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Abstract

Stochastic lattice models are increasingly prominent as a way to cap-
ture highly intermittent unresolved features of moist tropical convec-
tion in climate science and as continuum mesoscopic models in ma-
terial science. Stochastic lattice models consist of suitably discretized
continuum partial differential equations interacting with Markov jump
processes at each lattice site with transition rates depending on the
local value of the continuum equation; they are a special case of piece-
wise deterministic Markov processes but often have an infinite state
space and unbounded transition rates. Here a general theorem on geo-
metric ergodicity for piecewise deterministic contracting processes is
developed with full generality to apply to stochastic lattice models.
A highly nontrivial application to the stochastic skeleton model for
the Madden-Julian oscillation (Thual et al. 2013) is developed here
where there is an infinite state space with unbounded and also degen-
erate transition rates. Geometric ergodicity for the stochastic skeleton
model guarantees exponential convergence to a unique invariant mea-
sure which defines the statistical tropical climate of the the model.
Another application of the general framework is developed here for
stochastic lattice models designed to capture intermittent fluctuation
in the simplest tropical climate models. Other straightforward appli-
cations to models motivated by material science are mentioned briefly
here. c© 2000 Wiley Periodicals, Inc.

1 Introduction

Stochastic lattice models consist of suitably discretized continuum par-
tial differential equations (PDE) interacting with Markov jump processes
at each lattice site with transition rates depending on the local value of the
continuum equations. Stochastic lattice models are increasingly prominent
as a way to capture highly intermittent unresolved features of moist trop-
ical convection in climate science [31, 28, 30, 27, 13, 14, 11, 26] and as
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continuum mesoscopic models in material science [21, 22, 23, 24]. Such
models are also likely to be useful in neural science and economics among
other applications in the near future. Stochastic lattice models are a special
case of piecewise deterministic Markov process (PDMP) [9, 10, 20], but
often have an infinite state space with unbounded transition rates and other
degeneracy.

Geometric ergodicity guarantees the exponential convergence to a unique
statistical invariant measure and is an important step in the mathematical
analysis of stochastic dynamical systems [37, 36, 16, 3, 7]. Here we build
on these earlier works and formulate a new abstract theorem on geometric
ergodicity for contracting PDMP which allows for an infinite state space
and suitable unbounded transition rates. This abstract theorem is used in
a highly nontrivial example, to prove the geometric ergodicity of the sto-
chastic skeleton model of the Madden-Julian oscillation (MJO) [40, 39],
where there is an initinite state space with unbounded and also degenerate
transitions.

The outline of the present paper is as follows. In Section 2 we formu-
late and present two stochastic lattice models for moist tropical convection
in climate science as motivation for further developments in the paper. One
model is the stochastic skeleton model for the MJO [40, 39] with small
nonzero damping; the second model is a stochastic lattice model designed
to capture intermittent fluctuations [31, 28, 30] in the simplest tropical cli-
mate models [15, 32, 29]. With this background, the general theorem on
contracting PDMP’s is formulated and proved in Section 3 and 4 using
Lyapunov functions and perturbation analysis. Application to stochastic
parameterization for the simplest stochastic climate model is presented in
Section 5. The highly nontrivial verification of geometric ergodicity for
the stochastic skeleton model utilizing both the general theorem and de-
tailed special structure of the stochastic skeleton model is presented in
Section 6. Details of crucial Lyapunov stability bounds for these models
are presented in the appendix. The theorem from Section 3 also applies in
a simple straight forward fashion to stochastic lattice models motivated by
material science [23, 24], but this is left as an exercise for the interested
readers. We end the introduction with a brief heuristic discussion of the
main theorem presented in Section 3 and 4.

Stochastic lattice models consist of an ordinary differential equation
(ODE) system Ut which represents a discretized continuum PDE and a
Markov jump process ηt , which represents random fluctuations. Their
interaction can be parameterized by a vector field ψ that drives Ut , and the
jump intensity λ that governs ηt . In other words, the joint dynamics can
be concisely described as:

dUt = ψ(Ut ,ηt)dt, P(ηt+∆t = η̃ |ηt ,Ut) = λ (Ut ,ηt , η̃)∆t.
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The formal infinitesimal generator L of this process is given by:

(1.1) L f (u,η) = ψ(u,η)∇u f (u,η)+∑
η̃

λ (u,η , η̃)( f (u, η̃)− f (u,η)).

In this paper, we are particularly interested in the case when the differen-
tial flow generated by ψ( · ,η) is contracting for each fixed η . Although
this assumption seems trivial at first glance, the underlying dynamics is ac-
tually rich, because the attractor of ψ( · ,η) is different for each η . Hence
the ODE part Ut is dragged towards different points along the jumps of ηt ,
while influencing the transition rate of ηt at the same time. See Section 5.2
of [3] for a simple example. In principal, piecewise contraction holds for
systems that are otherwise contracting if there is no stochastic turbulence.
This includes a wide range of models in engineering, economics and nat-
ural science. On the other hand, it is relatively easy to verify as it depends
solely on ψ .

Heuristically speaking, this paper proves the geometric ergodicity of
the joint process (Ut ,ηt) in a Wasserstein distance as long as the following
three conditions are verified:

• There is a Lyapunov function for the system, and the transition
rate with its Frechét derivative with respect to U are controlled by
this Lyapunov function;
• The process is irreducible: there is a common state that is accessi-

ble from other states;
• Piecewise contracting: with the stochastic part η being fixed, the

vector field ψ( · ,η) is contracting.

The proof of the main theorem utilizes the differential flow structure of
PDMP and invokes a perturbation analysis over the probability measure.
The bounds generated by these analyses can be applied to the powerful
asymptotic coupling framework developed in [16, 18], which finishes the
proof.

2 Stochastic lattice models for the tropics

In this section we describe two stochastic lattice models, the simplest
tropical climate model developed in [15, 32, 29] and the stochastic skeleton
model for the MJO developed and applied in [33, 34, 40, 39]. They both
consist of an ODE system Ut , which describes the dry dynamics based
on continuum thermal-dynamical PDEs, and a stochastic jump process ηt ,
which describes the intermittent tropical variability. In order to be consis-
tent with this paper’s emphasis, we are presenting only a minimal introduc-
tion of both models. Interested readers are referred to the corresponding
references for systematic derivations and discussions of these models.
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2.1 The simplest tropical climate model
Deterministic model

In [15, 32, 29], the simplest tropical climate model is derived to capture
the impact of tropical moisture variability. Here we discuss a simplified
setup of flows above the equator, which follows a PDE:

(2.1)

∂u
∂ t

=
∂θ

∂x
− d̄u,

∂θ

∂ t
− ∂u

∂x
=−dθ (θ −θeq)+dsh(θs−θ)+P,

∂q
∂ t

+ Q̄
∂u
∂x

= dq(qs−q)−P.

Here the periodic non-dimensional variable x denotes the longitude. Scalar
fields u,θ and q denote the zonal velocity, the potential temperature and the
moisture of the flow. θs,θeq,qs are fixed periodic function of x, while the
damping coefficients dq,dsh,dq represent the radiative cooling, the sensible
heat flux and the evaporation. The precipitation P is modeled throughout
Betts and Miller’s method [5, 6] using the convective available potential
energy (CAPE) [38]:

P = τ
−1
c (q−αθ − q̂)+

As physical constraints derived in [15], here we require that α ≥ 0,1 >
Q̄ > 0. In order to turn (2.1) into a numerically implementable model, and
to mimic the coarse graining procedure of the classical general circulation
model (GCM), we will apply spatial discretization. Consider a change of
variables based on the Riemann invariants of (2.1) following [15]:

K = u−θ , R =−u−θ , Z = Q̄θ +q

then (K,R,Q) follows the following PDE:

∂K
∂ t

+
∂K
∂x

=− d̄ +dθ +dsh

2
K− dθ +dsh− d̄

2
R− (dθ θeq +dshθs +P),

∂R
∂ t
− ∂R

∂x
=− d̄ +dθ +dsh

2
R− dθ +dsh− d̄

2
K− (dθ θeq +dshθs +P),

∂Z
∂ t

=−dqZ +
dθ +dsh−dq

2
Q̄(K +R)+ Q̄(dθ θeq +dshθs)+dqqs− (1− Q̄)P.

Applying the first order upwind numerical scheme, cf. [19], we discretize
the PDE above into an ODE system on the coarse grained periodic lattice
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I := Z/NZ:
(2.2)

dKi

dt
+D+

x Ki =−
d̄ +dθ +dsh

2
Ki−

dθ +dsh− d̄
2

Ri− (dθ θeq,i +dshθs,i +Pi),

dRi

dt
−D−x Ri =−

d̄ +dθ +dsh

2
Ri−

dθ +dsh− d̄
2

Ki− (dθ θeq,i +dshθs,i +Pi),

dZi

dt
=−dqZi +

dθ +dsh−dq

2
Q̄(Ki +Ri)+ Q̄(dθ θeq,i +dshθs,i)+dqqs,i− (1− Q̄)Pi.

Here the finite difference operators are defined as:

D+
x fi = N−1( fi− fi−1), D−x fi = N−1( fi+1− fi).

Such difference scheme will retain the L2-stability of the system due to
Lemma 5.1 below. As an approximation, the original prognostic variables
u,θ ,q at site x = i/N should have the value

ui =
1
2
(Ki−Ri), θi =−

1
2
(Ki +Ri), qi = Zi +

Q̄
2
(Ki +Ri).

Stochastic parameterization
Convective inhibition (CIN) is induced by the negative potential en-

ergy over the vertical motion and exists in the equilibrium state. Its highly
fluctuating behavior at sub-grid scales can be best described by an inter-
acting particle system coupled with the thermal dynamical PDE above
[31, 28, 30]. By coarse-graining this interacting particle system [28, 25],
each group of l refined scale CIN sites are represented by their sum ηi(t),
which is shown to be a birth-death process with absorption and desorption
rates as:

(2.3) ca(ηi) =
l−ηi

τI
, cd(ηi) =

ηi

τI
exp
(
−2U0

ηi−1
l−1

+ γ̄qi−h0

)
.

The ODE system (2.2) affects the transition rates through the moisture
qi = Zi +

Q̄
2 (Ki +Ri), since moisture decreases the potential for CIN, and

in return increases precipitation. Since the precipitation is inhibited at the
CIN cites, the overall precipitation at location i is modeled as:

(2.4) Pi =
l−ηi

τcl
(qi−αθi− q̂)+ =

l−ηi

τcl

(
Zi +

α + Q̄
2

(Ki +Ri)− q̂
)+

.

Jointly, the process consists of an ODE system U = (Ki,Ri,Zi)i∈I ∈ R3I

and a jump process ηt = (ηi(t))i∈I ∈ {0, . . . , l}I . The formal generator L ,
(1.1), is

L f (u,η) = ∇u f (u,η) ·ψ(u,η)+∑
i∈I

ca(ηi)( f (u,η + ei)− f (u,η))

+∑
i∈I

cd(ηi)( f (u,η− ei)− f (u,η)),
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where ψ is the vector field generated by (2.2) and η±ei is adding/subtracting
η with 1 on lattice point i.

Geometric ergodicity
One of the applications of the general result, Theorem 3.10 in the next

Section, is showing that the joint process (Ut ,ηt) is geometrically ergodic
as long as the differential flow generated by (2.2) is contracting for each
fix η :

Theorem 2.1. Assume the physical coefficients in (2.2) satisfy the follow-
ing relation:

(2.5) (1− Q̄)(α + Q̄)dq(dθ +dsh)≥ (dθ +dsh−dq)
2Q̄2.

then the simplest tropical climate model given by (2.2), (2.4) and (2.3) is
geometrically ergodic under a suitable Wasserstein distance.

The geometric ergodicity and Wasserstein distance will be defined in
detail in Section 3 and Theorem 3.10. The mild assumption over the co-
efficients here holds for most models in [28, 15, 29] and especially when
dθ +dsh = dq, since 0 < Q̄ < 1 and α ≥ 0.

2.2 Stochastic skeleton model for the MJO
The deterministic skeleton model

The deterministic skeleton model is derived in [33] to capture the in-
termittent and wave train features of the Madden-Julian oscillation (MJO)
in the tropics. The simplest way to describe it is through the following
PDE of the equatorial Kelvin and Rossby wave, K and R, the nonnegative
convective activity envelope strength A, and the first vertical baroclinic,
meridional Hermite mode of the moisture Q [33, 40]:

(2.6)

∂tK +∂xK = (Sθ − H̄A)/2− d̄K,

∂tR−∂xR/3 = (Sθ − H̄A)/3− d̄R,

∂tQ+ Q̄(∂xK−∂xR/3) = (H̄A−Sθ )(Q̄/6−1)− d̄Q,

∂tA = ΓQA.

Here all the variables are periodic functions with respect to the longitude
variable x. Sθ is a nonnegative prescribed periodic function of x represent-
ing the external source of heating and moistening, and d̄ is an arbitrarily
small dissipation. The corresponding zonal, meridian, vertical velocity
(u,v,w), potential temperature θ , moisture q, and pressure p can be recov-
ered through:

u = cosz[(K−R)φ0 +Rφ2/
√

2], v = 4cosz(∂xR+Sθ − H̄A)φ1/3
√

2,

θ =−sinz[(K +R)φ0 +Rφ2/
√

2], q = Qφ0 sinz,

p = cosz[(K +R)φ0 +Rφ2/
√

2], w = (∂xu+∂yv)sinz,
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where the φi’s are the L2-basis based on Hermite functions:

φ0 =
√

2(4π)−1/4 exp(−y2/2),

φ1 = 2y(4π)−1/4 exp(−y2/2),

φ2 = (2y2−1)(4π)−1/4 exp(−y2/2).

By applying the Riemann invariant, we will replace Q with

Z = Q− Q̄(K +R),

and thus the penultimate equation of (2.6) is replaced by:

∂tZ = (Sθ − H̄A)(1− Q̄)− d̄Z.

Discretization and stochastic parametrization
Using the first order upwind scheme again, we discretize the Kelvin

and Rossby formulation (2.6) into the following ODEs with i belongs to
the periodic lattice I := Z/NZ:

(2.7)

dKi

dt
+D+

x Ki = (Sθ
i − H̄Ai)/2− d̄Ki,

dRi

dt
−D−x Ri/3 = (Sθ

i − H̄Ai)/3− d̄Ri,

dZi

dt
= (Sθ

i − H̄Ai)(1− Q̄)− d̄Zi.

In [40], the corresponding convective envelope is modeled by Ai = ∆Aηi
with ηi being a birth-death process with absorption-desorption rates:
(2.8)

ca(ηi,Qi)=

{
Γ|Qi|ηi +1ηi=0 Qi ≥ 0
1ηi=0 Qi < 0

, cd(ηi,Qi)=

{
0 Qi ≥ 0
Γ|Qi|ηi Qi < 0

,

here Qi = Zi + Q̄(Ki +Ri). Notice that this choice is an approximation of
the deterministic relation ∂tAt = ΓQA in (2.6) as its formal generator is:

L Ai = ∆AL ηi = ΓQiAi +∆A1Ai=0.

In summary, the joint process consists of an ODE system U=(Ki,Ri,Zi)i∈I ∈
R3N and a jump process ηt = (ηi(t))i∈I ∈ ZN

+. The formal generator L ,
(1.1), is given by

L f (u,η) = ∇u f (u,η) ·ψ(u,η)+
N

∑
i=1

ca(ηi)( f (u,η + ei)− f (u,η))

+
N

∑
i=1

cd(ηi)( f (u,η− ei)− f (u,η)),

where ψ is the vector field generated by (2.7) and η±ei is adding/subtracting
η with 1 on lattice point i.
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Geometric ergodicity
The jump process ηt of the skeleton model is very complicated be-

cause:

1) it takes place in an infinite space ZI
+;

2) the transition rates (2.8) are unbounded;
3) the transition rates (2.8) are degenerate, i.e. not strictly positive, espe-

cially at Qi = 0.

In particular, there is a possible degeneracy here: suppose Sθ
i = H̄∆Aηi for

a group of integers ηi, then (~0,η) is a fixed point for jump process, since
the differential flow is stopped, i.e. ψ(~0,η) =~0, and all the transition rates
are 0 because Qi = 0. This will render the system either non-ergodic or the
equilibrium state is not interesting. On the other hand, this degeneracy can
be easily ruled out for most real applications due to the following lemma:

Lemma 2.2. If ∑Sθ
i is not an integer multiple of H̄∆A, there is no joint

state (u,η) ∈ R3I×ZI
+ such that ψ(u,η) = 0 and Qi = 0 for all i.

Proof. Assume the opposite, using that Qi = 0 and the formulation of
(2.7), we find

0 =
d
dt ∑

i
(Q̄Ki + Q̄Ri +Zi) = (1− Q̄/6)∑

i
(Sθ

i − H̄Ai)

Since Q̄ < 1, the coefficient above before ∑i(Sθ
i − H̄Ai) is non zero, hence

∑i Sθ
i = H̄∆A∑i ηi, which implies ∑Sθ

i is an integer multiple of H̄∆A, con-
tradicting our assumption. �

On the other hand, as long as we rule out the possibility of a fixed
point for the joint process, the skeleton model of MJO is geometric ergodic
under a Wasserstein distance:

Theorem 2.3. Assume that ∑Sθ
i is not an integer multiple of H̄∆A, then

the skeleton model of MJO, i.e. the process (Ut ,ηt) with evolution given by
(2.7) and (2.8), is geometric ergodic under a suitable Wasserstein distance.

Again, the geometric ergodicity and the Wasserstein distance will be
defined in detail in Sections 3 and 6.

3 Geometric ergodicity for piecewise contracting systems

The stochastic lattice models set up in Section 2 have the same mathe-
matical structure: there is an ODE system Ut and a Markov jump process
ηt . Such processes are known as piecewise deterministic Markov pro-
cesses (PDMP), or more generally Markov processes with random switch-
ing. The classical ergodicity results usually require the transition rates
of ηt to be constants independent of Ut [35, 1, 2]. In recent years, there
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is a growing interest in extending these results to non-constant rates, ei-
ther through hypoelliptic conditions [3], or through Wasserstein contrac-
tion [4, 7]. However, these results all require the transition rates of ηt to
be bounded and globally Lipschitz, and produces a non-degenerate jump
chain. Unfortunately, the stochastic lattice models introduced in Section
2 do not satisfy these conditions, especially the skeleton model of MJO
based on the discussion of Section 2.2. The main objective here is to de-
velop a theoretical framework using Lyapunov functions so unbounded
and degenerate transition rates are allowed.

3.1 Definitions and notations
A PDMP can be defined as follows when there is an underlying differ-

ential flow structure:

Definition 3.1. Let Xt be a continuous process in a Hilbert space H with
norm ‖ · ‖, and Yt be a cadlag (continuous from right with limits from left)
process taking value in a countable set F. We call the joint process Zt =
(Xt ,Yt) ∈ E :=H ×F a piecewise deterministic Markov process (PDMP)
if the following holds:

(1) Given the realization of Ys≤t , Xt follows a non-explosive differen-
tial flow generated by a locally Lipschitz vector field ψ :

Xt = X0 +
∫ t

0
ψ(Xs,Ys)ds =: Ψ(X0,Ys≤t , t) ∀t ≥ 0.

When the process Ys takes constant value y, the corresponding tra-
jectory of Xt will be denoted as Ψ

y
sx, which is the solution to the

equation: Ψ
y
t x = x+

∫ t
0 ψ(Ψy

sx,s)ds.
(2) Given the value of Xt , Yt is a continuous time Markov chain with

jump intensity from current state to y′ ∈ F being λt(Xt ,Yt−,y′).
Here Yt− := lims↗t Ys. We also write the sum of jump rates as:
λ̄ (x,y) := ∑y′∈F λ (x,y,y′). In other words,

P(Ys does not jump in [0, t]|X0 = x,Y0 = y) = exp
(
−
∫ t

0
λ̄ (Ψy

sx,y)ds
)
,

P(Yt = y′|Yt jumps at time t, Xt ,Yt−) =
λ (Xt ,Yt−,y′)

λ̄ (Xt ,Yt−)
.

The formal construction of such process and the verification that they
are Markovian can be found in [10, 20], while a shorter self explanatory
version can be found on page 3 of [7].

Remark 3.2. PDMP can also be defined for more general models, where
Ψ can explode in finite time or Xt takes values in a family of spaces indexed
by F. Interested readers are directed to [10, 20] for these extensions. We
use this more practical definition of PDMP in order to avoid unnecessary
abstractions.



10 A J MAJDA AND X T TONG

For the notation in this section and the next, we use symbol Z to denote
the joint process (Xt ,Yt), while X is its differential flow part and Y is its
random jump process part. We save the symbols Ut and ηt for applica-
tions in Section 5 and 6. We will write the transition rate in two different
fashions in order to emphasize different variables:

λ (z,k) = λ (x,y,k), λ̄ (z) = λ̄ (x,y)

We also use Pz to denote the law of Zs≥0 given that Z0 = z = (x,y) and
Ez to denote the corresponding expectation. Pµ denotes the law of Zs≥0
with Z0 ∼ µ . Thus the generated transition kernel is denoted as Pt , that is
Pt f (z) := Ez f (Zt).

We use τ1, . . . ,τk to denote the jump times of Yt , and Nt denotes the
total number of jumps up to time t. The differential flow Ψ(x,Ys≤t , t) can
as well be written as:

Xt = Ψ(x,Ys≤t , t) = Ψ
YτNt
t−τNt

Ψ
YτNt−1
τNt−τNt−1

· · ·ΨY0
τ1

x.

Finally, let us define the formal generator L for functions on H ×F
that are C1 in x:

(3.1) L f (x,y) = ψ(x,y)∂x f (x,y)+ ∑
y′∈F

λ (x,y,y′)( f (x,y′)− f (x,y)).

Remark 3.3. Evidently, L is the candidate for the infinitesimal generator.
When the total jump intensity is uniformly bounded, it is known that L is
the generator for the process. See Lemma 2.1 of [3] or Remark 26.16 of
[10]. This gives the useful Dynkin’s formula for all bounded f (x,y) that
are C1 in x:

(3.2) Ez f (Zt) = f (z)+Ez
∫ t

0
L f (Zs)ds.

Rigorously speaking, L will be the extended operator with its domain
given by Theorem 26.14 of [10]. Yet, we are not introducing these termi-
nologies here as they are quite abstract. On the other hand, our applica-
tions of L are restricted to a few simple functions, where the properties of
the generator follow easily over a localization sequence, see Lemma 3.7
below for example.

3.2 Stability and Regularity
The Definition 3.1 of PDMP is rather general so there is no guarantee

for any notions of stability. In fact, it is even possible to have infinite jumps
in Yt in finite time as the state space E is non-compact and the total jump
intensity is unbounded. One standard tool to stabilize a system in non-
compact space is the Lyapunov function [37, 36, 16, 18, 7], which will
play a crucial role in our theoretical framework:
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Assumption 3.4 (Lyapunov Function). There exists a function V (x,y) :
E 7→ R+, which is C1 with respect to x, with sub-level sets being compact
and the following hold with some γ,kv > 0:

‖x‖2 ≤V (z), LV (z)≤−γV (z)+ kv.

Notice that if V satisfies such conditions, then so does V +1. Hence with-
out lost of generality, we assume V ≥ 1.

Remark 3.5. Another more general way to define Lyapunov function is
requiring that EzV (Zt) ≤ e−γtV (z)+Kv, as in [7]. The generator form of
Lyapunov function we propose here and also in [36] is slightly stronger
due to Lemma 3.7 in below. We choose this form because at this stage it
is unclear whether Yt will explode in finite time, so it is problematic to use
EzV (Zt). However, L can always be formally defined as (3.1).

This Lyapunov function V will bound and regularize the transition rates
in the following manner:

Assumption 3.6 (Regularity of Transition rates). The transition rates have
the following properties for a proper constant Mλ > 0 with any z ∈ E,y′ ∈
F:

(1) λ (z,y′) 6= 0 for at most Mλ different y′ ∈ F;
(2) λ̄ (z),‖Dxλ (x,y,y′)‖,‖Dxλ (x,y)‖ ≤MλV (x,y). Here and after, Dx

denotes the Frechét derivative with respect to the x.

Assumption 3.4 and 3.6 in combination insure no explosion, and L
works as a generator on V , as shown by the following lemma:

Lemma 3.7. With Assumptions 3.4 and 3.6, then Pz-a.s. there is no explo-
sion and for some Kt < ∞

EzNt = Ez
∫ t

0
λ̄ (Zs−)ds≤ KtV (z), EzV (Zt)≤ e−γtV (z)+ kv/γ.

Proof. Fix any n ∈ N, consider stopping times Tn := inf{t : V (Zt) > n}.
The corresponding process with its associated total jumps can be jointly
written as:

(Z̃n
t , Ñ

n
t ) := (Xt∧Tn ,(Yt∧Tn ,Nt∧Tn)).

It can be easily verified as a PDMP that takes place in H × (F ×N). Its
differential flow is generated by the vector field ψ(z)1V (z)<n, and the jump
rate from state (y,m) to (y′,m+1) with the X part being x is λ (x,y,y′)1V (z)<n.
Such rates by Assumption 3.6 are uniformly bounded, so following Re-
mark 3.3 and the reference within, we know its generator is:

L n f (x,y,m) =1V (z)<nψ(x,y)∂x f (x,y,m)

+1V (z)<n ∑
y′∈F

λ (x,y,y′)[ f (x,y′,m+1)− f (x,y,m)].
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Apply the Dynkin’s formula (3.2) to Ñn
t = π(Z̃n

t , Ñ
n
t ), where π(z,m) = m:

(3.3) EzNt∧Tn = Ez
∫ t∧Tn

0
λ̄ (Zs)ds≤MλEz

∫ t∧Tn

0
V (Zs)ds.

On the other hand, exp(γt ∧ Tn)V (Z̃n
t ) is bounded for bounded t, so the

Dynkin’s formula (3.2) gives:

Ez exp(γ(t ∧Tn))V (Z̃n
t∧Tn

) =V (z)+Ez
∫ t∧Tn

0
L n exp(γs)V (Z̃n

s )ds.

By the chain rule and Assumption 3.4, when V (z)< n,

L n exp(γt)V (z) = exp(γt)(γV (z)+LV (z))≤ exp(γt)kv.

Since before Tn, V (z)< n, so the following holds

(3.4) Ez exp(γ(t ∧Tn))V (Z̃n
t∧Tn

)≤V (z)+ exp(γt)kv/γ.

Notice that EzV (Zt∧Tn)≤ Ez exp(γ(t ∧Tn))V (Z̃n
t∧Tn

), so by the Markov in-
equality:

P(Tn < t)≤ n−1EzV (Zt∧Tn)→ 0.
By Borel-Cantelli’s lemma, there is a proper subsequence, {nk}, such that

Tnk → ∞, exp(γ(t ∧Tnk))V (Z̃nk
t∧nk

)↗ exp(γt)V (Zt) Pz-a.s.

Apply Fatou’s lemma over this subsequence to (3.4), we have

Ez exp(γt)V (Zt)≤V (z)+ exp(γt)kv/γ.

This generates the second inequality in the statements of this lemma. Ap-
ply Fatou’s lemma over the same subsequence to (3.3), we have

EzNt = Ez
∫ t

0
λ̄ (Zs)ds≤MλEz

∫ t

0
V (Zs)ds≤Mλ [V (z)/γ + tkv/γ].

This implies the first inequality in the statements of this lemma and Nt < ∞

a.s. �

.

3.3 Piecewise contraction and accessibility
There are two more conditions we need to show a PDMP is geometri-

cally ergodic.

Assumption 3.8 (Piecewise Contraction). The following holds for some
proper constants Cγ ,γ > 0:

‖DxΨ(x,ys≤t , t)‖ ≤Cγ exp(−γt).

for all F-valued process ys≤t and x ∈H . As a special case, the flow with
ys≤t being of constant value y, Ψ

y
t x, will converge to a single point for each

fixed y (maybe infinity), which will be called the attractor for state y in the
following.
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The final assumption over the model is the irreducibility of the model,
phrased by the accessibility:

Assumption 3.9 (Accessibility from compact sets). For any compact sub-
set C of E, there exists a yc ∈ F such that its corresponding attractor
xc satiefies V (xc,yc) < ∞ and for any z ∈ C, there exists a t such that
Pz(Yt = yc)> 0. Here the topology of H is generated by its norm ‖ · ‖, the
topology of F is discrete and the topology of E is the product of the two.

The classical notion of ergodicity is usually illustrated in the total vari-
ation norm. Results like ‖Pz

t −Pz′
t ‖TV

t→∞−→ 0 are well studied and under-
stood in the finite dimensional Markov chain or stochastic Markov process
setting by [37, 36]. Yet, for PDMP, convergence in total variation maybe
too stringent as the total variation distance discriminates deterministic sys-
tems rather harshly. For example, consider a deterministic process in R,
dXt =−γXtdt. The invariant measure is obviously δ0, a point mass at the
origin. Yet, starting from any nonzero point, the distribution of Xt is a point
mass at e−γtX0, which has total variation distance 2 from δ0. One way to
guarantee convergence in total variation, is to assume Hörmander type of
conditions over the vector fields [2, 3]. However checking Hörmander
condition is tedious for ODE systems on lattice structure when there are
neighboring interaction, for example the stochastic lattice models intro-
duced in Section 2.

A more suitable distance between measures for PDMP, is the Wasserstein-
1 distance, which is also used in previous works for PDMP [1, 4, 7]. For
any distance d on E, the Wasserstein distance with respect to d between
two measures µ , ν on E is defined as:

d(µ,ν) := inf
Γ∈C (µ,ν)

∫
d(x,x′)Γ(dx,dx′)

Here C (µ,ν) is the set of all couplings between µ and ν ; in other words
the marginal distributions of any Γ ∈ C (µ,ν) are µ and ν respectively.

Theorem 3.10. Suppose Assumptions 3.4, 3.6, 3.8 and 3.9 hold, then the
PDMP Zt = (Xt ,Yt) has a unique invariant measure π , moreover the distri-
bution of Zt converges to π geometrically fast in the Wasserstein distance
with respect to the natural distance

m(z,z′) =
√
‖x− x′‖2 +1y 6=y′ .

In particular, there are some proper constants β ,C > 0 such that the fol-
lowing holds for any z,z′ ∈ E :

m(Pz
t ,Pz′

t )≤C exp(−β t)
√

1+V (z)+V (z′).
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4 Proofs

The proof of Theorem 3.10 uses the asymptotic coupling mechanism
introduced by [18, 17]. Theorem 4.8 of [18] gives the major application of
this mechanism.

Theorem 4.1 (HMS11). Let Pt be a Markov semigroup over a Polish space
E admitting a continuous Lyapunov function V : PtV (z) ≤ CV e−γtV (z)+
KV . Suppose furthermore that there exists t > 0 and a distance-like func-
tion d : E×E 7→ [0,1] which is contracting for Pt and such that the level
set {z ∈ E : V (z) ≤ 4KV} is d-small for Pt . Then Pt can have at most one
invariant probability measure π . Furthermore, defining

d̃(z,z′) =
√

d(z,z′)(1+V (z)+V (z′)),

there exists t > 0 such that d̃(Pµ

t ,Pν
t )≤ 1

2 d̃(µ,ν) for any probability mea-
sures µ,ν on E.

In [18] a distance d is 1
2 -contracting for Markov chain (Znt)n=1,... if

d ≤ 1 and

d(Pz
t ,Pz′

t )≤
1
2

d(z,z′), ∀d(z,z′)< 1.

The distance between measures are understood as the Wasserstein distance
with respect to d introduced before Theorem 3.10. And a set A is d-small
for the chain (Znt)n=1,... if there exists an ε > 0 such that

d(Pz
t ,Pz′

t )≤ 1− ε, ∀z,z′ ∈ A.

We will adopt these concepts in the following. Evidently, the key step
in applying Theorem 4.1 is constructing a contracting distance d. Propo-
sition 5.5 of [18] sets up a versatile framework for this purpose, and we
will use a variant of it to set up a contracting distance. The validation of
this framework relies on an analysis in the perturbation of the underlying
probability. In the following, we will first study the probability density of
process Zt in Section 4.1, then analyze the perturbation of this density and
hence construct the contracting distance in Section 4.2, while Sections 4.3
and 4.4 use Theorem 4.1 to prove Theorem 3.10.

4.1 Probabilistic density for admissible jumps
As the differential flow of a PDMP is deterministic, the path of Zt =

(Xt ,Yt) solely depends on the realization of the number of jumps Nt , the
jump times τi and destinations of the jumps Yτi . In fact, the whole path can
be written down explicitly as a function of the sequence t= (t1, . . . , tn),y=
(yt1 , . . . ,ytn):

(4.1) ys =

{
ytk , s ∈ [tk, tk+1)

ytn , s≥ tn
; xs = Ψ(x0, t,y,s) := Ψ(x0,yr≤s,s).
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According to the construction of PDMP in Definition 3.1, using a standard
Kolmogorov procedure one can derive the following probability density of
(n, t,y) ∈N×Rn

+×Fn. This is carried out in detail by Theorem 7.3.1 and
formula 3.10 of [20].

P(Nt = n,Yτ1 = yt1 , . . . ,Yτn = ytn ,τ1 ∈ dt1, . . . ,τn ∈ dtn)

(4.2)

= 1t1<···<tn exp
(
−
∫ t

0
λ̄ (zs)ds

) n

∏
i=1

(
λ (xti ,yti−1 ,yti)dti

)
=: pz,t

n,t,ydt.

The process zs = (xs,ys) in the formula above is defined through (4.1)
as a function of (n, t,y). The underlying measure of the density pz,t

n,t,y is
the Lebesgue measure on Rn: dt = dt1 dt2 . . . dtn. The intersection with
event {Nt = n} here is necessary for the definition of density, else the
number of τi will be unclear and hence also the dimension of underlying
Lebesgue measure. On the other hand, when using this formula to compute
expectation, one must remember to enumerate among all possible values
of n. Lemma 3.7 guarantees that there is no explosion, so the enumeration
only need to go through n∈N. In other words, for any measurable function
f , its expectation is given by:

(4.3) Ez f (Zs≤t) =
∞

∑
n=0

∑
y∈Fn

∫
[0,t]n

dt f (zs≤t)pz,t
n,t,y.

4.2 Contracting distance
For the construction of a contracting distance, we have the following

lemma. It is a variant of Proposition 5.5 in [18]. Here we use a Lyapunov
function instead of a super Lyapunov function and we need to deal with
two processes Xt and Yt instead of one. Yet, the nature of the proof remains
quite the same.

Lemma 4.2. Suppose that a transition kernel Q on space E = H ×F
satisfies QV (z) ≤ DV (z) with a constant D, while the following holds for
any ϕ : E 7→ R that is C1 in H :

(4.4) ‖DxQϕ(z)‖ ≤
(

1
4D

[Q‖∂xϕ‖(z)]+CV (z)‖ϕ‖∞

)
.

Here, ‖ f‖∞ = supz | f (z)| where | · | denotes a proper norm for f . Then
there exists a δ > 1 such that if we define

(4.5) d(z,z′) = 1y6=y′+1y=y′ ∧
(

δ
−1 inf

r:x→x′

∫ 1

0
V (r(s),y))‖ṙ(s)‖ds

)
,

d is a 1
2 -contracting metric for the chain Zn generated by Q. Here the

infimum is taken over all C1 path r such that r(0) = x,r(1) = x′.
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Proof. Denote the law of z after transition Q as Qz. By the definition of
contracting metric, we need to show d(Qz,Qz′)≤ 1

2 d(z,z′) when d(z,z′)<
1, which implies that y = y′. Since the spaces here are Polish, by the
Kantorovich-Rubinstein Theorem [12, Theorem 11.8.2],

d(Qz,Qz′) = sup
{∫

ϕdQz−ϕdQz′
∣∣∣∣‖ϕ‖Lip(d) ≤ 1

}
.

where the requirement ‖ϕ‖Lip(d) ≤ 1 is equivalent to: for any z,z′ ∈ E,
ϕ(z)−ϕ(z′)≤ d(z,z′). Hence, to prove this lemma we only need to show
that for any ϕ , ‖ϕ‖Lip(d) ≤ 1,

(4.6) Qx,y
ϕ−Qx′,y

ϕ ≤ 1
2δ

∫ 1

0
V (r(s),y)‖ṙ(s)‖ds.

However, if ‖ϕ‖Lip(d) ≤ 1, the maximum variation of ϕ is less than 1,
hence we can replace ϕ by ϕ − c such that ‖ϕ‖∞ ≤ 1

2 , yet
∫

ϕdQx,y −
ϕdQx′,y remains invariant. So without loss of generality, we assume ‖ϕ‖∞≤
1
2 .

Moreover, since d is equivalent to ‖ · ‖ in the x part, ϕ is continuous
in x. If ϕ is not C1 in x, we can find a sequence of C1 functions ϕn such
that ϕn → ϕ point wise. If we can show the upper bound holds for each
ϕn, then since Qzϕn→ Qzϕ , with dominated convergence theorem we can
show the upper bound holds for ϕ as well. So without loss of generality,
we assume ϕ is C1 in x.

Also note that ψ is d-Lipschitz implies that ‖∂xϕ(z)‖ ≤ δ−1V (z) since
for any v ∈ H,‖v‖= 1,

〈∂xϕ,v〉 ≤
∣∣∣∣ lim

ε→0

ϕ(x+ εv,y)−ϕ(x,y)
ε

∣∣∣∣≤ δ
−1V (z).

Therefore, it suffices for us to show the inequality (4.6) for ϕ that is

‖ϕ‖∞ ≤
1
2
, ‖∂xϕ‖ ≤ δ

−1V (z).

Plug them into the assumption (4.4), we obtain,

‖DxQϕ‖ ≤
(

1
4Dδ

[QV (z)]+
C
2

V (z)
)
≤
(

1
4δ

+
C
2

)
V (z).

Pick δ ≤ 1
2C , one has ‖DxQϕ‖ ≤ (2δ )−1V (z), which concludes our result

because for any path r connecting x,x′:

|Qϕ(x,y)−Qϕ(x′,y)| ≤
∫ 1

0
‖DxQϕ(r(s),y)‖‖ṙ(s)‖ds

≤ 1
2δ

∫ 1

0
V (r(s),y)‖ṙ(s)‖ds.

Minimize over all paths generates our claim. �

The next lemma verifies the condition of Lemma 4.2 under our setting.
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Lemma 4.3. With Assumptions 3.4, 3.6 and 3.8, there exists a T such that
(4.4) holds for Q = PT . Therefore d defined by (4.5) is 1

2 -contracting for
PT .

Proof. First of all, according to Lemma 3.7 and the convention that V ≥ 1,

PtV (z)≤V (z)+ kv/γ ≤ (1+ kv/γ)V (z), ∀t ≥ 0.

Hence D = 1+ kv/γ is good for the first condition in Lemma 4.2. Next,
we verify (4.4) by taking Frechét derivative over the expectation formula
(4.3). Using the chain rule, we have:

‖DxPtϕ(z)‖=
∥∥∥∥Dx ∑

n,y

∫
dtϕ(Ψ(x, t,y, t),yt)pz,t

n,t,y

∥∥∥∥
≤
∥∥∥∥∑

n,y

∫
dtDx[ϕ(Ψ(x, t,y, t),yt)]p

z,t
n,t,y

∥∥∥∥
+

∥∥∥∥∑
n,y

∫
dtϕ(Ψ(x, t,y, t),yt)Dx(pz,t

n,t,y)

∥∥∥∥
≤
∥∥∥∥∑

n,y

∫
dt‖∂xϕ(zt)‖‖DxΨ(x, t,y, t)‖pz,t

n,t,y

∥∥∥∥
+∑

n,y

∫
dt‖ϕ‖∞‖Dx(pz,t

n,t,y)‖

≤Cγe−γtEz‖∂xϕ(Zt)‖+‖ϕ‖∞ ∑
n,y

∫
dt‖Dx pz,t

n,t,y‖.(4.7)

At the third step, we use ‖DxΨ(x, t,y,y)‖ ≤Cγe−γt in Assumption 3.8 to
get (4.7). Pick a T such that Cγe−γT ≤ 1/4D. It remains to find a C < ∞

such that

∑
n,y

∫
dt‖Dx pz,T

n,t,y‖ ≤CV (z).

Apply the chain rule to the density pz,T
n,t,y as in (4.2), we have

∑
n,y

∫
dt‖Dx pz,T

n,t,y‖ ≤∑
n,y

∫
dtpz,T

n,t,y

∫ T

0
‖DxΨ(x, t,y,s)‖‖Dxλ s(xs,ys)‖ds

+∑
n,y

∫
dtpz,T

n,t,y

n

∑
k=1
‖DxΨ(x, t,y, tk)‖

‖Dxλ (zttk−
,ytk)‖

λ (ztk−,ytk)
.(4.8)

Notice here we write ztk− = (xtk ,ytk−1). We will bound the two parts sepa-
rately in the following. Denote Az as the possible sites for the transition to
happen from state z = (x,y):

Az := {y′ ∈ F : λ (z,y′)> 0}.

By Assumption 3.8 ‖DxΨ(x, t,y,s)‖≤Cγe−γs, combine it with ‖Dxλ̄ (z)‖≤
MλV (z) from Assumption 3.6, and the first part of (4.8) can be bounded



18 A J MAJDA AND X T TONG

by:

∑
n,y

∫
dtpz,T

n,t,y

∫ T

0
‖DxΨ(x, t,y,s)‖‖Dxλ (xs,ys)‖ds

≤CγMλ ∑
n,y

∫
dtpz,T

n,t,y

∫ T

0
e−γsV (zs)ds≤CγMλ ∑

n,y

∫
dtpz,T

n,t,y

∫ T

0
V (zs)ds

=CγMλEz
∫ T

0
V (Zs)ds≤CγKT T MλV (z),

using Lemma 3.7. For the second part of (4.8), first consider the following
process which is a modification of Zt at τk: let Z̃k

t be the same process
as Zt before and after the k-th jump time τk, while at τk, the transition is
uniform among the finite set AZτk−

⊂ F . Another way to define this process
is letting (Z̃k

t ,Nt) to be a PDMP with formal generator:

L f (z,n)=ψ(z)∂x f (z,n)+ ∑
y′∈Az

λ (z,y′)( f (x,y′,n+1)− f (x,y,n)), n 6= k−1;

L f (z,n)=ψ(z)∂x f (z,n)+ ∑
y′∈Az

λ̄ (z)
#Az

( f (x,y′,n+1)− f (x,y,n)), n= k−1.

Following (4.2), the probability density of this process up to time T can be
written down as:

p̃k
n,t,y = 1t1<t2<...<tn exp

(
−
∫ T

0
λ̄ (zs)ds

) n

∏
i6=k

λ (zti−,yti)

[
λ̄ (ztk−)

#Aztk−

]1k≤n

.

Denote the law of Z̃k
t as Pk, notice that it coincides with P until τk. By

Assumption 3.6, #Az ≤Mλ , so comparing with the formula (4.2), we have:

M2
λ

V (ztk−)

λ̄ (ztk−)
p̃k

n,t,y ≥ pz,t
n,t,y
‖Dxλ (ztk−,ytk)‖

λ (ztk−,ytk)
.

Hence the second part of (4.8) can be bounded by:

∑
n,y

∫
dtpz

n,t,y

n

∑
k=1
‖DxΨ(x, t,y, tk)‖

‖Dxλ (zttk−
,ytk)‖

λ (ztk−,ytk)

≤M2
λ ∑

n,y

∫
dt

n

∑
k=1

p̃k
n,t,y

V (ztk−)

λ̄ (ztk−)
Cγ exp(−γtk)

≤M2
λ
Cγ

∞

∑
k=1

Ek
(

1τk≤T
V (Zτk−)

λ̄ (Zτk−)

)
= M2

λ
CγEz

NT

∑
k=1

V (Zτk−)

λ̄ (Zτk−)

where at the third step we notice that (Zτk−,τk) have the same law un-
der Pz and Pk. Also notice that V (Zs−)/λ̄ (Zs−) is left continuous. On
the other hand, by Proposition 26.7 of [10], the compensator of Nt is
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0 λ̄ (Zs−)ds. Hence applying formula 31.18 of [10] with b(Zτk ,Zτk−) =

V (Zτk−)/λ̄ (Zτk−) and δ = 0, we have

Ez
NT

∑
k=1

V (Zτk−)

λ̄ (Zτk−)
= Ez

∫ T

0
V (Zs−)ds =

∫ T

0
EzV (Zs)ds≤ 1

γ
(V (z)+ kvT ).

where we used the fact that Zs jumps only countably many times and used
Lemma 3.7 for the upper bound. �

Remark 4.4. In [7, 4], the contracting distance is set up through a con-
crete coupling mechanism. Usually this setup requires us to manage two
copies of the process at the same time, which may be difficult in certain sit-
uations. On the other hand, the framework in [18] presented here requires
only a perturbation analysis on one process. Thus the proof here is more
straightforward, and the bounds used here have room to work for weaker
conditions. Yet, the reason we can do such analysis is that a PDMP has a
differential flow Ψ, which [7] does not assume.

Remark 4.5. The construction of the processes Z̃k
t is not necessary. The

bound for second line of (4.8) can be obtained through an advanced appli-
cation of formula 31.18 of [10] with b(Zτk ,Zτk−) = V (Zτk−)/λ (Zτk−,Yτk).
We are constructing these auxiliary processes to offer better probabilistic
intuition.

4.3 Accessibility and small sets
The verification of the small set condition in Theorem 4.1 is a standard

one based on an accessibility study. We will also introduce a few notions
for accessibility, as they will become useful when verifying Assumption
3.9 for the stochastic lattice models. Most of the following lemmas have
a variant in either [3] or [7]. Since we are working with unbounded rates,
and we want to keep this article self-contained, we are presenting these
standard verifications as well.

First of all, the accessibility of process Zt can be characterized by the
density pz,t

n,t,y.

Definition 4.6. A jump sequence (n, t,y) or simply written as (t,y) is ad-
missible from z up to time t, if tn < t and pz,t

n,t,y > 0. A state z′ ∈ E or y′ ∈ F
is called accessible from z at time t if there is an admissible jump sequence
(n, t,y) from z up to time t, with zt generated by (4.1) is z′ or its Y part is
y′.

The following properties are immediate by the formula (4.2).

Lemma 4.7. For a PDMP, the following holds:

(1) p(x,y),tn,t,y is continuous with respect to t = (t1, . . . , tn) and x (hence aslo
z);
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(2) If (n, t,y) and (n′, t′,y′) are admissible from z up to time t and zt up to
time t ′, then pz,t+t ′

n+n′,t+t′,y+y′ = pz,t
n,t,y pzt ,t ′

n′,t′,y′ , where zt = (Ψ(x, t,y, t),yt)

and

t+ t′ = (t1, . . . , tn, t + t ′1, . . . , t + t ′n′), y+y′ = (y1, . . . ,yn,y′1, . . . ,y
′
n′).

(3) If pz,t
n,t,y > 0 then pz,t+s

n,t,y > 0 for s≥ 0.

Proof. The first two claims are immediate based on formula (4.2). To see
the third, observe that the trivial jump sequence (0, /0, /0) is admissible from
all z′ up to any time s, as

pz′,s
0 = exp

(
−
∫ s

0
λ̄ (Ψy′

r x′,y′)dr
)
≥ exp

(
−Mλ

∫ s

0
V (Ψy′

r x′,y′)dr
)
,

as Ψ is non-explosive and V is continuous in x, we find that pz′,s
0 > 0. Then

by claim (2), pz,t+s
n,t,y = pz,t

n,t,y pzt ,s
0 is strictly positive. �

The following lemma provides a straightforward way to verify As-
sumption 3.9 using the density.

Lemma 4.8. With Assumption 3.6,

(1) If j ∈ F is accessible from z ∈ E at time s, then Pz(Yt = j)> 0 for any
t ≥ s;

(2) If Assumption 3.9 holds in addition, then for any compact set C, there
exists constants t0,m0 > 0 such that

Pz(Yt0 = yc)≥ m0, ∀z ∈C.

Proof. For the first claim, using Lemma 4.7 claim (3), we can find an
admissible sequence (n, t,y), i.e. pz,t

n,t,y > 0. Then by the continuity of
pz,t

n,t,y in t from Lemma 4.7 claim (1), there exists a neighbor Ot of t in the
set {(t ′1, . . . , t ′n), t ′n < t} such that if t′ ∈ Ot, pz,t

n,t,y′ > 0. Hence

Pz(Yt = j)≥P(Ys≤t goes through y with jump times in Ot)=
∫

Ot

dt′pz,t
n,t′,y > 0.

To see the second claim, by Assumption 3.9 and the expectation formula
(4.3), for each z ∈ C, there exists an admissible sequence (n, t,y) up to t
such that pz,t

n,t,y > 0. As pz,t
n,t,y is continuous in z, we can find a finite cover

of C such that
pz,ti

n,t,y > 0, ∀z ∈ Oi.

Let t0 = max{ti}, we have Pz(Yt0 = yc) > 0 for all z by Lemma 4.7 claim
(3) and the first claim of this lemma. Then using the compactness and the
continuity in z again we find a uniform lower bound m0 for the density. �

By the definition of small sets and the construction of d, (4.5), we prove
the following stronger claim to verify the small set condition of Theorem
4.1.



GEOMETRIC ERGODICITY FOR PDMP 21

Lemma 4.9. Under the conditions of Theorem 3.10, for any fixed strictly
positive M,ε , there exists strictly positive constants t1 and m1, such that for
any z,z′ ∈ E satisfying V (z),V (z′) ≤M, there exists a coupling of Pz

t1 ,P
z′
t1

that satisfies:

Pz,z′(d(Zt1 ,Z
′
t1)≤ 2ε)≥ m1.

Hence {z : V (z)≤M} is d-small.

Proof. As d is a distance, by Lemma A.1, it suffices for us to show that

Pz(d(Zt1 ,zc)≤ ε)≥ m1, ∀z : V (z)≤M.

Where zc =(yc,xc) is given by Assumption 3.9. The proof proceeds through
two steps: we first couple Yt ,Y ′t to yc. Then we keep the value of Y to be yc
afterwards, until the contracting dynamics brings the X part close enough.
In detail, by Lemma 4.8 (2), there is a constant t0 and c0, such that when
V (z) ≤M, Pz(Yt0 = yc) ≥ m0. On the other hand, as V (z) ≥ ‖x‖2, by the
Markov inequality, if we let dv =

√
2Kt0M/m0 with Kt0 given by Lemma

3.7,

Pz(‖Xt0‖ ≥ dv)≤
EzV (Zt0)

d2
v

≤ Kt0M
d2

v
≤ 1

2
m0.

Hence by the lower bound for intersection of events:

Pz(Yt0 = yc,‖Xt0‖ ≤ dv)≥
1
2

m0, ∀z : V (z)≤M.

As the attractor xc satisfies V (xc,yc)< ∞ and V is continuous in the x part,
we can find M̄λ such that V (u,yc)≤ M̄λ when u is inside the following set:

(4.9) {Ψyc
t x : ‖x‖≤ dv, t ≥ 0}∪{x+s(xc−x) : s∈ [0,1],‖x‖≤ 1+‖xc‖}.

Hence, if we let ε ′ ≤ δM̄−1
λ

ε , then for any x′ such that ‖x′− xc‖ ≤ ε ′,

d((x′,yc),(xc,yc))≤ δ
−1‖x′−xc‖

∫ 1

0
V (x′+s(xc−x′),yc)ds≤ ε

′
δ
−1M̄λ ≤ ε.

Pick a T ′ such that Cγ(dv + ‖xc‖)exp(−γT ′) ≤ ε ′. Then by Assumption
3.8, for ‖x‖ ≤ dv:

‖Ψyc
T ′x− xc‖= ‖Ψyc

T ′x−Ψ
yc
T ′xc‖

≤ ‖x− xc‖
∫ 1

0
‖DxΨ

yc
T ′(x+ r(xc− x))‖dr ≤ ε

′.

Thus, we can generate the following bound of probability using V (u,yc)≤
M̄λ for u ∈ (4.9) and applying formula (4.2) with n = 0 and the Markov
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property:

Pz(d(Zt0+T ′ ,zc)≤ ε)≥ Pz(‖Xt0‖ ≤ dv,Ys = yc,s ∈ [t0, t0 +T ′])

≥ Ez
[

1‖Xt0‖≤dv,Yt0=yc exp
(
−
∫ T ′

0
λ̄ (Ψyc

s Xt0 ,yc)ds
)]

≥ 1
2

m0 exp(−M̄λ T ′) =: m1.

This concludes our first claim with t1 = t0+T ′. To see this actually implies
that {V (z) ≤ M} is d-small, simply let 2ε = 1/2, with the T given by
Lemma 4.3, we have the following for any V (z),V (z′)≤M,

d(Pz
t1+T ,P

z′
t1+T )≤

∫
Pz,z′(Zt1 ∈ dw,Z′t1 ∈ dw′)d(Pw

T ,Pw′
T )

≤ Pz,z′(d(Zt1 ,Z
′
t1)≥ 1/2)+

1
2
Pz,z′(d(Zt1 ,Z

′
t1)≤ 1/2)≤ 1− 1

4
m1.

�

4.4 Proof of Theorem 3.10
With the conditions of Theorem 4.1 verified, it is rather elementary to

show Theorem 3.10.

Proof. Using the Lyapunov function, one can bound E‖Xt‖2 uniformly in
t. This indicates that the family of measures {Pz

t}t≥0 is uniformly tight,
so by Krylov-Bogolyubov theorem [8] there exists at least one invariant
measure π . To see the geometric convergence in m, based on Lemma
4.2, 4.3 and 4.9, Theorem 4.1 can be applied to Zt with metric defined by
(4.5). With the metric d̃ defined by Theorem 4.1, d̃(Pz

t ,Pz′
t ) ≤ 1

2 d̃(z,z′).
By recursively applying this relation with the Markov property, i.e. Pz

nt =

P∗t Pz′
(n−1)t

d̃(Pz
nt ,Pz′

nt)≤
1
2

d̃(Pz
(n−1)t ,P

z′
(n−1)t)≤ ·· ·≤

1
2n d̃(z,z′)≤ 1

2n

√
1+V (z)+V (z′)

Recall the convention that V (z)≥ 1, so for sufficiently large n, if event

A =

{
d̃(Znt ,Z′nt)≤

√
1+V (z)+V (z′)
√

2
n

}
takes place, d(Znt ,Z′nt) ≤

√
1+V (z)+V (z′)/2n, which implies Ynt = Y ′nt

and m(Znt ,Z′nt)≤ δd(Znt ,Z′nt), therefore

m(Znt ,Z′nt)≤ δd(Znt ,Z′nt)≤
δ
√

1+V (z)+V (z′)
2n .

On the other hand, by the Markov inequality

P(Ac)≤ d̃(Pz
nt ,Pz′

nt)

1/
√

2n
≤ 1√

2n
.
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Therefore by the Cauchy inequality

m(Pz
nt ,Pz′

nt) = E1Am(Znt ,Z′nt)+E1Acm(Znt ,Z′nt)

≤ δ

2n

√
1+V (z)+V (z′)+ [P(Ac)E(m2(Znt ,Z′nt))]

1
2

≤ δ

2n

√
1+V (z)+V (z′)+

[
1
2

√
2nE(1+2‖Znt‖2 +2‖Z′nt‖2)

] 1
2

≤ δ

2n

√
1+V (z)+V (z′)+

[
1√
2n

(2V (z)+2V (z′)+2kv/γ +1)
] 1

2

where in the last step we used ‖x‖2 ≤ V (z) and Lemma 3.7. In view of
such bound, it is clear the last claim of this theorem is proved. To see this
implies exponential convergence from µ to π , it suffices go through the
following standard procedure:

m(Pµ

t ,π) = m(Pµ

t ,Pπ
t )≤

∫
µ(dz)π(dz′)Ez,z′m(Zt ,Z′t)

=
∫

µ(dz)π(dz′)m(Pz
t ,Pz′

t )

≤C exp(−β t)
∫

µ(dz)π(dz′)
√

V (z)+V (z′)+1.

�

5 Geometric ergodicity for the simplest tropical stochastic
climate model

In this section, we prove Theorem 2.1 by applying Theorem 3.10 to
the simplest tropical climate model introduced in Section 2.1. Recall its
formulation:
(5.1)

dKi

dt
+D+

x Ki =−
d̄ +dθ +dsh

2
Ki−

dθ +dsh− d̄
2

Ri− (dθ θeq,i +dshθs,i +Pi),

dRi

dt
−D−x Ri =−

d̄ +dθ +dsh

2
Ri−

dθ +dsh− d̄
2

Ki− (dθ θeq,i +dshθs,i +Pi),

dZi

dt
=−dqZi +

dθ +dsh−dq

2
Q̄(Ki +Ri)+ Q̄(dθ θeq,i +dshθs,i)+dqqs,i− (1− Q̄)Pi,

Pi = (1−σI)τ
−1
c (Zi +

α + Q̄
2

(Ki +Ri)− q̂)+,

ca(ηi) =
l−ηi

τI
, cd(ηi) =

ηi

τI
exp
(
−2U0

ηi−1
l−1

+ γ(Zi +
1
2

Q̄(Ki +Ri))−h0

)
.

Using the terminology of Section 3, the ODE part is

Ut = (Ki(t),Ri(t),Zi(t))i∈I ∈H = R3I,
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and the Markov jump part is ηt = (ηi(t))i∈I ∈ F = {0, . . . , l}I . Since con-
ditioned on value of Ut , ηi(t) are independent birth/death processes, the
transition rates of ηt are as follow:

(5.2)

λ (U,η ,η + ei) = ca(ηi) =
l−ηi

τI
≥ 1

τI
> 0, ηi ≤ l−1

λ (U,η ,η− ei) = cd(Ui,ηi)≥
c0

τI
> 0, ηi ≥ 1,

λ (U,η ,η ′) = 0, ∀η ′ 6= η± ei, or η
′ /∈ F,

where we used the notation η ± ei := (η1, . . . ,ηi ± 1, . . . ,ηl). In other
words, a transition from η is possible if and only if it is toward a neigh-
boring site of η on F = {0, . . . , l}I , regardless of the state of Xt . Hence the
first item of Assumption 3.6 holds.

5.1 Path-wise dissipative energy
As the Lyapunov function V plays the key role in all parts of our theory,

let us find it first. Under the condition of Theorem 2.1, system (5.1) has a
notion of energy that is path-wise dissipative, which is motivated from a
continuum version in [15, 32].This is much stronger than the requirement
of Assumption 3.4, as it implies a compact invariant set for the dynamics.
Consider the following energy at site i ∈ I,

(5.3) εi =
1
2
(K2

i +R2
i )+

Z2
i

(α + Q̄)(1− Q̄)
.

Lemma B.1 produces the following dissipative principle with a proper con-
stant γ > 0 and a function kv:

dεi

dt
≤−KiD+

x Ki +RiD−x Ri− γεi + kv(θs,i,θeq,i,qs,i).

To see why this implies path-wise dissipation, we need the following prop-
erty of the operator D±x , which is one of reasons why the upwind discretiza-
tion scheme stabilizes a PDE:

Lemma 5.1. For any ( fi)i=1,...,N , the following holds:
N−1

∑
i=0

fiD+
x fi ≥ 0,

N−1

∑
i=0

fiD−x fi ≤ 0.

Proof. The sums can be written as:
N−1

∑
i=0

fiD+
x fi = N−1(

N−1

∑
i=0

f 2
i −

N−1

∑
i=0

fi fi−1),

N−1

∑
i=0

fiD−x fi = N−1(
N−1

∑
i=0

fi fi+1−
N−1

∑
i=0

f 2
i ).

Our claim follows from the Young’s inequality: fi fi−1 ≤ 1
2( f 2

i + f 2
i−1). �
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Hence if we let V = ∑i∈I εi =V (x), it is path-wise dissipative:

dV
dt

= ∑
i∈I

dεi

dt
≤−γV +∑

i
kv(θs,i,θeq,i,qs,i).

This implies V (or V + 1 if one wants V ≥ 1), satisfies the requirement
of Assumption 3.4. Moreover, this induces that K = {(x,η) : V (x) ≤
∑i kv(θs,i,θeq,i,qs,i)/γ} is actually an absorbing invariant set; in other words,
for any z ∈ E, there exists a t0(z) such that Zt ∈ K for t ≥ t0(z), Pz-a.s, and
t0(z) = 0 if z ∈ K. So in the long term, we can assume (5.1) actually takes
place in K. Since F = {0, . . . , l}I is finite, K is compact. Since the transi-
tion rates ca(ηi) and cd(ηi) are smooth with respect to Xi, restraining the
process to be in K provides a trivial upper bounds for the transition rates
and their Frechét derivatives. In other words, Assumption 3.6 holds for the
simplest tropical climate model given by (5.1).

5.2 Piecewise contraction

The piecewise contraction condition, Assumption 3.8, can usually be
verified through analyzing the propagation of a perturbation in the initial
condition. Indeed, for any h ∈H , let Xh

t := 〈DxΨ(x,Ys≤t , t),h〉, which is
the perturbation on Xt caused by a perturbation on X0 in the direction of h.
According to the differential flow formulation of Ψ, we have:

Xh
t = 〈DxX0,h〉+

∫ t

0
〈Dxψ(Ψ(x,Yr≤s,s),Ys),h〉ds

= h+
∫ t

0
∇xψ(Zs) · 〈DxΨ(x,Yr≤s,s),h〉ds

= h+
∫ t

0
∇xψ(Zs) ·Xh

s ds.

In other words, Xh
t is the solution to the ODE:

(5.4)
dXh

t

dt
= ∇xψ(Zt) ·Xh

t , Xh
0 = h.

This is also known as the derivative flow for process Xt . Then in order to
verify ‖DxΨ(x,Ys≤t , t)‖ ≤Cγe−γt , it suffices to show

‖Xh
t ‖ ≤Cγe−γt , ∀h ∈H ,‖h‖ ≤ 1.

This verification method is advantageous for PDMP with simple differen-
tial flows, as the transition rates are not relevant in the formula.
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Applying this method to (5.1), while denoting f h = 〈Dx f ,h〉 for any
variable f , the derivative flow of (5.1) is then
(5.5)
dKh

i
dt

+D+
x Kh

i =− d̄ +dθ +dsh

2
Kh

i −
dθ +dsh− d̄

2
Rh

i −Ph
i , Kh

i (0) = hK,i,

dRh
i

dt
−D−x Rh

i =−
d̄ +dθ +dsh

2
Rh

i −
dθ +dsh− d̄

2
Kh

i −Ph
i , Rh

i (0) = hR,i,

dQh
i

dt
=−dqQh

i +
dθ +dsh−dq

2
Q̄(Kh

i +Rh
i )− (1− Q̄)Ph

i , Qh
i (0) = hQ,i.

This is essentially a homogeneous version of (2.2). One sufficient condi-
tion to show path-wise contraction is through showing for a γ > 0:

∑
i∈I
|Kh

i |2 + |Rh
i |2 + |Zh

i |2 ≤ |h|2 exp(−γt).

Inspired by the construction of Lyapunov function in Section 5.1, it is in-
tuitive to consider the following quantity:

(5.6) ε
h
i =

1
2

(
(Kh

i )
2 +(Rh

i )
2
)
+

(Qh
i )

2

(1− Q̄)(α + Q̄)
.

By Lemma B.2, there is a γ > 0, such that

dεh
i

dt
≤−Kh

i D+
x Kh

i +Rh
i D−x Rh

i − γε
h
i .

So by Lemma 5.1, Vh = ∑i εh
i is exponentially decaying:

dVh

dt
≤−γVh.

This implies ∑i |Kh
i |2 + |Rh

i |2 + |Zh
i |2 decay exponentially in time, as Vh

dominates this norm. Therefore the model (5.1) satisfies Assumption 3.8.

5.3 Accessibility
Through the discussion of Section 5.1, there is a compact attracting

invariant set, in which the Lyapunov function is bounded from above. This
implies every state η ∈ F has its attractor Uη which satisfies V (Uη ,η) <
∞. As the transition is possible when two states are neighbors, and the
finite set F = {1, . . . , l}I is connected through neighboring relations, so for
any two state η ,η ′ ∈ F , we can find a path ~η = (η1, . . . ,ηn = η ′) such
that η1 and η , ηk and ηk+1 are neighbors. Then it is elementary to verify
that Pz,t

n,t,~η > 0 for any t = (t1, . . . , tn) with t1 < · · ·< tn, since V is bounded.
So by Lemma 4.8, Assumption 3.9 is verified.
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5.4 Concluding Remarks
As the Assumptions 3.4, 3.6, 3.8 and 3.9 are verified, Theorem 3.10

can directly apply to the simplest tropical climate model given by (5.1).
One of key features here is the energy V is path-wise dissipative. Using it,
we actually find a compact invariant set, which enables Assumption 3.6 to
hold rather trivially. In fact, this also makes the results of [7, 4] directly
applicable to system (5.1). On the other hand, if such a compact set cannot
be found, the verification maybe much more difficult, as we will soon find
out in the next section.

6 Geometric Ergodicity for the stochastic skeleton model

In this section, we prove Theorem 2.3 by applying Theorem 3.10 to
the skeleton model for MJO [40, 39] introduced in Section 2.2. Recall its
formulation:

(6.1)

dKi

dt
+D+

x Ki = (Sθ
i − H̄Ai)/2− d̄Ki,

dRi

dt
−D−x Ri/3 = (Sθ

i − H̄Ai)/3− d̄Ri,

dZi

dt
= (Sθ

i − H̄Ai)(1− Q̄)− d̄Zi,

Qi = Zi + Q̄(Ki +Ri), Ai = ∆Aηi

ca(ηi,Qi) =

{
Γγ ′|Qi|ηi +1ηi=0 Qi ≥ 0
1ηi=0 Qi < 0

,

cd(ηi,Qi) =

{
0 Qi ≥ 0
Γγ ′|Qi|ηi Qi < 0

.

Using the terminology of Section 3, the ODE part is

Ut = (Ki(t),Ri(t),Zi(t))i∈I ∈H = R3I,

and the Markov jump process part is ηt = (ηi(t))i∈I ∈ F = NI . The tran-
sition rate of ηt has the same formulation as in (5.2), but with ca and cd
given by (6.1).

6.1 Lyapunov Structure
Motivated by the continuum energy conservation principle developed

in [34, 40], system (6.1) also has a dissipative energy:

(6.2) E := ∑
i

1
2

[
2K2

i +3R2
i +

(Zi +1)2

(1− Q̄)Q̄

]
+

H̄∆Aηi

ΓQ̄
+1.
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Combining the results of Lemma B.3 and 5.1, there exists a γ > 0 such
that,

(6.3) L E ≤−γE +∑
i∈I

kv(Sθ
i ).

Unfortunately, E does not satisfies Assumption 3.6, since λ̄ is roughly
∑ |Qi|ηi, which is not bounded by E . So instead, we will use its cubic, E 3,
to be our Lyapunov function. E 3 satisfies Assumption 3.4 because of the
following lemma:

Lemma 6.1. Assume that a function E : E 7→ R+ is a Lyapunov function
with jumps ∆Et = E (Xt ,Yt)−E (Xt ,Yt−) bounded by a constant B, and the
total jump intensity of the PDMP is bounded by λ̄ (z)≤Mλ E 2−α(z), α >
0. Then for any n ∈ N, n≥ 1, V = E n is also a Lyapunov function.

Proof. Recall the formal generator L for E is:

L E = ψ(z)∂xE (z)+ ∑
y′∈F

λ (z,y′)(E (x,y′)−E (x,y)).

Hence

L E n = nE n−1(z)ψ(z)∂xE (z)+ ∑
y′∈F

λ (z,y′)(E n(x,y′)−E n(x,y))

= ∑
y′∈F

λ (z,y′)(E (x,y′)−E (z))
n−1

∑
k=0

(E n−1−k(x,y′)E k(z)−E n−1(z))

+nE n−1(z)L E (z).

By the bounded jumps condition, |E (x,y′)−E (z)| ≤ B for all y′, λ (z,y′)>
0, so with some constant D the following holds:

(E (x,y′)−E (z))(E n−1−k(x,y′)E k(z)−E n−1(z)) = 0, k = n−1;

(E (x,y′)−E (z))(E n−1−k(x,y′)E k(z)−E n−1(z))≤ DE n−2(z), ∀k ≤ n−2.

Therefore, by Young’s inequality, ∑y′ λ (z,y′)≤Mλ E 2−α and the fact that
E satisfies Assumption 3.4 there is a k̃v such that the following holds:

L E n ≤−nγE n(z)+nkvE
n−1(z)+nDE n−α(z)≤−1

2
γE n(z)+ k̃v.

The other requirements of Lyapunov function in Assumption 3.4 can be
easily verified by E being a Lyapunov function. �

With Lemma 6.1, V = E 3 will be a proper choice of Lyapunov func-
tion for system (6.1), moreover Assumption 3.6 is also satisfied with this
choice:

Lemma 6.2. Assumptions 3.4 and 3.6 are satisfied by model (6.1) with
V = E 3 being the Lyapunov function, where E is given by (6.2).
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Proof. The total jump intensity satisfies:

λ̄ (X ,η) = ∑
i∈I

ca(ηi,Qi)+ cd(ηi,Qi)

= ∑
i∈I
(1ηi=0 +Γ|Qi|ηi).

Moreover, the total number of possible transitions sites from any η is at
most 2N +1. On the other hand, recall that Qi = Q̄(Ki +Ri)+Zi, so using
ηi ≥ 0 and Young’s inequality, for some c1,c2,c3 the following holds:

E 3 ≥∑
i

c1

(
2K2

i +3R2
i +

(Zi +1)2

(1− Q̄)Q̄

)(
H̄∆Aηi

ΓQ̄

)2

+ c1

(
H̄∆Aηi

ΓQ̄

)3

+1

≥∑
i

c2[Q̄(Ki +Ri)+(Zi +1)]2η
2
i + c2η

3
i +1

≥∑
i

c2Q2
i η

2
i +2c2Qiη

2
i + c2η

2
i + c3η

2
i ≥∑

i

c2c3

c2 + c3
Q2

i η
2
i .

Therefore, by Cauchy-Schwartz, λ̄ ≤Mλ E 3/2 for some Mλ . For the Frechét
derivative of the transition rates in Assumption 3.6, observe that

‖Dxca(ηi,Qi)‖,‖Dxcd(ηi,Qi)‖≤Γ|ηi| ≤ΓE , ‖Dxλ̄ (x,η)‖≤∑
i

Γ|ηi| ≤ΓE .

Combine this with λ̄ (z) ≤ Mλ E 3/2, we can further enlarge Mλ such that
Assumption 3.6 holds for V = E 3.

On the other hand, since E has jumps coming only from the jumps of
ηi, the jumps of E are bounded by H̄∆A/ΓQ̄ in size, and λ̄ ≤ Mλ E 3/2.
Hence it is easy to verify all the conditions of Lemma 6.1 for E using the
bound (6.3), so V = E 3 is a Lyapunov function. �

6.2 Piecewise contraction
It is relative easy to verify Assumption 3.8 for system (2.7) using the

derivative flow method described in Section 5.2. Using the same notation
as there, the propagation of perturbation by (5.4) follows:

dKh
i

dt
+D+

x Kh
i =−d̄Kh

i , Kh
i (0) = hK,i

dRh
i

dt
−D−x Rh

i /3 =−d̄Rh
i , Rh

i (0) = hR,i

dZh
i

dt
=−d̄Zh

i , Zh
i (0) = hZ,i.

This is evidently dissipative, since if we let Eh = 1
2 ∑i(Kh

i )
2 + (Rh

i )
2 +

(Zh
i )

2, straight forward computation combined with Lemma 5.1 gives:

∂tEh = ∑
i
(−Kh

i D+
x Kh

i +
1
3

Rh
i D−x Rh

i )− [d̄(Kh
i )

2 + d̄(Rh
i )

2 + d̄(Zh
i )

2]≤−d̄Eh.

Therefore, ∑i(Kh
i )

2 +(Rh
i )

2 +(Zh
i )

2 decays exponentially fast in time.
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6.3 Accessibility Study
We will verify Assumption 3.9 through the following stronger claim:

Lemma 6.3. Under the condition of Theorem 2.3, η =~1, i.e. ηi = 1 for
all i, is a state that is accessible from any z ∈ E for system (2.7).

Due to the degeneracy of the transition rate, discussed in Section 2.2,
the verification is highly nontrivial.

Intuition
Before we give out the proof of Lemma 6.3, let us first illustrate the

intuition. We will essentially design a jump sequence to reach state~1. The
basic components of this jump sequence is the following two:

• Ut is a continuous process, so in a sufficiently short time, it is
possible to have any finite number of jumps in ηt without changing
the value of Ut much, we will use the verb “burst” to describe such
mechanics;
• Ψ is a contracting dynamics, so with ηt remains a constant, after

a sufficiently long time, Ut will converge to the attractor for ηt .
We use the verb “converge” to describe such mechanics. In fact,
the attractor with given value of ηi can be written down explicitly,
which will be Lemma 6.7.

We will design the mechanics of jumps through the following case by case
study, most of them are based on the jump intensity of (6.1).
(1) If ηi = 0, then we can change it to 1;
(2) If Qi < 0, then we can burst ηi to 0, then use item (1) to change it to 1;
(3) If Qi > 0, then we can burst ηi to any large number, or equivalently

Di = Sθ
i − H̄∆Aηi is sufficiently small while keeping other D j the

same. Then the attractor for the new set of Di, based on Lemma 6.7,
is a state where K j, R j are all sufficiently small, hence Q j < 0 for all
j ∈ I, so we can use case (2) at each lattice point to get to destination
~1;

(4) If Qi = 0 for all i ∈ I, then by the no fixed point condition of Theorem
2.3, after a sufficiently long time, Qi 6= 0 for some i since Ut will
converge to the attractor;

(5) In view of (2), (3) and (4), we only need to consider the case when
some of the Qi are negative while some are zero and show that we can
escape from this scenario to the previous situations. As I is finite, there
is a state among all states that is accessible while its number of J =
{i : Qi = 0} is at the minimum, let us show there is actually no Qi = 0
for this minimum state. Assume the opposite, then at this minimum
state there is an i such that Qi = 0,Qi−1 < 0. In the view of (2), we
could burst ηi−1 to 0 or 1. These alternative choices will generate
the contradiction in a weak hypo-elliptic fashion. In both cases, there
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exist a short period of time [0,δ ], such that Jc = {i : Qi < 0} does not
decrease as Qi are continuous. Then by the minimum assumption, J
will remain the same set, meaning Qi = 0 for i ∈ J as t ∈ [0,δ ]. This
implies a delicate balance:

0 =
d
dt

Qi = Q̄(−D+
x Ki +D−x Ri/3)+Di(1−5/6Q̄)− Q̄(d̄Ki + d̄Ri)− d̄Zi.

Taking the time derivative again, we have

0=
d2

dt2 Qi =
1
N

Q̄[−K̇i+Ṙi/3]+
1
N

Q̄[K̇i−1−Ṙi+1/3]−Q̄(d̄K̇i+ d̄Ṙi)− d̄Żi.

This equation contains the term ηi−1 from the term K̇i−1, which has
values either 0 or 1 depends on the burst choice. Yet the other terms
should be relatively close for both burst choices. This leads to a con-
tradiction.

Preparation
The following two Lemmas make the illustrations of the two jump

mechanisms rigorous. They actually hold for general PDMP and piece-
wise contracting systems:

Lemma 6.4 (Burst Mechanism). Let Zt be a PDMP, suppose for some
fixed z0 ∈ E and a sequence in F, y0,y1, . . . ,yn such that

λ (x0,yi,yi+1)> 0, i = 0,1, . . . ,n−1.

Then for any ε > 0, there is a sequence of jumping times t = (t1, . . . , tn)
such that pz0,t

n,t,y > 0, while tn ≤ ε and

‖xs− x‖ ≤ ε with xs := Ψ(x, t,y,s),s≤ tn.

Proof. By Assumption 3.6, λ is continuous in x, we can find δ ,M > 0
such that the following holds:

λ (x,yi,yi+1)> 0, ∀‖x− x0‖ ≤ δ , i = 0,1, . . . ,n−1,

M := sup{‖ψ(x,yi)‖,‖x− x0‖ ≤ δ , i = 0, . . . ,n}< ∞.

Let

ξ :=
1

n+1
(ε ∧ δ

M
); tk = ξ k, k = 1, . . . ,n.

Then as xt = xtk−1 +
∫ t

tk−1
ψ(xs,yk−1)ds for t ∈ [tk−1, tk],

‖xt − xtk−1‖ ≤Mξ ≤ δ

n
t ∈ [tk−1, tk];

hence ‖xt − x0‖ ≤ δ for t ∈ [0, tn]. By the setting of δ ,

pz0,ε
n,t,y = exp

(
−
∫

ε

0
λ̄ (zs)ds

) n

∏
k=1

λ (xtk ,yk−1,yk)> 0.

�
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Lemma 6.5 (Contraction mechanism). With Assumption 3.8, then for any
open set O ⊂ E,y ∈ F, suppose the attractor for y is in O, then for any
x ∈ E, there exists an T such that Ψ

y
T x ∈ O.

Proof. Denote xc as the attractor for state y. Since O is open, there is
an ε > 0 such that {x′ : ‖x′ − xc‖ ≤ ε} ⊂ O. Pick a T such that ‖x−
xc‖Cγ exp(−γT )≤ ε , then it suffices to see that

‖Ψy
T x−xc‖= ‖Ψy

T x−Ψ
y
T xc‖≤‖x−xc‖

∫ 1

0
‖DxΨ

y
T (xc+s(x−xc))‖ds≤ ε.

�

Lemma 6.6 (Burst of decay). If Qi(z) < 0 for some z ∈ E, then fix any
ε > 0, we can find an ξ > 0 such that the following two jump sequences
are accessible up to time ε:

t : 0 ξ . . . ηiξ (ηi +1)ξ (ηi +2)ξ
η1 : η η− ei . . . η−ηiei no jump no jump
η2 : η η− ei . . . η−ηiei η−ηiei + ei no jump

while the following hold:

(ηi +2)ξ ≤ ε, ‖Ψ(x, t,ηk,s)− x‖ ≤ ε, ∀s≤ (ηi +2)ξ , k = 1,2.

Also note this claim also holds when ηi = 0.

Proof. Based the construction of Lemma 6.4, it suffices for us to notice
that λ (x,η − kei,η − (k+ 1)ei) = cd(ηi− k,Qi) > 0 for k < ηi, λ (x,η −
ηiei,η− (ηi−1)ei) = ca(0,Qi)> 0, and the pseudo jump rate λ (x,y,y) =
1. �

Lemma 6.7. The attractor of the stochastic skeleton model (6.1) with
given Ai, or equivalently Di = Sθ

i − H̄Ai is given by the following:

(6.4)

Ki =
N−1

∑
k=0

N(1+Nd̄)N−k−1

2((1+Nd̄)N−1)
Di−k,

Ri =
N−1

∑
k=0

N(1+3Nd̄)N−k−1

((1+3Nd̄)N−1)
Di+k, Zi =

Di(1− Q̄)

d̄
.

Proof. Since the attractor for each combination of Di is unique, it suffices
for us to find one equilibrium point of ODE system (2.7). As the Zi parts
are independent of others, it is simple to obtain the result. For the Ki part,
we look for solutions of following form due to the shift invariant nature of
I = Z/NZ and (2.7):

Ki =
N−1

∑
k=0

akDi+k⇒ Ki−1 =
N−1

∑
k=0

ak+1Di+k.
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Plug this solution into (2.7), and equating the coefficient of each Di, we
have {

( 1
N + d̄)ak =

1
N ak+1, k 6= 0

( 1
N + d̄)a0 =

1
2 +

1
N a1

Hence we can obtain that ak = (1+Nd̄)k−1a1 and a0 = (1+Nd̄)N−1a1,
which eventually leads to (6.4) with a similar formula for Ri. �

Now we are finally at the position to prove Lemma 6.3.

Proof of Lemma 6.3. In the following, we will use symbol Z to denote the
pair (U,η). We will denote the accessible set from a point z = (U,η) as

A z = {(Ψ(z,y, t, t),yn) : pz,t
n,t,y > 0, ∀n, t,y, t}.

Recall the product law from Lemma 4.7:

pz,t+t ′
n+n′,y+y′,t+t′ = pz,t

n,y,t pzt ,t ′
n′,y′,t′ .

As a consequence, if z′ ∈A z, then A z′ ⊂A z.
According to the illustration in Section 6.3, we split space E into the

following four subsets:

B1 = {z : Qi(z)< 0, ∀i}, B2 = {z : ∃i ∈ I,s.t. Qi(z)> 0},

B3 = {z : Qi(z) = 0, ∀i}, B4 = {z : Qi(z)≤ 0}/(B1∪B3).

Since z′ ∈A z implies A z′ ⊂A z, it suffices to show the following claims:

(1) ~1 ∈A z,∀z ∈ B1;
(2) B1∩A z 6= /0,∀z ∈ B2;
(3) (B1∪B2)∩A z 6= /0,∀z ∈ B3;
(4) (B1∪B2∪B3)∩A z 6= /0,∀z ∈ B4.

In other words, we will show that starting from states in Bm, it is possible
to reach states in some Bm−i, while from B1 it is possible to reach~1.
Step (1). For z ∈ B1, consider the following burst sequence from z ∈ B1 to
~1, which is applying the second construction in Lemma 6.6 sequentially at
each i ∈ I:

η , . . . ,η−η1e1,η− (η1−1)e1,η− (η1−1)e1− e2, . . . ,

. . . ,η− (η1−1)e1− (η2−1)e2, . . . ,~1.

Then by Lemma 6.4,~1 ∈A z.
Step (2). For z ∈ B2, let i be one of the indices that Qi(z)> 0. Let M be an
integer large enough such that if we let

Di = Sθ
i −MH̄∆A, D j = Sθ

i − H̄A j(z), j 6= i
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then Q j = Z j+Q̄(K j+R j) with Z j,K j,R j being the attractor given by (6.4)
are negative for all j ∈ I. As K j,R j depends positively and linearly over
Di in the formulation of (6.4), this M exists. Then as

λ (U,η + kei,η +(k+1)ei) = ca(η + kei,Qi)> 0, k ∈ N,
by Lemma 6.4, after a burst sequence at time t0, zt0 = (Ut0 ,ηt0) ∈A z with

ηt0 = η +Mei, ‖Ut0−U‖ ≤ 1.

Then the attractor of ηt0 , by Lemma 6.7 and the choice of K, is in the open
set B1. By Lemma 6.5 there exists an T such that zt0+T = (Ψ

yt0
T (zt0),ηt0) is

in B1.
Step (3). For z ∈ B3, consider a set valued function J(z) = {i ∈ I : Qi(z) =
0} and denote its cardinality as |J(z)| and its complement in I as Jc(z). As
|J(z)| takes only finitely many values, the minimizer

z0 = arg min
z′∈A z

|J(z′)|

can be obtained. Since |J(z)| ≤N−1, we have |J(z0)| ≤N−1. Notice that
|J(z0)|= 0 implies that z0 ∈ B1∪B2, so it suffice to reveal a contradiction
in the case that |J(z0)| ∈ [1,N−1]. As J(z0) then is neither full nor empty,
and I is cyclic, we can find an i such that i−1 ∈ Jc(z0) and i ∈ J(z0). As
Q j are continuous in H , we can pick any ε > 0 small enough such that
the following holds:

(6.5) Q j(U ′)< 0, ∀‖U ′−U0‖ ≤ 2ε, j ∈ Jc(z).

Following Lemma 6.6 we can burst z0 through either one of the following
sequences with a proper ξ

t 0 ξ . . . ηi−1ξ (ηi−1 +1)ξ (ηi−1 +2)ξ
η1 η η− ei−1 . . . η−ηi−1ei−1 no jump no jump
η2 η η− ei−1 . . . η−ηi−1ei−1 η−ηi−1ei−1 + ei−1 no jump

while the generated U part satisfies:

‖U1
s −U0‖,‖U2

s −U0‖ ≤ ε, s≤ (ηi−1 +2)ξ ≤ ε.

Then by (6.5), J(z1
s ),J(z

2
s ) ⊆ J(z0) for s ≤ (ηi + 2)ξ . Since z0 is a mini-

mizer among A z, J(z1
s ) = J(z2

s ) = J(z0), so

Qi(z1
s ) = 0, Qi(z2

s ) = 0, s≤ (ηi−1 +2)ξ .

Then for any s ∈ ((ηi+1)ξ ,(ηi+2)ξ ), the first time differential at s gives
us

0 = Q̇i(Uk
s ) = [−D+

x Ki +D−x Ri/3+Di(1− Q̄/6)− d̄Qi](zk
s), k = 1,2.

Take time differential again and use Qi ≡ 0 we obtain:

0 = Q̈i(zk
s) = [−D+

x D+
x Ki− d̄D+

x Ki +D−x D−x Ri/3− d̄D−x Ri](zk
s)

+ [D+
x Di/2+D−x Di/3](zk

s) k = 1,2.(6.6)
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Hence the second line is the opposite of the first line. As the first line of
(6.6) is a linear combination of components of Uk

s , so there is a constant
M such that the difference of the second line of (6.6) can be bounded as
follow:∣∣∣∣[D+

x Di/2+D−x Di/3](z1
s )−[D+

x Di/2+D−x Di/3](z2
s )

∣∣∣∣≤M‖U1
s −U2

s ‖≤ 2Mε.

However, since η1
s and η2

s differ only at ηi−1, with

ηi−1(η
1
s ) = 0,ηi−1(η

2
s ) = 1,

so ∣∣∣∣[D+
x Di/2+D−x Di/3](z1

s )− [D+
x Di/2+D−x Di/3](z2

s )

∣∣∣∣
=

1
2N
|Ai−1(η

1
s )−Ai−1(η

2
s )|=

∆A
2N

.

so if we let ε in addition be less than ∆A/4MN in the beginning, there will
be a contradiction.
Step (4). For z = (u,η) ∈ B4, since the attractor for its η part uη satisfies
ψ(uη ,η) = 0, so by Lemma 2.2 uη ∈ Bc

4. Since Bc
4 is an open set, by

Lemma 6.5, Bc
4∩A z 6= /0. �

7 Concluding Discussion

Stochastic lattice models are prominent ways to capture highly inter-
mittent unresolved features in climate science and material science [28,
30, 14, 11, 22, 24]. Mathematically, they consist of an ODE system Xt and
a Markov jump process Yt , while the evolution of the two depend on each
other. Such models are special piecewise deterministic Markov processes
(PDMP) [10, 20], while the transition rates of Yt are sometimes unbounded
or contain degeneracy. In order to understand the asymptotic behavior of
these models, we develop a general framework, Theorem 3.10, to verify
geometric ergodicity under a proper Wasserstein distance. The conditions
it requires, heuristically speaking, are: 1) there is a Lyapunov function
that controls the transition rates of ηt and their Frechét derivatives; 2) the
differential flow of Ut is piecewise contracting; 3) the process ηt is not
reducible. The proof relies on a perturbation analysis of the probability
density and applies the asymptotic coupling framework in [16, 18]. Since
the techniques used here rely more on analysis rather than the concrete
coupling construction, the proofs appear to be more straight forward and
easier to generalize than previous treatments of PDMP.

In order to demonstrate the applications of our results, Theorem 3.10 is
applied to two stochastic lattice models from the existing climate science
literature. The application to the simplest tropical climate model [15, 32]
is rather straight forward, as its energy is path-wise dissipative, hence the
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dynamics is contained in a compact invariant set. The application to the
skeleton model for MJO [40, 39, 33], on the other hand, is much more
non trivial, since its energy is dissipative only on average and does not
regularize the transition rates directly, moreover the transition rates can be
degenerate. These difficulties are resolved by considering a higher mo-
ment of the energy function, and running a hypo-elliptic type of verifica-
tion through the vector fields. This interesting application demonstrates
the power and versatility of our framework.

Despite the fact that Theorem 3.10 allows unbounded degenerate tran-
sition rates, the requirement that the differential flow is piecewise contract-
ing constrains us from more general applications. A more general setting
will be assuming the differential flow contracts and expands with a rate
that depends on the jump process Yt , while on average the dynamics is
contracting [1, 4, 7]. One potential extension of this paper will be showing
geometric ergodicity for unbounded transition rates with the differential
flow being contracting only on average. Yet this cannot be carried out sim-
ply by upgrading the bounds in our proofs. The reason can be illustrated
through a comparison between the Wasserstein distance we used here with
the one of [7]. Through the asymptotic coupling framework of [18], the
contracting distance we constructed in (4.5) is roughly of form

∫ x′
x V du,

while the distance used in [7] is roughly ‖x− x′‖q, where q can be a num-
ber less than 1. Neither one of the two dominates the other. Hence, in
order to extend our results to contracting on average dynamics, a system-
atical upgrade is required. Since the major goal of the current paper is
to find a general framework for stochastic lattice models, this interesting
extension will be carried out in another paper of the authors [41].

Another promising method to show geometric ergodicity is through
a hypoelliptic argument, as shown in [3]. Although it seems not diffi-
cult to generalize the corresponding results to processes with unbounded
transition rates, one major constraint is the verification of the Hörmander
condition. The vector fields for stochastic lattice models, like the ones
introduced in Section 2, are usually of dimension 50 or more, while all di-
mensions are correlated through the neighboring interaction; a direct veri-
fication of the Hörmander condition by hand seems relatively impossible.
A theorem that can simplify this verification will be very interesting. An-
other alternative would be developing algorithms for such purpose.
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Appendix A: Miscellaneous Results

Lemma A.1. For two probability measures µ,ν on a polish space, assume
that µ(X ∈ A)≥ p and ν(Y ∈ B)≥ p, then there exists a coupling Γ of µ

and ν such that Γ(X ∈ A,Y ∈ B)≥ p.

Proof. Consider adding an independent Bernoulli random variable W into
the the probability space of µ , such that µ(W = 1) = p/µ(X ∈ A). Then if
we let X ′= (X ,W ) and A′= {(x,1) : x∈ A}, then µ(X ′ ∈ A′) = p. So with-
out loss of generality, we can assume µ(X ∈ A) = ν(Y ∈ B) = p. Define
Γ through the following:

Γ(X ∈C,Y ∈ D) = µ(X ∈C|X ∈ A)ν(Y ∈ D|Y ∈ B)p

+µ(X ∈C|X ∈ Ac)ν(Y ∈ D|Y ∈ Bc)(1− p).

Let C or D be the whole space, one can easily verifies that Γ is a coupling
of µ and ν ; let C = A and D = B, it is clear that Γ satisfies our requirement.

�

Appendix B: Dissipation of Energy

Lemma B.1. Assuming relation (2.5), the energy density of the simplest
tropical climate model given by (5.3) follows a path-wise dissipative prin-
ciple:

dεi

dt
≤−KiDxKi +RiD−x Ri− γεi + kv(θs,i,θeq,i,qs,i)

with a proper γ,kv > 0.

Proof. The time derivative of εi is:

dεi

dt
=−KiD+

x Ki +RiD−x Ri−
(d̄ +dθ +dsh)

2
(K2

i +R2
i )−

2dq

(α + Q̄)(1− Q̄)
Z2

i

− (dθ +dsh− d̄)KiRi +(dθ θeq,i +dshθs,i)(Ki +Ri)−
2(qi−αθi)Pi

(α + Q̄)(1− Q̄)

+
2(dqqs,i + Q̄dθ θeq,i + Q̄dshqs,i)Zi

(α + Q̄)(1− Q̄)
+

(dθ +dsh−dq)Q̄(Ki +Ri)Zi

(α + Q̄)(1− Q̄)
.

First, notice that

−(d̄ +dθ +dsh)

2
(K2

i +R2
i )− (dθ +dsh− d̄)KiRi

=−(dθ +dsh)

2
(Ki +Ri)

2− d̄
2
(Ki−Ri)

2.

With (2.5):

(1− Q̄)(α + Q̄)dq(dθ +dsh)≥ (dθ +dsh−dq)
2Q̄2,
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the linear and cross terms are bounded by:

(dθ +dsh−dq)Q̄(Ki +Ri)Zi

(α + Q̄)(1− Q̄)
≤ dθ +dsh

4
(Ki +Ri)

2 +
dq

(α + Q̄)(1− Q̄)
Z2

i ,

(dθ θeq,i +dshθs,i)(Ki +Ri)≤
dθ +dsh

8
(Ki +Ri)

2 +
2(dθ θeq,i +dshθs,i)

2

dθ +dsh
,

2(dqqs,i + Q̄dθ θeq,i + Q̄dshθs,i)Zi

(α + Q̄)(1− Q̄)
≤

2(dqqs,i + Q̄dθ θeq,i + Q̄dshθs,i)
2

dq(α + Q̄)(1− Q̄)

+
dqZ2

i

2(α + Q̄)(1− Q̄)

Aslo, notice that Pi(qi−αθi)≥ 0 since Pi = (1−σI)τ
−1
c (qi−αθi− q̂), so

in combine
dεi

dt
≤−KiD+

x Ki +RiD−x Ri−
d̄
2
(Ki−Ri)

2− dθ +dsh

8
(Ki +Ri)

2

−
dq

2(α + Q̄)(1− Q̄)
Z2

i + d̄−1(dθ θ
2
eq,i +dshθ

2
s,i)

+
4(dqqs,i + Q̄dθ θeq,i + Q̄dshθs,i)

2

dq(α + Q̄)(1− Q̄)

≤−KiD+
x Ki +RiD−x Ri− γεi + kv(θs,i,θeq,i,θeq,i).

where γ = min{d̄,(dθ +dsh)/4, dq
2 }, and we used

− d̄
2
(Ki−Ri)

2− dθ +dsh

8
(Ki+Ri)

2≤−γ

2
[(Ki−Ri)

2+(Ki+Ri)
2] =−γ(K2

i +R2
i ).

�

Lemma B.2. Assuming relation (2.5), following the derivative flow (5.5),
the εh

i defined by (5.6) has the following dissipative behavior with some
proper γ > 0:

dεh
i

dt
≤−Kh

i D+
x Kh

i +Rh
i D−x Rh

i − γε
h
i .

Proof. following the derivation of Lemma B.1, we find
d
dt

1
2
((Kh

i )
2 +(Rh

i )
2) =−Kh

i D+
x Kh

i +Rh
i D−x Rh

i −
dθ +dsh

2
(Kh

i −Rh
i )

2

− d̄
2
(Kh

i +Rh
i )

2−Ph
i (K

h
i +Rh

i ),

d
dt

(Zh
i )

2

(1− Q̄)(α + Q̄)
=−2Ph

i Zh
i

α + Q̄
−

2dq(Qh
i )

2

(1− Q̄)(α + Q̄)
+

Q̄Qh
i (dθ +dsh−dq)(Kh

i +Rh
i )

(1− Q̄)(α + Q̄)
,

With relation (2.5), i.e.

(1− Q̄)(α + Q̄)dq(dθ +dsh)≥ (dθ +dsh−dq)
2Q̄2,
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Young’s inequality can be applied to the cross term,

Q̄Qh
i (dθ +dsh−dq)(Kh

i +Rh
i )

(1− Q̄)(α + Q̄)
≤

dq(Qh
i )

2

(1− Q̄)(α + Q̄)
+

dθ +dsh

4
(Kh

i +Rh
i )

2.

Also notice that when qi−αθi− q̂ > 0 or qi−αθi− q̂ = 0 and qh
i −αθ h

i >
0, then

(Kh
i +Rh

i +
2Zh

i

α + Q̄
)Ph

i =
1
2
(1−σI)τ

−1
c (Kh

i +Rh
i +

2Zh
i

α + Q̄
)2 ≥ 0;

else (Kh
i +Rh

i +
2Zh

i
α+Q̄)P

h
i = 0, in other words it is not negative. Hence we

have
dεh

i
dt
≤−Kh

i D+
x Kh

i +Rh
i D−x Rh

i −
dθ +dsh

4
(Kh

i +Rh
i )

2

− d̄
2
(Kh

i −Rh
i )

2−
dq(Qh

i )
2

2(1− Q̄)(α + Q̄)

≤−Kh
i D+

x Kh
i +Rh

i D−x Rh
i − γε

h
i ,

with γ = min{d̄,(dθ +dsh)/2, 1
2 dq}. �

Lemma B.3. For the sytem (6.1), denote

εi =
1
2

[
2K2

i +3R2
i +

(Zi +1)2

(1− Q̄)Q̄

]
+

H̄Ai

ΓQ̄
,

then the following hold with a proper γ,kv > 0:

L εi ≤−2KiD+
x Ki +RiD−x Ri− γεi + kv(Sθ

i ).

Proof. Denote Di = Sθ
i − H̄Ai. Notice that

d
dt

K2
i =−2KiD+

x Ki +KiDi−2d̄K2
i ;

d
dt

R2
i =

2
3

Ri+1DxRi +
2
3

RiDi−2d̄R2
i .

Morover,
d
dt
(Zi +1)2 = 2(Di(1− Q̄)+ d̄)(Zi +1)−2d̄(Zi +1)2.

As

L Ai =ΓQiAi+∆A1Ai=0 =
Γ

H̄
((Zi+1)+Q̄(Ki+Ri)−1)(Sθ

i −Di)+∆A1Ai=0

then in combine

L εi =−2KiD+
x Ki +RiD−x Ri−2d̄K2

i −3d̄R2
i −

d̄(Zi +1)2

(1− Q̄)Q̄
− H̄Ai

Q̄

+
Sθ

i

Q̄
+ d̄(Zi +1)+

Sθ
i

Q̄
((Zi +1)+ Q̄(Ki +Ri)−1)− H̄∆A

ΓQ̄
1Ai=0
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Applying Young’s inequality:(
d̄ +

Sθ
i

Q̄

)
(Zi +1)≤ d̄(Zi +1)2

4(1− Q̄)Q̄
+(1− Q̄)Q̄d−1

(
d̄ +

Sθ
i

Q̄

)2

,

Sθ
i

(
1+Zi

Q̄
+(Ki +Ri)

)
≤
(

d̄(1+Zi)
2

4(1− Q̄)Q̄
+

(Sθ
i )

2(1− Q̄)

d̄Q̄

)
+

(
d̄K2

i +
(Sθ

i )
2

4d̄

)
+

(
2d̄R2

i +
(Sθ

i )
2

8d̄

)
.

With these in hand we have

∂tεi ≤−2KiD+
x Ki +RiD−x Ri− d̄K2

i − d̄R2
i −

d̄(Zi +1)2

2(1− Q̄)Q̄
− H̄Ai

Q̄

+(1− Q̄)Q̄d−1
z

(
d̄ +

Sθ
i

Q̄

)2

+(Sθ
i )

2
[
(1− Q̄)

d̄Q̄
+

1
4d̄

+
1

8d̄

]
+

Sθ
i

Q̄

≤−2KiD+
x Ki +RiD−x Ri− γε + kv(Sθ

i )

with γ = 2
3 d̄∧Γ. �
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