

FACT 4. The condition (14) for improving imperfect predictions via the MME approach with uncer-
tainty Δ can be expressed as

Aβββ,I
(
πl1 , {πmi,l2/πmi}

)
+ B̃βββ,I

({
EEE

mi}
;EEE0

)
+ C̃βββ,I

({
EEE

mi}
, δ ˜̄EEE

)
+Δ > 0, (19)
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where Aβββ,I is defined in (15) and

B̃βββ,I =
∑
i �=�

βi

 
I
dt

[
P(πl1

0 , πm�,l2
t )− P(πl1

0 , πmi,l2
t )

]
, C̃βββ,I =

∑
i �=�

βi

 
I
dt

[(
θθθm�
t − θθθmi

t

)
· δẼEEt

]
,

where θθθm�
t = θθθm�

t

(
EEE

m�
t

)
, θθθmi

t = θθθmi
t

(
EEE

mi

t

)
, the weights βi are defined in (11), and the least-biased truth and

model densities are given in (12).

Remarks:

• The evolution of EEE
mi

t and θθθmi
t can be computed directly from the imperfect models.

• When considering the forced response prediction to perturbations of the attractor dynamics, the

expected changes, δẼEEt, in the truth statistics can be estimated based on the correlations on the
unperturbed attractor using the fluctuation-dissipation formulas (e.g., [49, 40, 50]). In the context

of the initial value problem δẼEEt can be estimated in the hindcast/reanalysis mode (e.g., [31]).

3.1.3 Initial value problem vs forced response

The framework introduced in §3.1 applies, in principle, to two seemingly distinct cases: (i) improv-
ing imperfect predictions from given non-equilibrium statistical initial conditions, and (ii) to improving
predictions of the response of the truth equilibrium dynamics to external perturbations. Given the decom-
position in (18), the similarities and differences between the initial value problem and the forced response
prediction can be summarized as follows:

• For the initial value problem, the initial marginal densities for the resolved dynamics, π0 and πmi
t ,

correspond to any smooth probability densities with the initial statisticsEEE0 andEEE
m

0 . However, in the
case of the forced response prediction the statistical initial conditions are restricted to the respective

equilibrium states, i.e., π0 = πeq and πmi
0 = πmi

eq , and EEE0 = EEEeq and EEE
mi

0 = EEE
mi

eq .

• The fundamental difference between the initial value problem discussed in §3.1.2 and the forced
response prediction lies in the properties of the perturbation terms in the decomposition (16) and
the existence of the decomposition (18). In particular,

– The marginal probability density associated with the evolution of a non-degenerate truth in
the initial value problem can always be written in the form (16) and (18). However, the time-
dependent terms in (16) and (18) are generally small only for sufficiently short times.

– In the case of estimating the truth response to external perturbations, the decompositions (16)
and (18) apply to non-degenerate hypoelliptic noise (see [26]). For sufficiently small external
perturbations the time-dependent perturbations in (16) and (18) remain small for all time.
This allows for a practical assessment of the prediction improvement in the forced response via
MME through the general conditions (11), (14) or their subsidiaries discussed in §3.1.4 and
§3.1.2 when combined with the linear response theory exploiting the fluctuation-dissipation
formulas at the unperturbed equilibrium (see, e.g., [47, 44] for more details).

3.1.4 Formal guidelines for constructing MME with superior predictive skill relative to the
single model predictions

Here, we consider a perturbative approach which provides practical guidelines for constructing a useful
MME from a single model m�. As discussed earlier (FACT 1 and figure 2), the best single model for
making predictions can be inferior to an ensemble of imperfect models which appropriately ‘sample’ the
relative entropy landscape PI(πl, ·). Such information is inaccessible if only the estimates PI(πl, πmi) for
individual models mi ∈ M in the ensemble are available; in such cases the criterions (11) or (14) provide
the best possible guidance. However, additional MME improvements can be achieved via testing the local
geometry of PI(πl, ·) if there exists a possibility of perturbing a parameterized family of models.
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First, we note that if a globally parameterized family of imperfect models is available, then the same
convexity arguments as those used in FACTS 1-3 imply that the MME with densities πm

ε� , {πm
εi} satisfying

PI(πl, πm
ε�) � PI(πl, πm

εi) and
( d

dε
PI(πl, πm

ε )
∣∣∣
ε=ε�

)( d

dε
PI(πl, πm

ε )
∣∣∣
ε=εi

)
< 0, (20)

will have an improved prediction skill relative to the single model density πm
ε� . The reasons for not choosing

the model with the smallest prediction error, min[PI(πl, πm
ε�),PI(πl, πm

εi)], are analogous to those used in
FACT 1 and 3. If there is no global parameterization in the imperfect model class, consider an MME with
a mixture density generated by perturbing a single model density πm� so that for ε � 1

πmme
t =

∑
i

αiπ
mi,ε
t , πmi,ε

t (uuu) = πm�
t (uuu) + ε π̃mi

t (uuu),

ˆ
π̃mi
t (uuu)duuu = 0; (21)

existence of such perturbed densities πmi,ε
t which are non-degenerate (smooth at ε = 0) was shown to

exist under minimal assumptions on the model dynamics in [26]; the interested reader should consult
[40, 50, 45] for a related treatment of the predictive skill in the single model configuration. Based on the

decomposition in (21), the evolution of the statistical moments EEE
mi,ε

t for the ensemble members can be
written as

a) EEE
mi,ε

t = EEE
m�
t + εẼEE

mi

t , b) θθθmi,ε
t = θθθm�

t + ε θ̃θθ
mi

t

(
EEE

m�
t

)
+O(

ε2
)
, (22)

where

θ̃θθ
mi

t =
(
EEE

m�
t ·∇θmi

1 |ε=0, EEE
m�
t ·∇θmi

2 |ε=0, . . . , EEE
m�
t ·∇θmi

l1 |ε=0

)T

.

The asymptotic expansions in (22) can be combined with the condition (14) to yield the following:

FACT 5. Consider a Multi Model Ensemble generated by perturbing a single model m� so that the statis-

tical moments EEE
mi,ε

t and the coefficients θθθmi,ε
t in the least-biased model densities πmi,l2

t are given by (22).
The criterion (14) for improving imperfect predictions via the MME approach with uncertainty Δ ∼ ε
can be expressed as

Aβββ,I
(
πl1 ,

{
πmi,l2/πmi

})
+ ε C̃βββ,I

(
EEE,

{
EEE

mi})
+Δ+O(

ε2
)
> 0, (23)

where Aβββ,I is given by (15) and

C̃βββ,I =
∑
i �=�

βi

 
I

[(
θ̃θθ
m�
t − θ̃θθ

mi

t

)
·
(
EEEt −EEE

m�
t

)]
dt ,

where θ̃θθ
m�
t = θ̃θθ

m�
t

(
EEE

m�
t

)
, θ̃θθ

mi

t = θ̃θθ
mi

t

(
EEE

m�
t

)
, and the weights βi are defined in (11).

Remarks:

• The perturbations θ̃θθ
mi

t can be computed directly from the imperfect models mi in MME. The evo-
lution of the truth moments EEEt can be estimated in the hindcast/reanalysis mode in the context of
the initial value problem or via the linear response theory and the fluctuation-dissipation formulas
when considering the forced response predictions from equilibrium (e.g., [49, 40, 50]).

• The condition (23) simplifies for Gaussian mixture MME discussed in §3.2 since then Aβββ,I = 0.

3.2 Improving imperfect predictions via MME in the Gaussian framework

The analysis presented in §3.1-3.1.3 is particularly revealing in the Gaussian framework, i.e., when l1 =
l2 = 2 in (14) or (19), due to the existence of an analytical formula for the relative entropy between two
Gaussian densities (e.g., [47]). In such a case the probability density, πmme

t , in (1) of the Multi Model
Ensemble is a Gaussian mixture and Aααα = 0 in the conditions (14), (23), and (19). In order to achieve the
maximum simplification of the problem while retaining the crucial features of the framework, we assume
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here that the reduced-order models on the subspace of the resolved variables uuu ∈ IRK for predicting the
marginal statistics πt of the resolved truth dynamics are given by the family of Gaussian Ito SDE’s (e.g.,
[58]) given by

duuum =
(− γmuuum + Fmfffm(t)

)
dt+ σm

udWWWu(t), (24)

where γm, Fm, σm ∈ IRK×K are diagonal matrices with γm
ii, σ

m
ii > 0, ‖fff‖∞ � 1, andWWWu(t) is a vector-valued

Wiener process with independent components, and the mean dynamics and its covariance are given by
the well-known formulas

μμμm
t = E

πm
t [uuu] = e−γm(t−t0)ūuu0 + Fm

ˆ t

t0

e−Γm(t−s)fffm(s)ds, (25)

Rm
t = E

πm
t [uuu⊗ uuu]−μμμm

t ⊗μμμm
t = e−γm(t−t0)R0 e

−γm(t−t0) +

ˆ t

t0

eγ
m(s−t)Qeγ

m(s−t)ds, (26)

where Q = σm⊗ (σm)T . Consequently, the MME density, πmme
t , in (1) is a linear superposition of Gaussian

densities with the statistics evolving according to (25)-(26).

Consider now the time-dependent marginal density, πt(uuu), of the truth on the subspace of resolved
variables uuu ∈ IRK so that

πt = π0 + δπ̃t, π̃0 = 0,

ˆ
π̃t(uuu)duuu = 0. (27)

As discussed in §3.1.3, the interpretation of the decomposition in (27) depends on the considered problem.
In the context of the initial value problem π0 corresponds to the uncertainty in the initial conditions,
and δ is an ordering parameter utilized below in short-time asymptotic expansions. When considering
the forced response to small external perturbations of the truth equilibrium dynamics π0 = πeq, and we
assume the perturbation in (27) is non-singular so that πt is smooth at δ = 0 which holds under minimal
assumptions outlined in [26]. In the Gaussian setting considered here, the decomposition (27) can be used
to write the second-order statistics of the truth as

μμμt = μμμ0 + δμ̃μμt, μ̃μμ0 = 0, Rt = R0 + δR̃t, R̃0 = 0, (28)

with analogous expressions for the mean μμμmi
t and covariance Rmi

t of the imperfect Gaussian models (24)
in the multi model ensemble.

The general condition (14) or (19) for improving MME predictions in the Gaussian framework can be
easily rewritten in terms of the centered moments, μμμt, Rt, μμμ

mi
t , Rmi

t , as discussed in Appendix A. Here,
we first highlight a simpler and more revealing version of this condition in the context of the initial value
problem which is valid only at sufficiently short times. (The short-time constraint for the initial value
problem arises from the technical requirement that the time-dependent terms in the statistical moments
δμ̃μμt, δμ̃μμ

mi
t , δR̃t, δR̃

mi
t be small; see Appendix A.)

FACT 6. Consider the initial value problem and imperfect statistical predictions with Gaussian models
mi in (24) with correct initial statistics, i.e., μμμmi

0 =μμμ0, R
mi
0 =R0, and over a sufficiently short time interval

I = [0 T ], T � 1 so that δμ̃μμt, δμ̃μμ
mi
t , δR̃t, δR̃

mi
t remain small. The Gaussian mixture MME provides

improved predictions relative to the single model predictions with m� over the interval I with uncertainty Δ
when {

Dβββ,I
({μ̃μμ− μ̃μμmi})+ Eβββ,I

({R̃mi})+ Fβββ,I
(
R̃, {R̃mi})}+Δ+O(δ) > 0, (29)

where

Dβββ,I = 1
2

∑
i �=�

βi

 
I

[
(μ̃μμt − μ̃μμm�

t )T (R0)
−1(μ̃μμt − μ̃μμm�

t )− (μ̃μμt − μ̃μμmi
t )T (R0)

−1(μ̃μμt − μ̃μμmi
t )

]
dt,

Eβββ,I = 1
4

∑
i �=�

βi

 
I
tr
[
(R̃m�

t − R̃mi
t )(R0)

−1
]
tr
[
(R̃m�

t + R̃mi
t )(R0)

−1
]
dt,
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Fβββ,I = − 1
2

∑
i �=�

βi

 
I
tr
[
R̃t(R0)

−1
(
R̃m�

t − R̃mi
t

)
(R0)

−1
]
dt,

with the weights βi defined in (11).

Remarks:

• For an MME containing models (24), underdamped MME with γmi � γm� helps improve the short-
time imperfect predictions (EI > 0) but it is not sufficient to guarantee the overall skill improvement.
The interplay between the truth and model response in DI and the truth and model response in
the variance in FI are both important. Moreover, when the truth response R̃t in the variance is
sufficiently negative the short term prediction skill is not improved through the underdamped MME.

• Even if the short-time condition (29) is satisfied, the medium-range predictive skill of MME might
not beat the single model (see §4.3 for examples).

It turns out that the sufficient condition for improving infinite-time forced response predictions via a
Gaussian mixture MME takes an even simpler form than (29) for the initial value problem and. This fact
follows from invariance of the equilibrium covariance with respect to forcing perturbations in linear Gaus-
sian systems (24), i.e., R̃t = 0 in (28), and the fact that under minimal assumptions [26] the perturbations
in the mean, μ̃t, remain small for all time. Thus, we have the following (see Appendix A for details):

FACT 7. Consider the forced response prediction via a Gaussian mixture MME containing imperfect
Gaussian models (24) with correct equilibrium mean and covariance, i.e., μμμmi

eq = μμμeq and Rmi
eq = Req. The

sufficient condition for improving forced response predictions to small external forcing perturbations via
MME over the time interval I = [t1 t1+T ] is independent of the truth covariance response, R̃t, and it is
given by

Dβββ,I
(
{μ̃μμ− μ̃μμmi}

)
+O(δ) > 0, (30)

where μ̃μμt and μ̃μμmi
t are, respectively, the perturbations of the truth and model mean from their equilibrium

values and Dt has the same form as in (29) but with R0 = Req.

Remarks:

• The condition (30) for improving the infinite-time forced response can be written as∑
i �=�

βi

 
I

[
‖μ̃μμt − μ̃μμ�

t ‖2R−1
eq

− ‖μ̃μμt − μ̃μμi
t‖2R−1

eq

]
dt+O(δ) > 0, (31)

where ‖μμμ‖2R = μμμTRμμμ and the weights βi are defined in (11). The choice of MME satisfying the
above condition depends on the interplay between the truth and model response in the mean, and
it becomes difficult for μ̃μμtR

−1
eq μ̃μμ

i
t < 0; a detailed illustration of this fact is presented in §4.2.

• The the truth response in the mean μ̃μμt can be estimated from the unperturbed equilibrium based on
the linear response theory incorporating fluctuation-dissipation formulas [47, 2, 41, 23, 49, 40, 50, 39].

• An MME with superior skill for predicting the infinite-time forced response, so that (30) is satisfied
for t1 → ∞, T → 0, the short or medium-range predictive skill of the same MME might not beat
the single model (see examples in §4.3.3).

• In a more general setting (see Appendix A) when πmi
eq �= πeq so that μμμmi

eq �= μμμeq and Rmi
eq �= Req, the

interplay between the truth and model response in both the mean and covariance are important (see
[49, 40, 50] for related analysis in the single-model configuration).

The insights gained from the conditions highlighted in facts 8 and 9 and its generalizations presented in
Appendix A will be used when interpreting the numerical results in §4.3.
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4 Tests of the theory for MME prediction

The goal of any reduced-order prediction technique is to achieve statistically accurate estimates for the
evolution of the truth dynamics on the resolved subspace of the system variables. MME prediction
attempts to accomplish this by combining imperfect reduced-order models, and conditions for the utility of
such an approach compared to single model predictions were derived in §3. Here, in order to illustrate these
analytical results, we exploit two classes of exactly solvable stochastic models, described in §4.1, which
are used to generate the ‘truth’ dynamics. In §4.2 we use these models to provide a cautionary analytical
example illustrating the limitations of ad-hoc applications of the MME framework in the presence of
information barriers [48]. In §4.3 we test the information-theoretic criteria derived in §3 for improving
predictions via the MME approach with the help of numerical simulations. While an exhaustive numerical
study based on complex numerical models is certainly desirable, it is complementary to our goals and a
subject for a separate publication.

4.1 Setup for studying the performance of MME skill using exactly solvable
test models

Here, we consider two classes of stochastic models which provide the simplest possible examples of effects
due to coupling between the resolved and unresolved dynamics and non-Gausianity on the prediction skill
using ensembles of reduced models. The stochastic dynamics in these models may be regarded as an ideal-
ization of nonlinear couplings with other unresolved degrees of freedom in a much higher-dimensional sys-
tem (see, for example, [43]). The first class of test models, described in §4.1.1, is given by two-dimensional
linear Gaussian models [54, 46, 48] which linearly couple the ‘resolved’ and ‘unresolved’ dynamics. These
revealing models represent the simplest non-trivial examples of dynamics where neglecting the couplings
between the resolved and unresolved processes may lead to information barriers to improving the skill of
imperfect predictions (see [46, 40, 50, 48]); we discuss this issue in detail in §4.2 and illustrate it numer-
ically in §4.3.3 in the context of MME predictions of the forced response. The nonlinear, non-Gaussian
test models outlined in §4.1.2 and introduced in [17] allow for incorporating a wealth of effects due to un-
resolved turbulent processes on the resolved dynamics; these include the intermittent bursts of instability
due to nonlinear interactions with the unresolved scales and forcing fluctuations at large scales.

4.1.1 The two-dimensional linear Gaussian system

In this linear Gaussian system with the state vector xxx = (u, v)T the ‘resolved’ dynamics u(t) is linearly
coupled to the ‘unresolved’ dynamics v(t) according to (see [54, 46, 48])

d

(
u

v

)
=

[
L

(
u

v

)
+

(
F (t)

0

)]
dt+

(
0

σ

)
dW (t), (32)

where W (t) is the scalar Wiener process, and the matrix L and its eigenvalues λ1,2 are

L =

(
a 1

q A

)
, λ1,2 =

1

2

(
a+A±

√
(a−A)2 + 4q

)
, (33)

with a the damping in the resolved dynamics u(t), A the damping in the unresolved dynamics v(t), and
q the coupling parameter between u(t) and v(t). We assume that the deterministic forcing F (t) acts only
in the resolved subspace u, and the stochastic forcing affects directly the unresolved dynamics v(t) which
is linearly coupled to the resolved dynamics for q �= 0. Since the system (32) is linear with additive noise,
it can be easily shown that it has a Gaussian attractor provided that

a+A = λ1 + λ2 < 0, aA− q = λ1λ2 > 0, (34)
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so that the stable the equilibrium mean μμμeq = (μu
eq, μ

v
eq) and covariance Req of (32) are given by

μu
eq = − AF

λ1λ2
, μv

eq =
qF

λ1λ2
, Req =

(
1 −a

−a λ1λ2 + a2

)
−σ2

2(λ1 + λ2)λ1λ2
. (35)

The autocovariance at equilibrium depends only on the lag τ and it is given by Ceq(τ) = Req e
LT τ (see [48]

for details). Extensions to the nonautonomous case are trivially obtained if the stability conditions (34)
are satisfied so that there exists a Gaussian measure on the attractor (see, e.g., [44, 4]) with the attractor
mean, μμμatt(t) ≡ lim

t0→−∞μμμ(t, t0), and the same autocovariance Ceq(τ) as in the autonomous case.

In practical applications the only reliable information that can be extracted from empirical data is
the low-order statistics of the resolved dynamics at equilibrium which can be often reproduced by many
imperfect models. Thus a natural question arising in this context concerns the choice of model ensemble
which is tuned to the equilibrium statistics but reproduces the transient dynamics. Despite the simplicity
of the system (32), there exist distinct regimes of transient dynamics parameterized by {a, q, A, σ} with a
stable Gaussian equilibrium satisfying (34) (see [48]). Thus, this toy model may be used to provide insight
into an important practical issue which concerns prediction of the transient dynamics using ensembles
of imperfect reduced-order models which misrepresent or neglect the couplings between the resolved and
unresolved processes. These are exactly the issues considered in §3 and they will be illustrated further
using numerical tests in §4.3.

4.1.2 The nonlinear non-Gaussian model

The non-Gaussian dynamics of the second test model is given by the following nonlinear stochastic system
(see [17, 5, 8, 7, 48])

(a) du(t)=
[
(−γ(t)+iω)u(t)+F (t)

]
dt+σudWu(t),

(b) dγ(t)=−dγ(γ(t)−γ̂)dt+σγdWγ(t),
(36)

where Wu is a complex Wiener processes with independent components and Wγ is a real Wiener process.
The nonlinear system (36), introduced first in a more general form in [17] for filtering multi-scale turbulent
signals with hidden instabilities, has a number of attractive properties as a test model in our analysis of
the skill of MME prediction exploiting reduced-order models. Firstly, it has a surprisingly rich dynamics
mimicking signals in various regimes of the turbulent spectrum, including regimes with intermittently
positive finite-time Lyapunov exponents due to large-amplitude bursts of instabilities in u(t) [5, 8, 7] and
fat-tailed probability densities for u(t). The equilibrium probability densities in the above regimes have
non-zero skewness when F �= 0 in (36a). Secondly, exact path-wise solutions and exact second-order
statistics of this non-Gaussian system can be obtained analytically, as discussed in [17].

As in the previous test model (32), we consider u(t) in (36) to be the ‘resolved’ variable which is
nonlinearly coupled with the ‘unresolved’ variable γ(t) which induces damping fluctuations in the resolved
dynamics; this nonlinear coupling between the resolved and unresolved dynamics is capable of generating
a highly non-Gaussian dynamics which proved valuable in a number of earlier considerations concerned
with uncertainty quantification and filtering of turbulent dynamical systems [53, 5, 8, 7, 48]. Moreover, it
is worth noting that the additive Wiener processes driving the dynamics of u and γ may be regarded as
an idealization of effects of nonlinear couplings with other unreserved degrees of freedom in a much higher
dimensional system (see, for example, [?]). In §4.3 we will consider numerical tests employing an ensemble
of reduced-order Gaussian models for predicting the resolved dynamics u(t) of the non-Gaussian model
(36) in its various dynamical regimes determined by the parameters of the hidden, unresolved dynamics
of γ(t); these tests confirm the estimates obtained from the general information-theoretic framework of §3
and provide insight into additional subtleties associated with MME prediction.

4.2 Information barriers in MME prediction

Prediction improvement within the MME framework is not always guaranteed and it depends on both
the choice of the imperfect model ensemble and the truth dynamics, which may be seen as a trivial
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consequence of the fact stated in §3.1.1. The example discussed below represents the simplest non-trivial
configuration illustrating the presence of barriers to prediction improvement within the MME framework,
and it augments the previous considerations discussed in [40, 46, 48] in the context of single model
predictions.

Consider a configuration when the truth dynamics (u(t), v(t)) satisfies (32) and (34) with a stable
Gaussian attractor as discussed in §4.1.1, and the imperfect models for the resolved dynamics um(t) are
given by the linear Gaussian models (24) with correct marginal equilibrium statistics so that

Eeq[u
m] = Eeq[u] = μeq, and Vareq[u

m] = Vareq[u] ≡ Req, (37)

where the equilibrium mean of the model dynamics (24) and of the resolved truth (32) are given, respec-
tively, in (25)-(26) and (35). The two constraints in (37) imposed on the family of imperfect models (24)
with parameters (γm, σm, Fm) leave a one-parameter family of models with correct marginal equilibrium
statistics which we choose to be parameterized by γm.

Consider now predictions of the ’infinite-time’ response of the truth dynamics to forcing perturbations
which change the forcing by δF̃ so that the marginal statistics at the new equilibrium of the truth (32)
and the model (24) are given by

a) μδ
∞ = μeq − A

λ1λ2
δF̃ , b) μm,δ

∞ = μeq +
1

γm
δF̃ , (38)

while the variance of u and um remain unchanged since the considered models are linear and Gaussian.
In this case the condition (30) for improving the infinite-time forced response prediction via the MME
approach relative to singe model predictions with m� becomes∑

i �=�
βi

[( A

λ1λ2
+

1

γm�

)2

−
(

A

λ1λ2
+

1

γmi

)2 ]
> 0. (39)

The above condition implies existence of two distinct configurations which, similarly to the single model
predictions, are distinguished by the sign of the damping parameter A in the unresolved dynamics of (32).
These two scenarios were already sketched in figure 2 and we discuss their characteristics below:

(i) No information barrier in the single model predictionNo information barrier in the single model predictionNo information barrier in the single model prediction (A < 0 in the unresolved part of the truth (32)
In this case there exists an imperfect model (24) with

γm∗
∞ = 1/τm

∗
∞ = −λ1λ2/A > 0; (40)

and correct infinite time-response to the forcing perturbations so that P(πδ
∞, πm,δ

∞ ) = 0. Below m∗
denotes a model (24) with γm∗ satisfying the constraints (37) which is optimal for infinite-time forced
response predictions.

– If m� �= m∗ the MME approach can improve the infinite-time forced response prediction based
on (39), see also figure 8. In particular the MME skill is improved for any overdamped MME
with γmi � γm� , see also figure 7. If, additionally, m∗ /∈ M, the information barrier in MME
can be reduced relative to the single model prediction (see also figure 2a).

– If m� = m∗ the MME approach cannot improve the infinite-time forced response prediction
based on (39), see also figure 8. The information barrier in MME cannot be reduced relative
to the single model prediction with m∗.

(ii) Information barrier in the single model predictionInformation barrier in the single model predictionInformation barrier in the single model prediction (A > 0 in the unresolved part of the truth (32) In
this case the infinite-time forced response prediction is improved (at least) for any MME containing
models with γmi � γm� . The information barrier in MME prediction cannot be reduced relative
to the single model prediction; this situation is depicted schematically in figure 2b. The intrinsic
barrier to improving forced response predictions using ensembles of models (24) is given by

P(πδ
∞, πm∗,δ∞ ) =

|δF̃ |2
2Req

(
A

λ1λ2

)2

, (41)
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which is achieved only when γm → ∞. Recall that the model error of the optimal-weight MME,
which corresponds to the information barrier of the class of models M, coincides in such a case with
the single optimal model m∗ (see figures 7-8 and figure 1c for analogous situation in the context
initial value problem).

This revealing example of the MME skill for forced response prediction is examined further in §4.3.3 in
the case of prediction over a finite time interval, where it is shown that additional information barriers
can arise if MME consists of a finite number of models.

4.3 Numerical examples

The goal of this section is two-fold. First, we illustrate the general information-theoretic criteria derived
in §3 for improving imperfect predictions via the MME approach with the help of numerical simulations
based on the exactly solvable stochastic test models introduced in §4.1. We stress agin that while an
exhaustive numerical study based on complex models is certainly desirable, it is complementary to our
goals and a subject for a separate publication. The second aim is to illustrate, in a controlled setting,
predictive skill differences between the single model and MME approach under additional constraints
which arise in applications. In practice, imperfect models are often approximately tuned to the marginal
equilibrium statistics of the resolved dynamics which is the only available source of information. However,
such a tuning procedure does not necessarily reduce the prediction error in the transient dynamics or
in the response to forced perturbations from equilibrium (e.g., [40, 50, 8, 48]). The numerical examples
studied below highlight the differences between the structure of MME providing skill improvement for
short and medium range predictions (see also Appendix B). Thus, apart from validating the analytical
estimates of §3, particular emphasis in this section is on the following issues:

• How significant are the differences in skill between the optimal-weight and equal weight MME’s?

• Are MME’s with good short prediction skill likely to have good medium range prediction skill?

These themes appear recurrently throughout the remaining sections.

4.3.1 Tuning reduced-order models in the Multi Model Ensemble

In the numerical examples discussed below the MME density, πmme
t , is a Gaussian mixture involving the

imperfect model densities, πmi
t , associated with the class M of linear Gaussian models (32) with correct

initial conditions and correct marginal equilibrium statistics for the resolved dynamics. We assume that
the marginal equilibrium mean and covariance, 〈u〉eq, V areq[u], of the resolved truth dynamics can be
estimated from measurements. The following result (see [48]) provides the basis for tuning the marginal
equilibrium statistics of the imperfect models in MME:

Proposition 1 Consider the linear Gaussian dynamics in (24) with coefficients
{
γm, σm, Fm

}
and con-

stant forcing. Provided that γm > 0, the equilibrium statistics of (24) is controlled by two parameters{
μm
eq =

Fm

γm
, Rm

eq =
(σm)2

2γm

}
, (42)

which correspond, respectively, to the model mean and variance. There exists is a one-parameter family
of models (24) with correct marginal equilibrium statistics of the resolved truth dynamics u(t) with

(σm)2 = −2γm V areq[u], Fm = −γm
Eeq[u], (43)

where γm is a free parameter and Eeq[u] and V areq[u] denote the marginal equilibrium mean and variance
of the truth dynamics of u(t).
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Thus, the class of imperfect models with correct marginal equilibrium statistics is given by

M :=
{
πm
t (u) = N (

μ(t), R(t)
)
: lim

t→∞P
(
πt, π

m
t

)
= 0, πm

t0 = πt0

}
, (44)

where P is the relative entropy (2). Given the constraints on the initial conditions and the equilibrium
model densities in the family M, there is one free parameter left in the models (24) which we choose to
be the correlation time τmi = 1/γmi . Therefore, the MME densities (1) can be written in this case as

πmme
t;ααα,[τ ](u) =

I∑
i=1

αiπ
mi
t;τi(u), αi � 0,

∑
αi = 1, (45)

so that the time-dependent MME density, πmme
t;ααα,[τ ](u), is parameterized by the weights ααα ≡ [α1, . . . , αI ]

and the distribution of the correlation times denoted by [τ ]; here, we assume that [τ ] is given by a vector
of correlation times evenly distributed between τmin and τmax

[τ ] =
{
τmin, τmin +Δτ, . . . , τmin + (n− 1)Δτ, τmax

}
, Δτ = (τmax−τmin)/n, (46)

and that τ trth ∈ [τ ] denotes the correct correlation time of the marginal dynamics u(t) in (36). In general,
the Gaussian Itô diffusions in (24) cannot reproduce the marginal two-point equilibrium statistics of the
true resolved dynamics (see [48] for details). However, there exists a linear Gaussian model (24) with the
correct correlation time, τm = τ trth, where

1/τm ≡ (Rm
eq)

−1

ˆ ∞

0

〈um(t)um(t+ τ)〉dτ, 1/τ trth ≡ V ar−1
eq [u]

ˆ ∞

0

〈u(t)u(t+ τ)〉dτ. (47)

In the analysis of §4.2 and §4.3 we will assume that the single model predictions are carried out using a
model with correct correlation time for the resolved dynamics; this setup is justified by the fact that the
correlation time estimates are usually the next easiest quantity to estimate from the measurements, apart
from the mean and covariance. Finally, we adopt the following characterization of the ensemble structure:

• Balanced MMEBalanced MMEBalanced MME is given by imperfect models (24) with correlation times τm = 1/γm

{τmi}i∈I < τ trth < {τmj}j∈J{τmi}i∈I < τ trth < {τmj}j∈J{τmi}i∈I < τ trth < {τmj}j∈J , #I =#J and correct marginal equilibrium statistics for the re-
solved dynamics,

• Underdamped MMEUnderdamped MMEUnderdamped MME is given by imperfect models (24) with correlation times τmi � τ trthτmi � τ trthτmi � τ trth (so
that γmi � 1/τ trth) and correct marginal equilibrium statistics for the resolved dynamics,

• Overdamped MMEOverdamped MMEOverdamped MME is given by imperfect models (24) with correlation times τmi � τ trthτmi � τ trthτmi � τ trth (so that
γmi � 1/τ trth) and correct marginal equilibrium statistics for the resolved dynamics.

(48)

The skill (i.e., statistical accuracy) of the imperfect predictions is assessed using two information measures
[21, 19, 20, 8, 48] exploiting the relative entropy (2): (i) the model error

E m
t = P(πt(u), π

m
t (u)), E mme

t = P(πt(u), π
mme
t (u)), (49)

and (ii) the internal prediction skill

It = P(πt(u), πeq(u)), I m
t = P(πm

t (u), π
m
eq(u)), I mme

t = P(πmme
t (u), πmme

t (u)), (50)

for the truth, a single model m, and an MME relative to their respective equilibria.

4.3.2 Tests of MME prediction skill in the context of initial value problem

Here, we use the test models described in §4.1.1-4.1.2 in order to provide a more complete picture of MME
prediction and augment the analytical results of §3 with simple numerical simulations. Particular focus
is on the issues raised at the beginning of §4.3 which are not easily tractable analytically; these include
differences between the equal-weight and optimal-weight ensembles, information barriers, and the change
of structure in the optimal-weight ensemble depending on the prediction horizon.
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Gaussian truth & Gaussian mixture MMEGaussian truth & Gaussian mixture MMEGaussian truth & Gaussian mixture MME

We begin by considering the simplest possible configuration in which both the truth dynamics and the
imperfect models in the Multi Model Ensemble are Gaussian. The truth dynamics is given by the two-
dimensional Gaussian model (32) outlined in §4.1.1 where the resolved dynamics is linearly coupled to
the unresolved dynamics. The MME density πmme

t;ααα,[τ ] is a finite Gaussian mixture associated with the one-

parameter class M (44) of linear Gaussian models (32) which is parameterized by the weights vector ααα
and the distribution [τ ] (46) of correlation times in the imperfect models (24); correct statistical initial
conditions and correct marginal equilibrium statistics for the resolved dynamics are imposed.

Figure 3 illustrates the dependence of MME prediction skill on the structure of the ensemble (see (48))
for fixed initial uncertainty V ar0[u] in the resolved dynamics of the Gaussian truth (32); in all cases the
performance of equal-weight MME (48) and optimal-weight MME (4) is compared with predictions of a
single model m� ∈ M which has a correct correlation time τ trth (47). The optimal-weight Gaussian MME
is obtained by minimizing the relative entropy between the MME density πmme

t;ααα,[τ ](u) and the marginal

truth density πt(u), as in (9); recall that the error of optimal-weight MME prediction corresponds to an
information barrier in the MME predictions (see FACT 2 in §3) and it is useful for assessing the skill of
the equal-weight MME. The information criterion (11) for each of the considered cases is indicated in the
corresponding insets. Below we summarize the most important points revealed by the simulations:

• The equal-weight MME tends to outperform the single model predictions with correct correlation
time τ trth provided that the MME is either underdamped or balanced (see (48) and figure 3); this
is reminiscent of the short time results summarized in Fact 6 of §3.2.

• Information barriers in MME prediction in this setting are reduced relative to the single model
prediction for balanced or underdamped MME (48) and moderate uncertainty V ar0[u] in the initial
conditions for the resolved dynamics in (32). For V ar0[u] � V areq[u] the optimal-weight MME
collapses onto the most underdamped model in the ensemble (see (48). For V ar0[u] ∼ V areq[u] the
optimal-weight MME collapses onto the most overdamped model in the ensemble.

• Weight optimization in MME improves the prediction skill improvement (figure 3); however, this type
of optimization is impractical since it requires good estimates of the truth dynamics. Optimization
of the correlation times [τ ] in (46) is impractical but improves the prediction skill.

Non-Gaussian truth & Gaussian mixture MMENon-Gaussian truth & Gaussian mixture MMENon-Gaussian truth & Gaussian mixture MME

Here, the non-Gaussian truth dynamics is given by the exactly solvable model (36) where the resolved
dynamics is nonlinearly coupled with the unresolved dynamics which induces fluctuations in the effective
damping of the resolved component. This non-Gaussian case with fat-tailed and skewed probability
densities provides a very useful test bed for validating the analytical estimates derived in §3 and for
exploring further intricacies; in fact, one example exploiting this revealing model was already shown in
figure 1 of §2. As in the previous configuration, the imperfect models in MME are in the class M (44) of
linear Gaussian models (24) so that the MME density πmme

t;ααα,[τ ] in (45) is given by a Gaussian mixture. The

optimal-weight MME, whose prediction error corresponds to an information barrier (FACT 2 in §3), is
obtained by minimizing the relative entropy between the MME statistics and the marginal truth density,
as in (9). The single model prediction is carried out using m� ∈ M with correct correlation time τ trth of
the resolved equilibrium dynamics u(t).

Figures 4-6 illustrate the dependence of the predictive skill of the Gaussian mixture MME (45) as a func-
tion of time for increasing variance V ar0[u] of the initial statistics for the resolved variable π0(u) in the non-
Gaussian truth dynamics (36). In the configuration examined in figure 4 the marginal equilibrium statistics
πeq(u) of the truth (36) is symmetric but highly non-Gaussian (see regime II in [8]) and the dynamics is ini-
tiated from a stable regime, i.e, when π0(γ) = N (α〈γ〉eq, βV areq[γ]), α > 0, β � 1. In figure 5 the dynam-
ics of (36) is initiated initiated from an unstable phase, i.e., π0(γ) = N (−α〈γ〉eq, βV areq[γ]), α > 0, β � 1
and the initial stage of the truth evolution is characterized by a rapid transient dynamics. Finally, in
figure 6 the marginal equilibrium statistics of the resolved dynamics u(t) in the truth is skewed (πeq(u) is
fat-tailed with positive skewness) and π0(γ) = πeq(γ). The prediction skill of the equal-weight MME over
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the time interval I = [0 T ] is shown for the spread [τ ] in (46) with the best skill (solid blue) and for the
spread [τ ] with the worst skill (dotted blue) within the maximum spread of [τ ]max = 10 τ trth; these are
defined as:

• Best equal-weight MMEBest equal-weight MMEBest equal-weight MME corresponds to the ensemble with density πmme
t;ααα,[τ ] in (45) with αi = const.

and the smallest prediction error (49) within the examined spread [τ ]max of correlation times of the
models in MME.

• Worst equal-weight MMEWorst equal-weight MMEWorst equal-weight MME corresponds to the ensemble with density πmme
t;ααα,[τ ] in (45) with with αi =

const. and the largest prediction error (49) within the examined spread [τ ]max of correlation times
of the models in MME.

Considering these two extreme cases helps judge the sensitivity of the equal weight MME to the spread
of the correlation times in the ensemble; the information criterion (11) for each of the considered cases
is indicated in the corresponding insets. Based on the examples illustrated in figures 4-6, we recapitulate
the general features of MME prediction in this setting as follows:

• Symmetric marginal attractor density πeq(u) of the truthSymmetric marginal attractor density πeq(u) of the truthSymmetric marginal attractor density πeq(u) of the truth: MME prediction skill tends to be superior to
that of the single model m� with the correct correlation time τ trth for the resolved dynamics except when
π0(γ) is in unstable regime of the truth dynamics in (36). The following trends in the structure of MME
(see (48)) are observed:

- Underdamped equal-weight MME (48) performs similarly well to the optimal-weight MME (4) for
predicting the resolved dynamics, u(t), when the dynamics (u(t), γ(t)) of (36) is initiated from a
stable regime (figure 4). This behavior is reminiscent of the short-time estimate summarized in
Fact 6 of §3.2. Similar, conclusions apply to balanced MME (48) when the dynamics is initiated in
a stable regime, as above, or when π0(γ) = N (〈γ〉eq, V areq[γ]). The information barrier in MME
prediction is reduced relative to the single model prediction for sufficiently small initial uncertainty
V ar0[t].

- When the dynamics (u(t), γ(t)) of (36) is initiated from an unstable regime (figure 5) the MME
prediction does not provide a significantly improved skill over the predictions with a single model
m� with correct correlation time τ trth for the resolved dynamics.

- The sensitivity to the spread [τ ] of correlation times τmi = 1/γmi in the equal-weight Gaussian
MME (45) with models (24) shadows that of the optimal-weight MME (9) and increases with de-
creasing uncertainty V ar0[u] of the resolved initial conditions. However, the optimal spread [τ ]opt
for predictions over the time interval I = [0 T ] grows with the uncertainty V ar0[u] (not shown).

- Weight optimization in MME improves the prediction skill improvement (figure ??); however, this
type of optimization is impractical since it requires good estimates of the truth dynamics. Opti-
mization of the correlation times [τ ] in (46) is impractical but improves the prediction skill.

• For skewed marginal attractor density πeq(u) of the truthFor skewed marginal attractor density πeq(u) of the truthFor skewed marginal attractor density πeq(u) of the truth the following points are worth noting:

- The information barrier for Gaussian MME predictions in this regime coincides with the most
overdamped single model mi in the ensemble. The single model predictions based on m� with
correct correlation time τ trth differ little from the optimal single model.

- Prediction skill of equal-weight balanced MME (see (48)) over the time interval I = [0 T ] is poor and
comparable to that of the single model m� with correct correlation time τ trth. Some improvement
at short times T � 1 and small uncertainty in the initial statistical conditions can be observed even
for balanced MME, which is improved further (not shown) for an underdamped MME in line with
the conclusions in FACT 8 §3.2.
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4.3.3 MME prediction of forced response

In this section we augment the analytical considerations of §3.2, and the asymptotic infinite-time example
discussed in §4.2, with simple numerical tests of the forced response estimation over a finite-time interval
I = [0 T ] through a Gaussian mixture MME, as described in §4.3.1. The truth dynamics is Gaussian
and given by the model (32) with hidden dynamics that induces stochastic fluctuations in the resolved
dynamics. The imperfect models in MME are in the class M (44) of linear Gaussian models (24) so that
the MME density πmme

t;ααα,[τ ] is given by the Gaussian mixture in (45) which is parameterized by the weights

vector ααα and the distribution [τ ] (46) of correlation times in the imperfect models (24). The qualitative
understanding of the results below can be obtained with the help of the schematic figure 2 discussed in §3.

In contrast to the initial value problem in §4.3.2, the initial statistical conditions in the tests of the
forced response prediction coincide with the unperturbed marginal equilibrium statistics of the truth.
The response in the resolved truth dynamics (32), the imperfect models (24), and MME (45) is induced
by the forcing perturbations of the ‘ramp’ type which changes linearly between F0 and F0 + δF̃ over a
time interval [tmin tmax]. Here, the truth response to forcing perturbations is computed directly from
the test model but, as already pointed out in §3.1.3, for sufficiently small perturbations δF the truth
response can be estimated via the linear response theory and the fluctuation-dissipation formulas utilizing
the unperturbed equilibrium statistics (see [47, 35, 2, 41, 23, 50, 39] for additional information).

Figures 7 and 8 show two distinct examples of prediction skill for the forced response of the resolved
dynamics u(t). Figure 7 shows the skill of imperfect predictions of the forced response of the truth in (32)
to small forcing perturbations in the presence of an ‘infinite-time’ information barrier (see §4.2) in the
class M (44) of the imperfect Gaussian models (24). This configuration corresponds to that sketched in
figure 2b when the optimal-weight MME for predicting the infinite-time response coincides with a single
model m∗ in M with the smallest prediction error. Thus, the information barrier for doing infinite-time
response predictions cannot be reduced via the MME utilizing models from M. Nevertheless, both the
finite- and infinite-time predictive skill can be improved via the MME approach relative to the single model
m� �= m∗ for any overdamped MME as summarized below. The information criterion (11) for improving
predictions relative to m� with correct correlation time τ trth (47) for the resolved equilibrium dynamics
u(t) is indicated in the corresponding insets.

Figure 8 shows the skill of imperfect predictions of the forced response of the truth in (32) to small
forcing perturbations when there is no ‘infinite-time’ information barrier (see §4.2) in the class M (44)
of imperfect Gaussian models (24). In this case we compare the predictive skill of three different types of
MME defined in (48) with two single-model predictions. The first model m� has the correct correlation
time τ trth for the resolved equilibrium dynamics u(t) which can be assessed from empirical data. The
second model m∗

∞ has the correct infinite-time forced response but it is unlikely to be known a priori.
In this configuration the optimal-weight MME for predicting the infinite-time response collapses onto the
single model m∗

∞ and there is no information barrier for the infinite-time forced response (consider figure
2a with P(πl

∞, πm∗
∞ ) = 0). However, the prediction of the forced response over a finite time interval can

be improved even relative to m∗
∞, as evidenced by the structure of the optimal-weight MME for doing

predictions over a time interval I = [t0 t0 + T ].

Below we summarize the most important points illustrated in figures 7 and 8:

• The improvement of forced response with the Gaussian MME is controlled by the condition (31) in
Fact 9 of §3.2 which in the present configuration becomes∑

i �=�
βi(γ

mi − γm�)(X 2
i − μ̃F̃ ) > 0, (51)

where μ∞ = μeq+δμ̃ is the perturbed truth mean in response to the perturbed forcing F∞ = F0+δF̃ ,

and X 2
i = 1

2 F̃
2(γmi + γm�)(γmiγm�)−2 > 0. There are two obvious cases when the forced-response

prediction is improved within the MME framework:

(i) when X 2
i − μ̃F̃ > 0 an ‘overdamped’ MME with γmi � γm� in (24) yields improved prediction.

In this case increasing the spread [τ ] (46) of correlation times in an overdamped MME with
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correct equilibrium and correct statistical initial conditions improves the MME prediction skill
of the forced response.

(ii) when X 2
i − μ̃F̃ < 0 the infinite-time forced response is improved by an ‘underdamped’ MME

with γmi � γm� . In this case increasing the spread [τ ] (46) of correlation times in underdamped
MME with correct equilibrium and correct statistical initial conditions improves the MME
prediction skill of the forced response.

The configuration shown in figures 7 and 8 corresponds to the setting (i) so that an overdamped
MME improves the forced response prediction. However, in the case with information barrier (figure
7) we have μ̃F̃ < 0 and in the case with no information barrier (figure 8) we have 0 < μ̃F̃ < X 2

i .
The expected change of the truth mean μ̃ can be estimated via the linear response theory and
the fluctuation-dissipation formulas, while the perturbation of the model means can be estimated
directly from the models.

• Weight optimization in MME provides a significant prediction skill improvement over the equal-
weight MME. While this type of optimization is impractical, it helps reveal information barriers in
the MME prediction (see FACT 2 of §3 and figure 2) and judge the skill of equal-weight MME. In
the present setting the following cases are worth noting:

No information barrier in MME predictionNo information barrier in MME predictionNo information barrier in MME prediction (A < 0 in the unresolved part of the truth (32) so that
0 < μ̃F̃ < X 2

i in (51)). If m� �= m∗m� �= m∗m� �= m∗ with optimal damping γm∗ in (24), the MME approach can
improve the infinite-time forced response prediction (see figure 8 and (51) above). In particular,
since this configuration falls into the case (i) above, the MME skill is improved for any overdamped
MME with γmi � γm� where m� has the correct correlation time τ trth which can be tuned from
measurements of the resolved truth equilibrium dynamics.

There is no information barrier for doing infinite-time response predictions of the resolved dynamics
in (32) within the class of models M containing m∗; consequently, the optimal-weight MME for
infinite-time response collapses onto m∗. Forced-response prediction over a whole time interval
I = [t0 t0 + T ] is different as evidenced by the nontrivial structure of the optimal-weight MME in
figure 8 and the associated information barrier (see FACT 2 in §3); in this case the optimal-weight
MME concentrates around two models: the model with correlation time closest to m∗ in the given
ensemble, and the most overdamped model which helps improve the short-time prediction skill.

Information barrier in MME predictionInformation barrier in MME predictionInformation barrier in MME prediction (A > 0 in the truth mean (35) so that μ̃F̃ < 0 in (51)).
Despite the presence of an information barrier to infinite-time forced response prediction (see §4.2),
this configuration also falls into the case (i) above since μ̃F̃ < 0; consequently, the equal-weights
overdamped MME outperforms the single model predictions with correct correlation time τ trth

(figure 7); moreover, the balanced MME (see (48)) with sufficiently narrow spread of [τ ] of correlation
times also performs satisfactorily. The information barrier in MME prediction of the forced response
of (32) cannot be reduced relative to the single model prediction due to the structure of the ensemble
M containing models (24); this is depicted schematically in figure 2b and was discussed in §4.2.
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Initial value problem with Gaussian truth and perfect statistical initial conditions
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time
0 0.5 1 1.5 2 2.5

0

0.02

0.04

0.06

0.08

0.1
Model Error

time
0 0.5 1 1.5 2 2.5

Internal prediction skill

Truth

Single model with τ trth

Best equal-weight MME
Optimal-weight MME

τ0.5 1 1.5 2

M
M
E

w
ei
g
h
ts

0

0.2

0.4

0.6

0.8

1

τ trth

Information criterion (11) with Δ=0 is:

- satisfied for
- not satisfied for

Underdamped MME

time
0 0.5 1 1.5 2 2.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Model Error

time
0 0.5 1 1.5 2 2.5

Internal prediction skill

Truth

Single model with τ trth

Best equal-weight MME
Optimal-weight MME

τ0.5 1 1.5 2

M
M
E

w
ei
g
h
ts

0

0.2

0.4

0.6

0.8

1

τ trth

- satisfied for
- satisfied for

Information criterion (11) with Δ=0 is:

Overdamped MME

time
0 0.5 1 1.5 2 2.5

0

0.02

0.04

0.06

0.08

0.1

0.12

Model Error

time
0 0.5 1 1.5 2 2.5

Internal prediction skill

Truth

Single model with τ trth

Best equal-weight MME
Optimal-weight MME

τ0.5 1 1.5 2

M
M
E

w
ei
g
h
ts

0

0.2

0.4

0.6

0.8

1

τ trth

Information criterion (11) with Δ=0 is:

- not satisfied for
- not satisfied for

Figure 3: Initial value problem (see electronic version for colors). Prediction skill of a 9-model MME with correct statistical
initial conditions for the resolved dynamics u(t) of the Gaussian model (32) for three different types of ensemble structure
(see (48)). The MME is a mixture of Gaussian models (24) with correct equilibrium statistics (44) and correlation times
τmi sampled around the correct correlation time τ trth with the spread [τ ] = 0.5τ trth (see (46)); the optimal-weight MME
(magenta) is obtained by minimizing the relative entropy as in (9).
Truth parameters in (32): A = −0.5, a = −5.5, λ1,2 = −1,−5;σ : 0.77, F0 : 1, E = 0.01, 〈u〉eq = 0.1, 〈v〉eq = 1.35.
Initial conditions (both truth and MME): 〈u〉0 = 1.05〈u〉eq , 〈v〉0 = 1.1〈v〉eq , R0 = 0.2Req .
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Symmetric non-Gaussian truth, IVP with perfect initial statistics in the stable regime of the truth

time
0 1 2 3 4

Internal prediction skill

Truth

Single model with τ trth

Best equal-weight MME; [τ ] = 3τ trth

Worst equal-weight MME; [τ ] = 10τ trth

optimal-weight MME; [τ ] = 3τ trth

τ
0 1 2 3

M
M
E

w
ei
g
h
ts

0

0.2

0.4

0.6

0.8

1

time
0 1 2 3 4

0

0.02

0.04

0.06

0.08

0.1

0.12

Model Error

τ trth

Information criterion (11) with Δ=0 is:

- satisfied for

- satisfied for

V ar0[u] = 0.01V areq[u]

- not satisfied for

time
0 1 2 3 4

Internal prediction skill

τ1 2 3 4

M
M
E

w
ei
g
h
ts

0

0.2

0.4

0.6

0.8

1

time
0 1 2 3 4

0

0.02

0.04

0.06

0.08

0.1

0.12

Model Error

Single model with τ trth

Best equal-weight MME; [τ ] = 5τ trth

Worst equal-weight MME; [τ ] = 0.8τ trth

Optimal-weight MME; [τ ] = 5τ trth

τ trth

Information criterion (11) with Δ=0 is:
- satisfied for

- satisfied for
- satisfied for

V ar0[u] = 0.25V areq[u]

time
0 1 2 3 4

0

0.02

0.04

0.06

0.08

0.1

0.12

Model Error

time0 1 2 3 4

Internal prediction skill

τ0 5 10

M
M
E

w
ei
g
h
ts

0

0.2

0.4

0.6

0.8

1

Single model with τ trth

Best equal-weight MME; [τ ] = 10τ trth

Worst equal-weight MME; [τ ] = 0.8τ trth

Optimal weight MME; [τ ] = 10τ trth

τ trth

- satisfied for

- satisfied for

Information criterion (11) with Δ=0 is:

- satisfied for

V ar0[u] = 0.95V areq[u]

Figure 4: Initial value problem (see electronic version for colors). Prediction skill of a 17-model MME with correct statistical
initial conditions for the resolved dynamics u(t) of the non-Gaussian model (36) for different uncertainties V ar0[u]. The truth
dynamics (36) is initiated in a statistically stable regime (the unresolved variable at t0 satisfies γ0 ∼ N (

1.8〈γ〉eq , 0.2V areq [γ]
)
.

The MME is a mixture of Gaussian models (24) with correct equilibrium statistics (44) and correlation times τmi sampled
around the correct correlation time τ trth (see balanced MME in (48)) with the spread [τ ] in πmme

t;ααα,[τ ]
defined in (46); the

optimal-weight MME (magenta) is obtained by minimizing the relative entropy as in (9). Truth parameters: γ̂ = 1.5, dγ =
2, σγ = 2, σu = 0.5, F = 0. Initial conditions (both truth and MME): 〈u〉0 = 0.4〈u〉eq , 〈γ〉0 = 1.2〈γ〉eq , V ar0[γ] =
0.2V areq [γ] and V ar0[u] = 0.01V areq [u] (top), V ar0[u] = 0.25V areq [u] (middle), V ar0[u] = 0.95V areq [u] (bottom).
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Symmetric non-Gaussian truth, IVP with initial statistics in the unstable regime of the truth
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Figure 5: Initial value problem (see electronic version for colors). Prediction skill of a 17-model MME with correct
statistical initial conditions for the resolved dynamics u(t) of the non-Gaussian model (36) for different uncertainties
V ar0[u]. The truth dynamics (36) is initiated in a statistically stable regime (the unresolved variable at t0 satisfies
γ0 ∼ N (− 1.2〈γ〉eq , 0.2V areq [γ]

)
. The MME is a mixture of Gaussian models (24) with correct equilibrium statistics

(44) and correlation times τmi sampled around the correct correlation time τ trth (see balanced MME in (48)) with the
spread [τ ] in πmme

t;ααα,[τ ]
defined in (46); the optimal-weight MME (magenta) is obtained by minimizing the relative entropy

as in (9). Truth parameters: γ̂ = 1.5, dγ = 2, σγ = 2, σu = 0.5, F = 0. Initial conditions (both truth and MME):
〈u〉0 = 0.4〈u〉eq , 〈γ〉0 = 1.2〈γ〉eq , V ar0[γ] = 0.2V areq [γ] and V ar0[u] = 0.01V areq [u] (top), V ar0[u] = 0.1V areq [u]
(middle), V ar0[u] = 0.95V areq [u] (bottom).
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Skewed non-Gaussian truth, IVP with initial statistics in the stable regime of the truth

time
0 1 2 3 4

0

0.5

1

1.5

2

2.5
Model Error

Single model with τ trth

Best equal-weight MME; [τ ] = 1.5τ trth

Worst equal-weight MME; [τ ] = 10τ trth

Optimal-weight MME; [τ ] = 1.5τ trth

time
0 1 2 3 4

Internal prediction skill

Truth

Single model with τ trth

Best equal-weight MME; [τ ] = 1.5τ trth

Worst equal-weight MME; [τ ] = 10τ trth

Optimal-weight MME; ; [τ ] = 1.5τ trth

τ
0 1 2 3

M
M
E

w
ei
g
h
ts

0

0.2

0.4

0.6

0.8

1

τ trth

- satisfied for

V ar0[u] = 0.01V areq[u]

- satisfied for
- not satisfied for
Information criterion (11) with Δ=0 is:

time
0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Model Error

time
0 1 2 3 4

Internal prediction skill

τ0 1 2 3

M
M
E

w
ei
g
h
ts

0

0.2

0.4

0.6

0.8

1
Single model with τ trth

Best equal-weight MME; [τ ] = 1.5τ trth

Worst equal-weight MME; [τ ] = 10τ trth

Optimal-weight MME; [τ ] = 1.5τ trth

τ trth

Information criterion (11) with Δ=0 is:
- not satisfied for

- satisfied for
- not satisfied for

V ar0[u] = 0.5V areq[u]

time
0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Model Error

time
0 1 2 3 4

Internal prediction skill

τ0 1 2 3

M
M
E

w
ei
g
h
ts

0

0.2

0.4

0.6

0.8

1
Single model with τ trth

Best equal-weight MME; [τ ] = 1.4τ trth

Worst equal-weight MME; [τ ] = 10τ trth

Optimal-weight MME; [τ ] = 1.5τ trth

τ trth

Information criterion (11) with Δ=0 is:
- not satisfied for
- not satisfied for
- satisfied for

V ar0[u] = 0.95V areq[u]

Figure 6: Initial value problem (see electronic version for colors). Prediction skill of a 17-model MME with correct statistical
initial conditions for the resolved dynamics u(t) of the non-Gaussian model (36) for different uncertainties V ar0[u]. The truth
dynamics (36) is initiated in a statistically stable regime with the unresolved variable at t0 satisfying γ0 ∼ N (〈γ〉eq , V areq [γ]

)
.

The MME is a mixture of Gaussian models (24) with correct equilibrium statistics (44) and correlation times τmi sampled
around the correct correlation time τ trth (see balanced MME in (48)) with the spread [τ ] in πmme

t;ααα,[τ ]
defined in (46); the

optimal-weight MME (magenta) is obtained by minimizing the relative entropy as in (9). Truth parameters: γ̂ = 1.5, dγ =
10, σγ = 2, σu = 2, F = 1. Initial conditions (both truth and MME): 〈u〉0 = 0.1〈u〉eq , 〈γ〉0 = 〈γ〉eq , V ar0[γ] = V areq [γ]
and V ar0[u] = 0.01V areq [u] (top), V ar0[u] = 0.5V areq [u] (middle), V ar0[u] = 0.95V areq [u] (bottom).
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Forced response prediction of Gaussian truth with infinite-time inform. barrier in MME
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Figure 7: (See electronic version for colors) Prediction skill of a forced response of the resolved truth dynamics (32) based on
a 17-model MME with correct statistical initial conditions for the resolved Gaussian dynamics u(t) in (32) and three different
types of MME structure (see (48)). The MME is a mixture of Gaussian models (24) with correct equilibrium statistics (44)
and correlation times τmi sampled to create a balanced MME (top), overdamped MME (middle), and underdamped MME
(bottom) in (48)) with the spread [τ ] in the MME density πmme

t;ααα,[τ ]
(46); the ensemble of initial conditions for the unresolved

dynamics v(t) in (32) is drawn from the unperturbed equilibrium v0 ∼ N (〈v〉eq , V areq [v]
)
. The optimal-weight MME

(magenta) is obtained by minimizing the relative entropy as in (9). Truth parameters in (32): A = 0.5, a = −5.5, λ1,2 =
−1,−4;σ : 0.63, F0 : −0.8, E = 0.01, 〈u〉eq = 0.1, 〈v〉eq = 1.35. Forcing (both truth and MME): F (t) = F0 for t � 0,
F (t) = F0(1 + 0.05t) for 0 < t � 1, F (t) = F0(1 + 0.05) for t > 1.
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Forced response prediction of Gaussian truth without infinite-time infor. barrier in MME
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Figure 8: (See electronic version for colors.) Prediction skill of a forced response of the resolved truth dynamics (32) based on
a 17-model MME with correct statistical initial conditions for the resolved Gaussian dynamics u(t) in (32) and three different
types of MME structure (see (48)). The MME is a mixture of Gaussian models (24) with correct equilibrium statistics (44)
and correlation times τmi sampled to create a balanced MME (top), overdamped MME (middle), and underdamped MME
(bottom) in (48)) with the spread [τ ] = 0.8τ trth in the MME density πmme

t;ααα,[τ ]
(46); the ensemble of initial conditions for the

unresolved dynamics v(t) in (32) is drawn from the unperturbed equilibrium v0 ∼ N (〈v〉eq , V areq [v]
)
. The optimal-weight

MME (magenta) is obtained by minimizing the relative entropy as in (9). The correlation time τopt for the single model with
perfect infinite-time response (green/circles) is given by (40) in §4.2. Truth parameters in (32): A = −5.5, a = −5.5, λ1,2 =
−1,−10;σ : 1.48, F0 : 0.18, E = 0.01, 〈u〉eq = 0.1, 〈v〉eq = 0.37. Forcing (both truth and MME): F (t) = F0 for t � 0,
F (t) = F0(1 + 0.05t) for 0 < t � 1, F (t) = F0(1 + 0.05) for t > 1.
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5 Conclusions

Here, we developed a framework rooted in information theory for a systematic assessment of the skill of
Multi Model Ensemble (MME) approach which is aimed at improving the accuracy of dynamical predic-
tions through combining probabilistic forecasts obtained from imperfect models. Despite the increasingly
common use of the MME approach in applied sciences, especially in the climate and atmospheric sciences
(e.g., [60, 67, 13, 70, 71, 68, 69]), a systematic framework justifying this technique was lacking. Con-
sequently, many procedures developed in the context of MME prediction lack systematic guidelines for
constructing model ensembles with improved predictive skill. Here, we focused on uncertainty quantifica-
tion and a systematic understanding of the benefits and limitations of the MME approach, as well as on
the development of practical design principles for constructing model ensembles with improved predictive
skill. This setting should not be confused with statistical modelling in which the underlying dynamics is
ignored. The main issues and results presented here focused on:

(I) The advantages/disadvantages of the MME approach relative to using a single model predictions
with an ensemble of initial conditions. In particular, we derived the sufficient condition guaranteeing
improvement of the skill (time-dependent statistical accuracy) of dynamic MME predictions relative
to the single model predictions (see (11) and §3).

(II) Sensitivity of the MME skill to the unresolved truth dynamics, and guidelines for constructing MME
for best prediction skill at short, medium and long time ranges (see §3, §4.3 and Appendices B, ??).
Here, a systematic insight to improving non-equilibrium prediction could be made by combining
the linear response theory and fluctuation-dissipation formulas, which utilize only the unperturbed
equilibrium information, within a time-dependent information theoretic framework.

Based on the information-theoretic considerations, we derived a simple condition (7) which guarantees
improvement improvement of probabilistic predictions within the MME framework; this criterion uses the
relative entropy (2) which measures lack of information in the dynamic predictions based on imperfect
models relative to the truth dynamics on the subspace of the resolved observables. We showed for the
first time why, and under what conditions, combining imperfect models results in an improved predictive
performance relative to the best single imperfect model in the ensemble; the potential benefits of the MME
approach result from the convexity of the relative entropy. The sufficient condition (11) for improving
imperfect dynamical predictions relative to the single model predictions represents a more practical way of
assessing the utility of the MME approach since it involves estimating the lack of information in predictions
of the individual models in the ensemble rather than determining the lack of information in the full mixture
density associated with the MME prediction.

We showed that the condition (7) for MME skill improvement can be practically implemented in
the relaxed form (11) or (14) which require evaluation of the lack of information between the individual
ensemble members and the least-biased estimates of the truth dynamics. This condition can be evaluated
with the help of the linear response theory and the ‘fluctuation-dissipation’ approach (see, e.g., [47, 35,
2, 41, 23, 50, 39])) in the context of forced-response prediction when the truth equilibrium dynamics is
subjected to external perturbations in forced dissipative systems; this approach follows from the earlier
work in the single-model setup (see, for example, [32, 42, 33, 49, 40, 50, 18, 8, 48]). When considering
prediction improvement via the MME approach for the initial value problem the implementation of the
information-based condition (11) or (14) can be carried out in the hindcast/reanalysis mode; moreover
techniques similar to those discussed in [19, 20, 21] could be used to effectively assess the skill of a given
ensemble of imperfect models. A set of useful results was derived in §3.2 in the Gaussian framework
which utilizes Gaussian models in the Multi Model Ensembles; this approach provides useful intuition and
guidelines in more complex cases treated in §3. The general theoretical results were illustrated in §4.3
which combines the analytical estimates of §3 with simple numerical tests based on statistically exactly
solvable Gaussian and non-Gaussian test models described in §4.1.

The ultimate goal in reduced-order prediction should involve a synergistic approach that combines
MME forecasting, data assimilation [16, 52, 6, 9], and improving individual models through various
stochastic superparameterization [24, 51], and reduced subspace closure techniques [64, 65, 63]. We en-
visage extending the present framework to account for differences in the internal prediction skill (50) of
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MME and the single imperfect model in addition to the prediction error (49). The natural and important
extension of this work involves combining the MME framework for improving imperfect predictions with
an MME approach to data assimilation/filtering in high-dimensional turbulent systems based on imperfect
models. Such a combined framework should provide a valuable tool for improving real-time predictions
in complex partially observed dynamical systems.
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A Some simple proofs of general results from §3
Here, we complement the discussion of §3 by providing simple derivations and proofs of the facts established
in that section.

Information Criterion II in (11):Information Criterion II in (11):Information Criterion II in (11): Derivation of this criterion relies on the convexity properties of the
relative entropy (e.g., [11]), which leads to the following upper bound on the lack of information in the
MME mixture density πmme

t (1) relative to the marginal truth density πt

P(πt, π
mme
t ) = P(πt,

∑
i αiπ

mi
t ) �

∑
i αiP(πt, π

mi
t ) =

∑
i �=� αiP(πt, π

mi
t ) + α�P(πt, π

m�
t ). (52)

where αi � 0 and
∑
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P(πt, π
mme
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m�
t ) = P(πl

t , π
mme
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t , π
m�
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t , π
mi
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t , π
m�
t ), (53)

where we used the triangle equality (6) and the fact P � 0. Clearly, the information criterion in (7) is
always satisfied when the right-hand-side in (53) satisfies∑

i �=�
αi

 
I
P(πl

t , π
mi
t )dt+ (α� − 1)

 
I
P(πl

t , π
m�
t )dt < 0, (54)

which, after rearranging terms, gives the sufficient condition in (11) with Δ = 0, i.e.,∑
i �=�

βi PI(πl, πmi) < PI(πl, πm�), βi = αi (1− α�)−1,
∑
i �=�

βi = 1. (55)

This sufficient condition is too restrictive when m� coincides with the best imperfect model m∗
I,l in (8) since

there is no non-trivial MME satisfying (54). Based on the basic convexity properties illustrated in figure
2 and FACT 1, unless PI(πl, πm∗

I,l) = 0, an MME with a smaller error does exist and the condition (55)
needs to be relaxed in order to be applicable in such cases. The uncertainty parameter Δ in∑

i �=�
βi PI(πl, πmi) < PI(πl, πm�) + Δ, βi = αi (1− α�)−1,

∑
i �=�

βi = 1, (56)

allows for including models in the ensemble with error PI(πl, πm∗
I,l) � PI(πl, πm) < PI(πl, πm∗

I,l) + Δ so
that the MME prediction error is 0 � PI(π, πmme) � PI(π, πm�) + Δ, as illustrated in figure 2.

Proof of FACT 3:Proof of FACT 3:Proof of FACT 3: The proof is straightforward and follows by direct calculation consisting of two steps:

1) We start by rewriting the condition (11) in terms of the least-biased densities defined in (12) which
leads to

P(πl1
t , πm�,l2

t ) + Δ >
∑
i �=�

βi P(πl1
t , πmi,l2

t ) +
∑
i �=�

βi E
πl1

[
log

πmi,l2

πmi
− log

πm�,l2

πm�

]
; (57)

note that this last term vanishes identically when πmi,l2 = πmi and the MME contains only least-
biased models.
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2) Next, we notice that the relative entropy between two least biased densities πl1
t and πm,l2

t is given
by

P(πl1
t , πm,l2

t ) = logCm
t + θθθmt · ĒEEt −

(
logCt + θθθt · ĒEEt

)
= log

Cm
t

Ct
+ (θθθmt− θθθt) · ĒEEt, (58)

where EEEt is the vector of expectations of the functionals Ei defined in (13) with respect to the truth

marginal density πt, and the Lagrange multipliers in (12), θθθt = θθθ
(
EEEt

)
, θθθmt = θθθm

(
EEE

m

t

)
, are defined as

θθθt =

{
(θ1(t), . . . , θl1(t))

T,

(θ1(t), . . . , θl1(t), 0, . . . , 0l2)
T,

θθθmt =

{
(θm1 (t), . . . , θ

m
l2(t), 0, . . . , 0l1)

T, if l1 � l2,

(θm1 (t), . . . , θ
m
l2(t))

T, if l1 < l2.

while the normalization constants in the least biased densities are Ct = C
(
EEEt

)
, Cm

t = Cm
(
EEE

m

t

)
.

The condition in (14) is obtained by combining (57) with (58).

Proof of FACT 4:Proof of FACT 4:Proof of FACT 4: The condition in (19) for improvement of the prediction skill via MME in the context
of initial value problem can be obtained as follows: Consider the representation of the true expected values
EEEt of the functionals Ei(uuu) with respect to the truth marginal density πt(uuu) in the form

EEEt = EEE0 + δẼEEt, θθθt = θθθ0 + δθ̃θθt
(
EEEt

)
, ẼEEt=0 = θ̃θθt=0 = 0, (59)

these are smooth at δ = 0 when the decomposition πt = π0 + δπ̃t is smooth at δ = 0 which holds under
minimal hypothesis described in [26] so that

Ct = C0

(
1− δθ̃θθt ·EEE0

)
+O(

δ2
)
, (60)

The lack of information in (11) between the least-biased approximation of the truth πl1
t and the imperfect

model density πmi
t can be written as

P(πl1
t , πmi

t ) = P(πl1
t , πmi,l2

t ) +

ˆ
duuuπl1

t log
πmi,l2
t

πmi
t

, (61)

similarly to the result leading to (57). The lack of information in the perturbed least-biased density,
πmi,l2
t , of the imperfect model relative to the least-biased perturbation of the truth, πl1

t , can be expressed
through (63)-(66) in the following form

P(πl1
t , πmi,l2

t ) = P(πl1
0 , πmi,l2

t ) + (θθθmi
t − θθθ0) · δẼEEt +O(δ2). (62)

Substituting (62) into (14) leads to the desired condition (19).�

Proof of FACT 5:Proof of FACT 5:Proof of FACT 5: The condition in (23) for improvement of the prediction skill via MME obtained by
perturbing single model predictions can be obtained as follows: Consider the condition (14) in the case
when the ensemble members mi ∈ M are obtained from the single model m� ∈ M through perturbing
some parameters of the single model; we assume that the statistics of the model depends smoothly on
these parameters and that the perturbations are non-singular (which required minimal assumptions [26]

of hypoelliptic noise in the truth dynamics) so that the evolution of the statistical moments EEE
mi

t and their
functions in the least-biased densities (58) of the ensemble members can be written, for ε � 1, as

a) EEE
mi,ε

t = EEE
m�
t + ε ẼEE

mi

t , (63)

b) θθθmi,ε
t = θθθm�

t + ε θ̃θθ
mi

t

(
EEE

mi

t

)
+O(

ε2
)
, (64)

c) Cmi,ε
t = Cm�

t

(
1− ε θ̃θθ

mi

t ·EEEm�
t

)
+O(

ε2
)
, (65)
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where

θ̃θθ
mi

t =
(
EEE

m�
t ·∇θmi

1 |ε=0, EEE
m�
t ·∇θmi

2 |ε=0, . . . , EEE
m�
t ·∇θmi

l1 |ε=0

)T

. (66)

The lack of information in the perturbed least-biased density, πmi,l2
t , of the imperfect model relative to

the least-biased perturbation of the truth, πl1
t , can be expressed through (63)-(66) in the following form

P(πl1
t , πmi,l2

t ) = log
(
Cmi

t /Ct

)
+ (θθθmi

t −θθθt) · ĒEEt = P(πl1
t , πm�

t ) + ε θ̃θθ
mi

t · (EEEt −EEE
m�
t ) +O(

ε2
)
, (67)

which is obtained by combining (63)-(65). Substituting (67) into the general condition (14) leads to the
desired condition (23). �

Proof of FACT 6:Proof of FACT 6:Proof of FACT 6: The proof of the condition (29) is simple but tedious and follows from the short-
time asymptotic expansion of the relative entropy between the Gaussian truth and the Gaussian models.
Consider the state vector uuu ∈ IRK for resolved dynamics and assume that short-times the statistics of the
Gaussian truth density πg

t = N (μμμt, Rt) and of the Gaussian model density πmi
t = N (μμμmi

t , Rmi
t ) are

μμμt = μμμ0 + δ μ̃μμt, Rt = R0 + δR̃t, δμ̃μμ0 = δR̃0 = 0, (68)

and
μμμmi
t = μμμmi

0 + δ μ̃μμmi
t , Rmi

t = Rmi
0 + δR̃mi

t , δμ̃μμmi
0 = δR̃mi

0 = 0. (69)

Then, the relative entropy between the Gaussian truth density πg
t and a Gaussian model density πmi

t

P(πg
t , π

mi
t ) = 1

2 (Δμμμi
t)

T (Rmi
t )−1Δμμμi

t +
1
2

[
tr
[
Rt(R

mi
t )−1

]− ln det
[
Rt(R

mi
t )−1

]−K
]
, (70)

with Δμμμi
t := μμμt −μμμmi

t can be expressed as

P(πg
t , π

mi
t ) = P(πg

0 , π
mi
0 ) + δ(Xμ +XR) + δ2(Y μ + Y μ,R + Y R,R) +O(δ3), (71)

which is valid at times short enough so that the changes in moments δμ̃μμ, δR̃, δμ̃μμmi , δR̃mi are small; the
respective coefficients in (71) are given by

Xμ = 1
2

[
(Δμμμi

0)
T (Rmi

0 )−1Δμ̃μμi
t + (Δμ̃μμi

t)
T (Rmi

0 )−1Δμμμi
0

]
,

XR = − 1
2 (Δμμμi

0)
T (Rmi

0 )−1R̃mi
t (Rmi

0 )−1Δμμμi
0 +

1
2 tr

[
(I −R0(R

mi
0 )−1)R̃mi

t (Rmi
0 )−1

]
+ 1

2 tr
[
R̃t(R

mi
0 )−1

]
,

Y μ,μ = 1
2 (Δμ̃μμi

t)
T (Rmi

0 )−1Δμ̃μμi
t,

Y μ,R = 1
2

[
(Δμμμi

0)
T (Rmi

0 )−1R̃mi
t (Rmi

0 )−1Δμ̃μμi
t + (Δμ̃μμi

t)
T (Rmi

0 )−1R̃mi
t (Rmi

0 )−1Δμμμi
0

]
,

Y R,R = 1
2

[
(Δμμμi

0)
T (Rmi

0 )−1R̃mi
t (Rmi

0 )−1R̃mi
t (Rmi

0 )−1Δμμμi
0

− 1
2 tr

[
(I −R0(R

mi
0 )−1)(R̃mi

t (Rmi
0 )−1)2

]
− 1

2 tr
[
R̃t(R

mi
0 )−1R̃mi

t (Rmi
0 )−1

]
+ 1

4

(
tr
[
R̃mi

t (Rmi
0 )−1

])2

.

For correct initial conditions, μμμmi
0 = μμμ0, R

mi
0 = R0, the above formulas simplify to

XR = 1
2 tr

[
R̃t(R0)

−1
]
, Y μ,μ = 1

2 (Δμ̃μμi
t)

T (R0)
−1Δμ̃μμi

t, (72)

Y R,R = − 1
2 tr

[
R̃t(R0)

−1R̃mi
t (R0)

−1
]
+ 1

4

(
tr
[
R̃mi

t (R0)
−1

])2

, (73)

with the remaining coefficients identically zero. Substituting the relative entropy between P(πg
t , π

mi
t ) in

the form (71) with the coefficients (72)-(73) into the general necessary condition (11) for improving the
prediction via MME yields the condition (29). �
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Proof of FACT 7:Proof of FACT 7:Proof of FACT 7: We assume that the perturbations of the equilibrium truth and model densities are

smooth in response to the forcing perturbations so that the perturbed densities πδ
t = πeq + δπ̃t are

differentiable at δ = 0; this holds under relatively mild assumptions hypoelliptic noise as shown in [26].
Thus, based on the linear response theory combined with the fluctuation-dissipation formulas (e.g., [47]),
the density perturbations remain small for sufficiently small external perturbations which also implies
that the moment perturbations remain small for all time. Derivation of the condition (76) relies on the
smallness of the moment perturbations which allows for an asymptotic expansion of the relative entropy
as in (71) but with μμμ0 = μμμeq = μμμmi

eq , R0 = Req = Rmi
eq which leads to expansion coefficients in (71)

XR = 1
2 tr

[
R̃t(Req)

−1
]
, Y μ,μ = 1

2 (μ̃μμt − μ̃μμmi
t )T (Req)

−1(μ̃μμt − μ̃μμmi
t ), (74)

Y R,R = − 1
2 tr

[
R̃t(Req)

−1R̃mi
t (Req)

−1
]
+ 1

4

(
tr
[
R̃mi

t (Req)
−1

])2

, (75)

with the remaining coefficients identically zero. The general condition for improvement of forced response
prediction via MME in the Gaussian framework is

Dβββ,I({μ̃μμ− μ̃μμmi}) + Eβββ,I({R̃mi}) + Fβββ,I(R̃, {R̃mi}) + Δ +O(δ) > 0, (76)

where

Dβββ,I = 1
2

∑
i �=�

αi

1− α�

 
I
dt
[
(μ̃μμt − μ̃μμm�

t )T (Req)
−1(μ̃μμt − μ̃μμm�

t )− (μ̃μμt − μ̃μμmi
t )T (Req)

−1(μ̃μμt − μ̃μμmi
t )

]

Eβββ,I = 1
4

∑
i �=�

αi

1− α�

 
I
dt tr

[
(R̃m�

t − R̃mi
t )(Req)

−1
]
tr
[
(R̃m�

t + R̃mi
t )(Req)

−1
]
.

Fβββ,I = − 1
2

∑
i �=�

αi

1− α�

 
I
dt tr

[
R̃t(Req)

−1(R̃m�
t − R̃mi

t )(Req)
−1

]
.

which is very similar to the condition in FACT 6 except that there is no short time constraint due to
the fact that the moment perturbations remain small in time under the above assumptions. Finally, the
simplified result (30) in Fact 7 of §3.2 is obtained by taking into account that the response is due to the
forcing perturbations in linear Gaussian systems (24) so that R̃mi

t = 0 so that XR = Y R,R = 0 in (74),
(75) and only Dβββ,I , which is independent of the truth response in the covariance, remains in (76). �

B Further details of associated with the sufficient conditions for
imperfect prediction improvement via MME

In §3.1.1 we discussed the condition (11) for improving imperfect predictions via MME in the least-biased
density representation (14). Here, we discuss the same condition in terms of general perturbations of
probability densities which provides additional insight into the essential features of MME with improved
prediction skill. In particular, we show that it is difficult to improve the short-term predictive skill via
MME containing models with incorrect statistical initial conditions.

The formulation presented below relies on relatively weak assumptions that the truth and model
densities can be written as

πl
t = πl

0 + δπ̃l
t , πm

t = πm
0 + δπ̃m

t , π̃l
0 = π̃m

0 = 0,

ˆ
π̃l
tduuu =

ˆ
π̃l
tduuu = 0, (77)

The above decomposition is always possible for the non-singular initial value problem; in the case of
the forced response prediction from equilibrium (i.e., when πl

0 = πl
eq, π

m
0 = πm

eq) such a decomposition
exists for δ � 1 under the minimal assumptions of hypoelliptic noise [26]. The possibility of estimating
the evolution of statistical moments of the truth density πt in the case of predicting the forced response
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within the framework of linear response theory combined with the fluctuation-dissipation approach makes
this framework particularly important in this case (see [47, 2, 41, 22, 23, 49, 40, 50, 39])

FACT. Assume the decomposition (77) of the truth and model densities exists as discussed above. Then,
the condition (11) for prediction improvement through MME has the following form

Aβββ

(
πl
0, {πmi

0 }
)
+ δBβββ,I

(
πl, {πmi}

)
+ δ2Cβββ,I

(
πl, {πmi}

)
+ Δ̃ > 0, (78)

where

Aβββ

(
πl
0, {πmi

0 }
)
=

∑
i �=�

βi

(
P(πl

0, π
m�
0 )− P(πl

0, π
mi
0 )

)
,

Bβββ,I
(
πl, {πmi}

)
=

∑
i �=�

βi

 
I
dt

ˆ
duuu

(
πl
0

[
π̃mi
t

πmi
0

− π̃m�
t

πm�
0

]
+ π̃l

t log
πmi
0

πm�
0

)
,

Cβββ,I
(
πl
t , {πmi

t }
)
= 1

2

∑
i �=�

βi

 
I
dt

ˆ
duuu

(
πl
0

[(
π̃m�
t

πm�
0

)2

−
(
π̃mi
t

πmi
0

)2
]
− 2π̃l

t

[
π̃m�
t

πm�
0

− π̃mi
t

πmi
0

])
,

with the weights βi defined in (11). The following particular cases of the condition (78) for improving the
predictions via the MME approach are worth noting in this general representation:

• Initial (statistical) conditions in all models of MME are consistent with the least-biased
estimate of the truth; i.e., πmi

0 = πl
0. In such a case we have Aβββ = 0, Bβββ,I = 0 and the condition

(78) for improvement of prediction via MME simplifies to

 
I
dt

ˆ
duuu

(π̃l
t − π̃m�

t )2

πl
0

+ Δ̃ >
∑
i �=�

βi

 
I
dt

ˆ
duuu

(π̃l
t − π̃mi

t )2

πl
0

. (79)

In the case of forced response predictions, perturbation of the truth density π̃l
t can be estimated from

the statistics on the unperturbed equilibrium through the linear response theory and fluctuation-
dissipation formulas exploiting only the unperturbed equilibrium information [47, 2, 41, 22, 23, 49,
40, 50, 39]).

• Initial model densities in MME perturbed relative to the least-biased estimate of the
truth; i.e., πmi

0 = πl
0 + ε π̃mi

0 , πm�
0 = πl

0. In such a case all terms in (78) are non-trivial but they can
be written as

Aβββ

(
πl
0, {πmi

0 }
)
= −ε2

∑
i �=�

βi

ˆ
duuu

(π̃mi
0 )2

2πl
0

+O(ε3), (80)

Bβββ,I
(
πl
t , {πmi

t }
)
= ε

∑
i �=�

βi

 
I
dt

ˆ
duuu

(
π̃mi
t B1 + π̃m�

t B2 + π̃l
tB3

)
, (81)

Cβββ,I
(
πl
t , {πmi

t }
)
=
∑
i �=�

βi

 
I
dt

ˆ
duuu

[
(π̃l

t − π̃m�
t )2 − (π̃l

t − π̃mi
t )2

πl
0

+ ε
(
π̃mi
t C1 + π̃m�

t C2 + π̃l
tC3

)]
, (82)

where {Bm}, {Cm}, m = 1, 2, 3 are functions of π̃mi
0 , π̃m�

0 , π̃l
0 and ε. Note that unless ε = 0 (so that

πmi
0 = πl

0), it is difficult to improve the prediction skill at short times within the MME framework
since at t = 0, we have Bβββ,I = Cβββ,I = 0 and Aβββ < 0 in (78).
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