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Ensemble filtering and low resolution model error: Covariance inflation, stochastic
parameterization, and model numerics
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ABSTRACT

The use of under-resolved models in ensemble data assimilation schemes leads to two kinds of model er-
rors: truncation errors associated with discretization of the large-scale dynamics, and errors associated with
interactions with subgrid scales. Multiplicative and additive covariance inflation can be used to account for
model errors in ensemble Kalman filters, but they do not reduce the model error. Truncation errors can be
reduced by increasing the accuracy of the numerical discretization of the large-scale dynamics, and subgrid
scale parameterizations can reduce errors associated with subgrid scale interactions. Stochastic subgrid scale
parameterizations both reduce the model error and inflate the ensemble spread, so their effectiveness in en-
semble assimilation schemes can be gaged by comparing with covariance inflation techniques. We compare
the effects of covariance inflation, stochastic parameterizations, and model numerics in two-layer periodic
quasigeostrophic turbulence on an f -plane and on a β -plane. Covariance inflation improves the performance
of a benchmark model with no parameterizations and second-order numerics. Fourth-order spatial discretiza-
tion and the stochastic parameterizations, alone and in combination, are superior to covariance inflation. In
our experiments fourth-order numerics and stochastic parameterizations lead to similar levels of improvement
in filter performance even though the climatology of models without stochastic parameterizations is poor.

1. Introduction

Data assimilation is the process of combining dynam-
ical models and observations to estimate the state of
a dynamical system (Kalnay 2002; Evensen 2009; Ma-
jda and Harlim 2012). There are many data assimila-
tion algorithms, and ensemble Kalman filters (EnKFs;
Evensen 1994) are a class of algorithms that are particu-
larly amenable to applications in atmospheric and oceanic
data assimilation (e.g. Houtekamer et al. 2005; Whitaker
et al. 2008; Szunyogh et al. 2008; Houtekamer et al. 2009).
Computational costs prevent ensemble data assimilation
systems from using models that resolve all the active
scales of the atmosphere or ocean. The use of low res-
olution models leads to two kinds of error: model error
and representation error, the latter being associated with
the contribution of subgrid scales to the observations. The
present investigation is focused on model errors associated
with low resolution models.

Model error can come from many sources, e.g. incor-
rect parameters; the focus here is on two kinds of model
error associated with low resolution: numerical/truncation
error in modeling large-scale self interaction, and error as-
sociated with subgrid scale interactions. The true state of
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the dynamical system can be partitioned into a large-scale

part that is represented on the low resolution model grid,

and a subgrid scale part that is not represented. The low

resolution model attempts to predict the evolution of the

large-scale part. Even when the subgrid scale part is zero,

there are model errors associated with truncation errors in

the numerical discretization of the large-scale dynamics;

this type of model error can be reduced by increasing the

accuracy of the numerical discretization. Of course, the

subgrid scales are generally not zero and they influence

the evolution of the large scales. Subgrid scale parameter-

izations attempt to model the effect of the subgrid scales

on the large scales, and improving subgrid scale parame-

terizations can reduce large-scale model error. Neverthe-

less, because the state of the subgrid scales is not precisely

known there is in principle a nonzero minimum of possi-

ble model error due to the uncertainty concerning the state

of the subgrid scales; information barriers of this type are

discussed e.g. by Branicki and Majda (2012).

Model errors need to be accounted for in ensemble data

assimilation algorithms, and one common approach in the

context of EnKFs is covariance inflation, either multiplica-

tive (Anderson and Anderson 1999) or additive (Mitchell

and Houtekamer 2000). Multiplicative inflation multiplies

the prior ensemble perturbations by an inflation factor that

can vary in space and time. The inflation factor can be
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hand-tuned, which involves considerable computational
expense, or it can be adaptively estimated as part of the
filtering algorithm (e.g. Anderson 2007, 2009; Li et al.
2009; Miyoshi 2011). Additive inflation is implemented
by drawing random samples from a specified model error
distribution, and adding these to the prior ensemble before
the analysis update. It assumes that model error is inde-
pendent of the model state, which is convenient but typ-
ically erroneous. Methods of estimating the model error
distribution are discussed by, e.g. Zupanski and Zupanski
(2006). Additive inflation is better suited to accounting
for model error than multiplicative inflation (Whitaker and
Hamill 2012), though the latter can mitigate the effects of
many different kinds of errors in ensemble filtering, like
sampling errors. Covariance inflation techniques attempt
to account for model error in the analysis, but they do not
reduce the model error.

Additive inflation is analogous to stochastic parame-
terization, the difference being that random perturbations
are added to the forecast before every assimilation cycle,
versus being added at every time step of the numerical
time integration scheme. In contrast to additive inflation,
stochastic parameterizations can act to reduce model er-
ror (e.g. Berner et al. 2012; Frenkel et al. 2012). Since
stochastic parameterizations typically increase ensemble
spread they have an effect similar to covariance inflation,
and can thus be viewed as accounting for as well as re-
ducing model error. Unlike additive inflation, stochastic
parameterization accounts for model error without assum-
ing that it is independent of forecast error: even when the
stochastic noise terms added to the model are independent
of the model state, their integrated effect depends on the
model.

A well-designed stochastic parameterization should
outperform covariance inflation, so the latter can be
used as a benchmark for evaluating stochastic parame-
terizations in the context of ensemble data assimilation
(Whitaker and Hamill 2012). Houtekamer et al. (2009)
compared additive inflation and stochastic parameteriza-
tion in a low resolution ensemble filtering context and
found that additive inflation had a significant positive im-
pact on performance, while a stochastic backscatter pa-
rameterization (SKEBS; Berner et al. 2009) had no pos-
itive impact. Whitaker and Hamill (2012) found that ad-
ditive inflation and SKEBS had similarly positive impacts
on the performance of an ensemble assimilation scheme.

We perform ensemble data assimilation experiments in
the idealized setting of two-layer, doubly-periodic quasi-
geostrophic (QG) turbulence with observations of the top
layer streamfunction, analogous to observations of sea sur-
face height. Stochastic subgrid scale parameterizations
have been developed for this setting by Grooms and Ma-
jda (2013, 2014, hereafter GM13 and GM14) and Grooms
et al. (2015, hereafter GLM15). GM13 and GM14 devel-
oped ‘stochastic superparameterization’ (SP) for this set-

ting (the connection of stochastic SP with the the approach
of Randall et al. (2013) is discussed by Majda and Grooms
(2014)); stochastic SP generates a stochastic forcing of
quasigeostrophic potential vorticity conditional on the lo-
cal large-scale variables. GLM15 extended the stochastic
SP algorithm to include temporal correlation, and devel-
oped a simplified backscatter scheme that is independent
of the state of the large-scale variables.

In this setting we find that additive inflation has no pos-
itive impact, uniform (non-adaptive) multiplicative infla-
tion has a positive impact, and stochastic parameterization
has a greater positive impact on assimilation performance.
We also find that moving from second-order to fourth-
order discretization leads to significant improvement in
the performance of the assimilation algorithm, comparable
to the effect of the stochastic parameterizations. The use
of fourth-order numerics in combination with the stochas-
tic parameterization yields our best results, slightly better
than the use of the stochastic parameterization alone.

The configuration of the high-resolution truth model
and of several imperfect low resolution models is de-
scribed in section 2, and the configuration of the ensemble
assimilation system is described in section 3. The results
of the assimilation experiments are presented in section 4,
and conclusions are offered in section 5.

2. Two-Layer Quasigeostrophic Model Configuration

The high resolution model used in these experiments is
essentially the same as the model used in GM13, GM14,
and GLM15, the primary difference being that the domain
used here is one quarter the size, to reduce computational
cost. The model evolves the solution of the nondimen-
sional two-equal-layer quasigeostrophic (QG) equations
in a doubly-periodic domain forced by an imposed zonal
baroclinic shear. The governing equations are

∂tq1 =−∇ · (u1q1)−∂xq1 − (k2
β + k2

d)v1 −ν8∇8q1,

∂tq2 =−∇ · (u2q2)+∂xq2 − (k2
β − k2

d)v2 − r∇2ψ2 −ν8∇8q2

q1 = ∇2ψ1 +
k2

d
2
(ψ2 −ψ1),

q2 = ∇2ψ2 − k2
d
2
(ψ2 −ψ1), (1)

where q j is the potential vorticity in the upper ( j = 1) and
lower ( j = 2) layers, the velocity-streamfunction relation
is u j =−∂yψ j, v j = ∂xψ j, kd is the deformation wavenum-

ber (k−1
d is the deformation radius), the coefficient r spec-

ifies the strength of linear bottom friction (Ekman drag)
and ν8 is the hyperviscous Reynolds number. The dynam-
ics can also be described in terms of barotropic and baro-
clinic modes, the former being given by the vertical aver-
age qt = (q1 +q2)/2 = ∇2ψt and the latter by the vertical
difference qc = (q1 − q2)/2 = (∇2 − k2

d)ψc. Subscripts t
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and c are used throughout to denote barotropic and baro-
clinic components, respectively.

The simulations are carried out in a square periodic do-
main of half the width of the domains used in GM13,
GM14, and GLM15, but with the same grid resolution; the
computational grid has 256×256 points. The deformation
wavenumber is kd = 25, and the hyperviscous Reynolds
number is ν8 = 1.28×10−15. We consider two of the three
parameter regimes from GM14: f -plane with kβ = 0 and

r = 8, and β -plane with k2
β = k2

d/2 and r = 0.5. The exper-

iments were also performed for the third parameter regime
in GM14, with k2

β = k2
d/4, but the results were qualita-

tively similar to the β -plane case considered here and are
omitted for brevity.

The f -plane scenario is dominated by small-scale vor-
tices with spatially homogeneous statistics. In the β -plane
scenario the flow organizes into three zonal jets (see fig-
ure 1c) that act as a barrier to meridional transport. The
meridional heat flux is defined as

Heat Flux ≡
∫∫

vtψcdxdy (2)

where vt is the barotropic meridional velocity and ψc is the
baroclinic streamfunction. The dynamics generate a heat
flux in response to the potential vorticity gradient associ-
ated with the imposed zonal baroclinic shear. In the f -
plane case the (nondimensional) climatological heat flux
is 442, and in the β -plane case the climatological heat flux
is 2.3. The massive reduction in heat flux in the β -plane
case is partly due to the strong zonal jets, and is partly due
to the fact that the β -plane case is less energetic. GM14
showed that in both scenarios the heat flux is generated by
scales resolved on the coarse model grid.

Imperfect Models

We consider several different imperfect models on a
low resolution grid of 48 × 48 points. One model, de-
noted ‘Spectral’ in the results, simply uses the same gov-
erning equations and spectral discretization as the perfect
model (with no subgrid scale parameterization), but uses
a different value of the hyperviscous Reynolds number ν8,
tuned to produce optimal climatology. The f -plane sce-
nario uses ν8 = 1.28×10−10 and the β -plane scenario uses
ν8 = 6.4×10−11.

The remaining imperfect models all use biharmonic
vorticity diffusion instead of the hyperviscous poten-
tial vorticity diffusion of the perfect model, in order to
mimic the biharmonic viscosity commonly used in eddy-
permitting ocean models (following GLM15). The re-
maining imperfect models thus solve the following alter-
native equations

∂tq1 =−∇ · (u1 q1)

−∂xq1 − (k2
β + k2

d)v1 −ν4∇4ω1 +SGS1, (3)

∂tq2 =−∇ · (u2 q2)

+∂xq2 − (k2
β − k2

d)v2 −ν4∇4ω2 − r∇2ψ2 +SGS2 (4)

where ν4 is the biharmonic Reynolds number, ω j = ∇2ψ j
is the relative vorticity, and SGS j are stochastic subgrid
scale parameterizations.

By analogy with ocean models and some atmospheric
models, the remaining imperfect models do not use a
spectral discretization of the nonlinear terms. Instead,
they use either the second-order or fourth-order energy-
and enstrophy-conserving finite-difference discretizations
of Arakawa (1966). Models using the second-order dis-
cretization are denoted FD2, and models using the fourth-
order discretization are denoted FD4.

To separate the effects of the numerical discretization
we run models with and without stochastic subgrid scale
(SGS) parameterizations. We consider two stochastic SGS
parameterizations: a backscatter scheme from GLM15
that is white in time and independent of the model state,
and stochastic superparameterization (SP) from GM14
that is temporally correlated (following GLM15) and de-
pendent on the model state. (Experiments were also run
with the temporally-correlated backscatter scheme from
GLM15, but the results were almost identical to the white-
in-time scheme and are omitted. Also note that the
stochastic SP scheme includes a backscatter component.)
Both of the stochastic parameterization schemes depend
on one primary tunable parameter A related to the ampli-
tude of the backscatter. In the f -plane case A= 600 for the
uncorrelated backscatter and A = 6750 for the stochastic
SP scheme (for both the FD2 and FD4 models); the dif-
ference in amplitude is due to the difference in temporal
correlation. In the β -plane case A = 30 for the uncorre-
lated backscatter in the FD2 model, A = 350 for stochastic
SP in the FD2 model, and A = 390 for stochastic SP in the
FD4 model. In the f -plane case the stochastic SP scheme
is configured as in GLM15; for the β -plane case it uses
ε = 25, γ0 = 15, and σ2 = 67.5 (for the meaning of these
internal parameters see GM13, GM14, or GLM15).

In the f -plane case the FD2 and FD4 models all use the
same viscosity coefficient ν4 = 1.6× 10−4. The models
are more sensitive to this parameter in the β -plane case,
so the values are tuned to improve the model climatol-
ogy. The FD2 model without stochastic SGS terms uses
ν4 = 8×10−5, and the FD4 model without stochastic SGS
terms uses ν = 4.8 × 10−5. All models with stochastic
SGS terms use ν4 = 1.6× 10−4. The values of ν4 and A
were tuned so that the climatological energy spectra and
heat flux of the imperfect models would be as accurate as
possible; these parameters were not tuned to optimize the
performance of the ensemble assimilation schemes.

The time-mean streamfunction spectra |ψ̂1|2 + |ψ̂2|2
(where ψ̂i is the Fourier coefficient of ψi) of the perfect
and imperfect models are compared in figure 1, along with
the time- and zonal-mean structure of the zonal barotropic
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FIG. 1. Perfect and imperfect model climatology: (a) Time-mean streamfunction spectrum |ψ̂1|2 + |ψ̂2|2 for the f -plane scenario. (b) Time-mean
streamfunction spectrum for the β -plane scenario. (c) Time- and zonal-mean zonal barotropic jet profiles (u1 +u2)/2.

TABLE 1. Time-mean ± standard deviation of the nondimensional

heat flux for the perfect and imperfect models in the f -plane and β -

plane scenarios.

Model f -plane β -plane

Truth 442±94 2.2±0.4

FD2 91±9 1.7±0.2

FD4 72±9 7.0±0.6

Spectral 63±7 0.6±0.1

FD2, Backscatter 580±111 4.3±0.7

FD2, Stoch. SP 569±99 6.7±1.2

FD4, Stoch. SP 671±170 4.8±1.0

jets that develop in the β -plane case. In the f -plane case

(figure 1a) the imperfect models without stochastic SGS

terms have far too little variability, by nearly two orders

of magnitude, whereas all methods with stochastic SGS

terms have accurate spectra. There is no time-mean struc-

ture in the f -plane case.

In the β -plane case the perfect model develops three

barotropic zonal jets, whose time- and zonal mean profiles

are shown in black in figure 1c. The imperfect models with

stochastic SP (FD2 and FD4) both have three reasonably

accurate jets. The FD4 model without SGS terms has four

jets, and the FD2 model with backscatter has three weak

jets. The remaining models have too many jets that are too

weak. The streamfunction spectra are shown in figure 1b.

The models with SP are the most accurate, followed by the

FD4 model without SGS terms and the FD2 model with

backscatter, and finally by the FD2 and Spectral models

without SGS terms.

The heat flux generated by the models is presented in

table 1. The accuracy of the heat flux generated by the im-

perfect models is not consistent across the two parameter

regimes. In the f -plane case the models without stochas-

tic SGS parameterizations all have far too little energy,

and as a result generate far too little heat flux (less than

100, compared to the true value of 442), while the mod-

els with stochastic parameterizations all produce too much

heat flux. In the β -plane case the models exhibit a wide

range of heat fluxes, with the least-accurate model (FD2)

having the best heat flux. The Spectral model has too little

heat flux, and the remaining models all have too much.

3. Ensemble Assimilation System Configuration

The ensemble assimilation experiments use the EAKF

(Anderson 2001) with 100 ensemble members and with

observations of the upper layer streamfunction ψ1, anal-

ogous to observations of sea surface height. The obser-

vations are taken on a regular 16× 16 grid, and the ob-

servational errors are independent with zero mean and

with variance 15 ( f -plane) or 1 (β -plane); the observa-

tions are assimilated serially. Observation errors in both

cases are about 10% of the climatological variability of

ψ1. Our observational grid has a similar resolution (in

comparison with the deformation radius) as the recent ex-

periments of Keating et al. (2012); the observational grid

does not resolve the deformation radius, but it does re-

solve most of the large-scale structure of ψ1. The subgrid

scales contribute an extremely small amount to the obser-

vations, which can be seen in the extremely low amplitude

of the small-scale part (k > 25) of the spectra shown in

figure 1; we therefore ignore the representation error, even

though the stochastic SP could provide a spatio-temporally

varying estimate of the representation error (Grooms et al.

2014).
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FIG. 2. Angle-averaged spatial correlation functions for ψ1 in the f -
plane scenario (solid) and β -plane scenario (dashed).

Following Keating et al. (2012) we compute the eddy
turnover time Teddy = 2πZ−1/2 (where Z is the time-

averaged total enstrophy q2
1 + q2

2); in both scenarios the
turnover time is approximately 0.006. Taking this as a
point of comparison, we performed experiments using ob-
servations at intervals of 0.004 and 0.008. The differ-
ences between the models were smaller using the shorter
observation time, so results are presented here using ob-
servations taken every 0.008 time units. The imperfect
model ensembles were initialized by adding random sam-
ples from a homogeneous, spatially uncorrelated Gaussian
random field with variance equal to the observational er-
ror variance to the exact state of the large-scale part of the
perfect model. The first 200 assimilation cycles are dis-
carded and the last 300 are used to compute performance
statistics.

All assimilation experiments use covariance localiza-
tion with the compactly-supported fifth-order piecewise
rational function from Gaspari and Cohn (1999). The lo-
calization radius (the distance at which the influence of ob-
servations goes to zero) is set to 16 coarse grid points in all
experiments. Although better results might have been ob-
tained by tuning the localization radius, good results were
obtained using a radius of 16 points, which allows a fair
comparison of all the imperfect models. The approximate
spatial correlation function for the upper layer streamfunc-
tion ψ1 was computed for both scenarios as

C(δx,δy) =
E [ψ̃1(x,y)ψ̃1(x+δx,y+δy)]

Var [ψ̃1]
(5)

where ψ̃1 is ψ1 minus its time mean, and the expectation
and variance are computed over all grid points and over the

500 time instances used in the assimilation experiments.
The spatial correlation function is approximately isotropic
in both cases (not shown). The angle-averaged correlation
functions C(r) are shown in figure 2, for comparison with
the 16-point localization radius.

In the experiments with the unparameterized FD2
model we used multiplicative and additive inflation, alone
and in combination. We simply tested constant multiplica-
tive inflation factors between 1 and 10%; larger inflation
factors led to large errors in the heat flux estimation. To
implement an additive inflation we diagnosed 500 sam-
ples of model error for the unparameterized FD2 model,
and used the results to develop an algorithm to generate
random samples from an approximate error distribution,
as described in the appendix. The diagnosed model er-
ror in the β -plane scenario was very inhomogeneous, with
large model error variance located near the peaks of the
zonal jets. As a result, we only developed an additive error
approximation for the f -plane scenario, where the model
errors are approximately homogeneous. The additive in-
flation method was implemented following Mitchell and
Houtekamer (2000) by simply adding zero-mean samples
from the approximate model error distribution to the prior
ensemble before the assimilation cycle.

4. Results

The results of the assimilation experiments for the f -
plane and β -plane scenarios are presented in tables 2 and
3, respectively. The results for the FD2 model with nei-
ther inflation nor subgrid scale parameterization are pre-
sented in boldface, and serve as a baseline for evaluating
improvements. For both scenarios the time-mean RMS
errors in the forecast and analysis of ψ1 and ψ2 are pre-
sented, along with the forecast and analysis heat flux, and
the RMS errors in the heat flux. Note that the errors are
calculated by comparing the low resolution model solu-
tion to the large-scale part of the true solution.

In the f -plane case the RMS errors in the components
of velocity are all relatively high, and are fairly similar for
all the models: between 21 and 26 for the top layer and
between 19 and 15 for the bottom layer, compared to cli-
matological variability of 33 and 27 for the top and bottom
layers. Nevertheless, despite these relatively large errors,
the pattern correlation (PC) in the velocity is relatively
high and better differentiates between the models; table
2 therefore shows the pattern correlations for the velocity,
rather than the RMS errors. The instantaneous pattern cor-
relation (PC) between the analysis upper layer meridional
velocity va

1 and the true upper layer meridional velocity vt
1

is defined as

PC =

∫∫
va

1vt
1dxdy

‖va
1‖2‖vt

1‖2
(6)

where ‖ · ‖2 denotes the L2 norm over the domain.
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TABLE 2. Filter performance statistics for the f -plane scenario. The format is Forecast → Analysis, where RMS errors (RMSE) are shown for

ψi and pattern correlations (PC) for ui. The heat flux format is Forecast (time-)Mean → Analysis Mean (RMS Forecast Error → RMS Analysis

Error). The standard deviation of the observation error is
√

15 ≈ 3.87. The standard deviation of the climatological variance of the perfect model

is 12 for ψ1 and 11 for ψ2; the time-mean heat flux of the perfect model is 430, with standard deviation 125. All values are nondimensional. FD2+

is the FD2 model with additive inflation, and FD2× uses 10% multiplicative inflation.

Model RMSE ψ1 RMSE ψ2 PC u1 PC v1 PC u2 PC v2 Heat Flux Mean, RMSE

Spectral 3.9 → 3.2 3.5 → 2.7 0.71 → 0.76 0.72 → 0.76 0.79 → 0.83 0.79 → 0.84 365 → 385 (78 → 59)

FD4 4.2 → 3.4 3.7 → 3.0 0.69 → 0.73 0.69 → 0.74 0.77 → 0.81 0.77 → 0.81 380 → 400 (67 → 51)

FD2 4.4 → 3.6 4.0 → 3.3 0.64 → 0.69 0.65 → 0.70 0.73 → 0.77 0.73 → 0.77 400 → 425 (56 → 45)
FD2+ 4.4 → 3.6 3.9 → 3.1 0.62 → 0.67 0.63 → 0.67 0.73 → 0.77 0.74 → 0.78 330 → 375 (114 → 74)

FD2× 4.1 → 3.3 3.6 → 2.9 0.66 → 0.71 0.67 → 0.72 0.75 → 0.79 0.76 → 0.80 380 → 415 (68 → 44)

FD2, Backscatter 4.0 → 3.3 3.6 → 2.9 0.68 → 0.73 0.69 → 0.74 0.76 → 0.81 0.77 → 0.81 400 → 430 (49 → 37)

FD2, Stoch. SP 4.0 → 3.2 3.5 → 2.8 0.69 → 0.74 0.70 → 0.75 0.77 → 0.81 0.77 → 0.82 400 → 425 (50 → 40)

FD4, Stoch. SP 3.9 → 3.1 3.4 → 2.7 0.71 → 0.76 0.72 → 0.76 0.79 → 0.83 0.79 → 0.84 380 → 400 (63 → 48)

a. f -plane

In the f -plane scenario the baseline FD2 model ex-

hibits modest accuracy despite model error and a relatively

sparse observation network: RMS errors for the analysis

estimate of the streamfunctions (3.6 and 3.3, for ψ1 and

ψ2) are less than the observation error variance (3.9), and

the velocity components have relatively high pattern cor-

relations of 0.69 to 0.77. The heat flux is also quite accu-

rate, with an analysis mean of 425 in comparison with the

true value of 430. The accuracy of the model in this short-

range filtering setting is in striking contrast to its poor cli-

matology, as shown for the overall energy of the model in

figure 1a and for the heat flux in table 1.

The use of additive inflation, denoted FD2+, has no sig-

nificant effect on estimates of streamfunctions or veloci-

ties, but degrades the performance of the heat flux assim-

ilation. In contrast, 10% multiplicative inflation, denoted

FD2×, leads to a noticeable improvement in estimates of

both streamfunctions and velocities; the effect on heat flux

estimation is mildly detrimental, but the analysis heat flux

is still reasonably accurate at 415 versus the true value

of 430. As the inflation factor increases from 0 to 10%

the streamfunction estimation improves slowly, while heat

flux estimation steady degrades. The combination of ad-

ditive and multiplicative inflation was similar to the use of

additive inflation alone (not shown).

The use of higher-order numerics reduces model error,

and leads to significant improvement in the assimilation

performance: the FD4 model without inflation is com-

parable to the FD2 model with 10% multiplicative infla-

tion. The Spectral model reduces the model error further,

resulting in even more accurate estimates for the stream-

functions and velocities. The assimilation performance for

heat flux degrades when moving from the FD2 to the FD4

and Spectral models; this mirrors the decrease in accuracy

of the heat flux climatology shown in table 1.

Addition of a white-noise backscatter independent of

the model variables in the FD2 model leads to significant

improvements in filtering the streamfunctions and veloci-

ties, and a small improvement in heat flux. The backscat-

ter reduces model error, as seen in figure 1, and inflates

the forecast covariance. The results are better than the

FD4 model and better than the FD2 model with 10% in-

flation, and are nearly comparable to the Spectral model,

but with better heat flux. The temporally-correlated, state-

dependent stochastic SP scheme with the FD2 model re-

sults in only slightly better performance than the backscat-

ter method. Pairing the stochastic SP scheme with the FD4

model leads to further incremental improvements in esti-

mating the streamfunctions and velocities, but has a mildly

detrimental impact on heat flux estimation.

For the f -plane scenario covariance inflation, stochastic

parameterization, and high-order numerics all lead to im-

provements in assimilation quality, and the combination

of high-order numerics with stochastic SP is more accu-

rate than covariance inflation with the FD2 model.

b. β -plane

In the β -plane scenario the baseline FD2 model exhibits

modest accuracy. RMS errors for the analysis estimate

of the streamfunctions, 0.97 and 0.86 for ψ1 and ψ2, are

just less than the observation error variance (unity). The

zonal velocities u1 and u2, which are dominated by three

large-scale jets, are estimated with modest accuracy, hav-

ing RMS errors in the analysis of 5.1 and 3.5 in the top

and bottom layers, compared to climatological variabil-

ity of 11 and 10, respectively. In contrast, the meridional

velocities v1 and v2 are estimated very poorly: the RMS

analysis errors are 6.0 and 4.1 for the top and bottom lay-

ers, compared to climatological variability of 5 and 4. As

a result of the poor estimation of the meridional veloci-

ties, the heat flux estimate is off by a factor of 2, with a
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TABLE 3. Filter performance statistics for the β -plane scenario. The format is Forecast → Analysis, where RMS errors (RMSE) are shown

for both ψi and ui. The heat flux format is Forecast (time-)Mean → Analysis Mean (RMS Forecast Error → RMS Analysis Error). The standard

deviation of the observation error is 1. The standard deviation of the climatological variance of the perfect model is 3.3 for ψ1, 3.1 for ψ2, 11 for u1,

10 for u2, 5 for v1, and 4 for v2. The time-mean heat flux of the perfect model is 2.3, with standard deviation 0.3. All values are nondimensional.

FD2× is the FD2 model with 4% multiplicative inflation.

Model RMSE ψ1 RMSE ψ2 RMSE u1 RMSE v1 RMSE u2 RMSE v2 Heat Flux Mean, RMSE

Spectral 0.52 → 0.49 0.41 → 0.39 3.2 → 3.1 3.5 → 3.4 2.1 → 2.0 2.3 → 2.2 1.6 → 1.7 (0.8 → 0.7)

FD4 0.70 → 0.66 0.55 → 0.52 4.0 → 3.9 4.6 → 4.4 2.6 → 2.5 3.2 → 3.0 2.3 → 2.3 (0.4 → 0.4)

FD2 0.99 → 0.97 0.87 → 0.86 5.1 → 5.1 6.1 → 6.0 3.6 → 3.5 4.1 → 4.1 4.6 → 4.6 (2.4 → 2.4)
FD2× 0.77 → 0.72 0.61 → 0.58 4.8 → 4.7 5.5 → 5.3 3.0 → 3.0 3.6 → 3.5 5.7 → 5.6 (3.5 → 3.4)

FD2, Backscatter 0.75 → 0.70 0.61 → 0.58 4.1 → 4.0 4.8 → 4.6 2.7 → 2.7 3.4 → 3.2 1.0 → 1.0 (1.3 → 1.3)

FD2, Stoch. SP 0.70 → 0.66 0.55 → 0.51 3.9 → 3.8 4.5 → 4.3 2.6 → 2.5 3.1 → 2.9 1.9 → 2.0 (0.5 → 0.5)

FD4, Stoch. SP 0.62 → 0.58 0.49 → 0.45 3.6 → 3.5 4.0 → 3.8 2.4 → 2.3 2.7 → 2.6 2.0 → 2.1 (0.4 → 0.4)

value of 4.6 compared to the true value of 2.3. The clima-

tological heat flux in the FD2 model is 1.7, as shown in

table 1, but its climatological energy is too small (figure

1a). The data assimilation procedure increases the energy

level of the FD2 model above its climatology, leading to

an erroneous increase in the model’s heat flux.

Similar to the f -plane case, multiplicative inflation de-

grades heat flux estimation. Streamfunction estimation

improves as the multiplication factor increases up to an op-

timum value of 4%, past which it degrades. As shown in

table 3, 4% inflation improves the filter performance sig-

nificantly, decreasing RMS errors in the analysis estimates

of ψ1 and ψ2 from 0.97 to 0.72 and from 0.86 to 0.58, re-

spectively, while also improving estimates of the velocity.

Nevertheless, it does degrade the heat flux estimate.

The use of higher-order numerics in the FD4 model re-

duces model error, and leads to significant improvement

in the assimilation performance for all variables – stream-

functions, velocities, and heat flux. This is somewhat sur-

prising since the FD4 model has too-large climatological

heat flux of 7. The FD4 model without inflation per-

forms better than the FD2 model with optimized (albeit

non-adaptive) multiplicative inflation. The Spectral model

reduces the model error further, resulting in even more ac-

curate estimates for the streamfunctions and velocities, but

a slightly worse estimate for heat flux, in line with the too-

low climatological heat flux of the Spectral model (table

1).

The FD2 model with white-noise backscatter is slightly

better than the FD2 model with inflation when it comes to

filtering the streamfunctions and velocities and a small im-

provement in heat flux, though the latter is still too small.

This is somewhat surprising since the climatological heat

flux for the white-noise backscatter model is too large, at

4.3 (table 1). The FD2 with backscatter is not quite as ac-

curate as the FD4 model. The FD2 model with stochas-

tic SP improves on the white-noise backscatter, and is

very similar to the FD4 model, and the FD4 model with

stochastic SP leads to further improvements in stream-

function and velocity estimates. The Spectral model with-

out a stochastic parameterization has better estimates of

streamfunctions and velocities than the FD models with

stochastic SP, and comparable (though slightly worse) heat

flux.

5. Conclusions

Ensemble data assimilation systems for atmosphere and

ocean science use computational models that are unable

to resolve all the active dynamical scales. Two types of

model error result from the use of low resolution mod-

els: truncation error in the numerical discretization of

the large-scale dynamics, and errors associated with sub-

grid scale interactions. Additive and multiplicative co-

variance inflation are methods for accounting for model

errors in ensemble data assimilation algorithms (Ander-

son and Anderson 1999; Mitchell and Houtekamer 2000),

but inflation only accounts for model errors and does not

reduce them. The use of high-order numerical schemes

and subgrid scale parameterizations reduce low resolu-

tion model errors; stochastic subgrid scale parameteriza-

tions also inflate ensemble spread, similar to additive and

multiplicative inflation. Covariance inflation can act as a

baseline for evaluating the effect of stochastic parameteri-

zations in ensemble data assimilation systems (Whitaker

and Hamill 2012), but previous studies using a partic-

ular stochastic subgrid scale parameterization (SKEBS;

Berner et al. 2009) have not found significant improve-

ments compared to covariance inflation (Houtekamer et al.

2009; Whitaker and Hamill 2012). We compare infla-

tion and stochastic parameterization in the context of ide-

alized quasigeostrophic turbulence, and find that a sim-

ple model-independent white-noise backscatter scheme

(from GLM15) is comparable to tuned, non-adaptive mul-

tiplicative inflation, while stochastic superparameteriza-

tion (GM13, GM14) gives better results. We attribute this
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success to the ability of a well-designed stochastic param-
eterization to both reduce and account for model error.

The performance of ensemble assimilation systems
based on low resolution models can be improved through
the use of stochastic parameterizations, by carefully esti-
mating and accounting for model error distributions (Zu-
panski and Zupanski 2006), and through sophisticated
adaptive covariance inflation techniques (Anderson 2007,
2009; Li et al. 2009; Miyoshi 2011). In our setting the
most straightforward way to improve the assimilation per-
formance was to move from a second-order discretization
to a fourth-order discretization. The effect of higher-order
numerics may seem counterintuitive because the model
does not resolve the true solution; the explanation is that
the large-scale part of the true solution that is represented
on the coarse model grid is not equally well resolved by
different numerical methods. Our stochastic subgrid scale
parameterizations had a positive impact on the assimila-
tion performance, with an effect similar to the effect of
using higher-order numerics. The stochastic parameteri-
zations had the added benefit of improving the low reso-
lution model climatology, much more so than the use of
higher-order numerics.

Covariance inflation will remain an important and use-
ful technique in ensemble data assimilation. But the ability
of stochastic parameterizations to reduce model error, and
not just to account for it, underscores the need for further
development and improvement of stochastic parameteriza-
tions in oceanic and atmospheric models.
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APPENDIX

Model Error Parameterization

The model error for the FD2 model is estimated by ini-
tializing the FD2 model from the large-scale state of the
perfect model, running both models forwards for an in-
terval of dt = 0.008, and evaluating the difference in the
predictions. This process is repeated using the same time
series with 500 samples as is used in the filtering tests,
producing 500 samples of model error for ψ1 and ψ2.

In the β -plane scenario the model error is inhomoge-
neous, as shown in figure A1. The center panel shows
that the time-mean error in the barotropic streamfunc-
tion ψt = (ψ1 +ψ2)/2 is negligible in comparison with
the time-mean barotropic streamfunction (left panel) and
the standard deviation of the error (right panel). How-
ever, the standard deviation of the error is very inhomo-
geneous, with strong peaks at the latitude of the zonal
jets. The model error for the baroclinic component ψc =
(ψ1 −ψ2)/2 exhibits similar behavior (not shown).

The model error in the f -plane scenario is approxi-
mately homogeneous and isotropic, as shown in figure

A2. The left panel shows the time-average of the square
amplitude of the barotropic model error (|ψ̂t |2, where
ψ̂t(kx,ky) is the Fourier coefficient), and the center
panel shows the time-average of the square amplitude of
the baroclinic model error. The right panel shows the
angle-averaged values from the left (barotropic, solid)
and center (baroclinic, dashed) panels, along with the
approximate version generated by the following ad hoc
sampling algorithm (circles).

f -Plane Model Error Sampling Algorithm:

1.a Generate 482 independent samples of a standard nor-
mal random variable, and arrange on the 48 × 48
coarse grid.

1.b Take the discrete Fourier transform. For wavenum-
bers with k = (k2

x + k2
y)

1/2 < 24, multiply the Fourier

coefficients by exp{−((k − 6)/10)2/2}; set the re-
maining coefficients to zero.

1.c Take the inverse discrete Fourier transform, and
rescale so that the sample has unit variance. This is
the unscaled barotropic error sample.

2.a Repeat step 1.a to generate a new random field.

2.b Take the discrete Fourier transform. For wavenum-
bers with k < 30 multiply the coefficients by
sin2(πk/30); set the remaining coefficients to zero.

2.c Take the inverse discrete Fourier transform, and
rescale so that the sample has unit variance.

2.d Add the unscaled barotropic error sample from step
1.c to the sample from step 2.c and divide by 2. The
result is the unscaled baroclinic error sample.

3 Multiply the unscaled barotropic sample by 1.47 and
the unscaled baroclinic sample by 0.61 to get the
barotropic and baroclinic error samples. The top
layer sample is the sum of the barotropic and baro-
clinic samples, and the bottom layer sample is the
barotropic minus the baroclinic sample.

This error sampling algorithm is clearly ad hoc. How-
ever, it produces a homogeneous and isotropic random
field with properties very similar to the diagnosed model
error. For example, the diagnosed standard deviation for
the barotropic model error is 1.49, while the algorithm has
standard deviation 1.47. The diagnosed standard deviation
for the baroclinic model error is 0.63, while the algorithm
has standard deviation 0.61. The diagnosed local corre-
lation between the barotropic and baroclinic error is 0.48,
while the algorithm generates a correlation of 0.5. The
diagnosed correlation between the model error in the top
and bottom layers is 0.75, which is matched exactly by the



M O N T H L Y W E A T H E R R E V I E W 9

FIG. A1. Time-mean barotropic streamfunction (left), time-mean model error in the barotropic streamfunction for the FD2 model (center), and

standard deviation of model error in the barotropic streamfunction for the FD2 model (right).
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FIG. A2. f -plane FD2 streamfunction model error statistics: (a) Barotropic model error spectrum, (b) Baroclinic model error spectrum, (c)

angle-integrated barotropic error spectrum from the diagnostics (solid) and from the approximate sampling algorithm (solid, circles), and angle-

integrated baroclinic error spectrum from the diagnostics (dashed) and from the approximate sampling algorithm (dashed, circles).

algorithm. Finally, the barotropic and baroclinic model er-
ror spectra are accurately reproduced by the algorithm, as
shown in the right panel of figure A2.
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