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Abstract. Backscatter is the process of energy transfer from small to large scales in turbulence;
it is crucially important in the inverse energy cascades of geophysical turbulence, where the net
transfer of energy is from small to large scales. One approach to modeling backscatter in under-
resolved simulations is to add a stochastic forcing term. This study, set in the idealized context of
the inverse cascade of two-layer quasigeostrophic turbulence, focuses on the importance of spatial and
temporal correlation in numerical stochastic backscatter schemes when used with low-order finite-
difference spatial discretizations. A minimal stochastic backscatter scheme is developed as a stripped-
down version of stochastic superparameterization [Grooms and Majda, J. Comp. Phys. 271, (2014)].
This simplified scheme allows detailed numerical analysis of the spatial and temporal correlation
structure of the modeled backscatter. Its essential properties include a local formulation amenable
to implementation in finite difference codes and non-periodic domains, and tunable spatial and
temporal correlations. Experiments with this scheme in the idealized context of homogeneous two-
layer quasigeostrophic turbulence demonstrate the need for stochastic backscatter to be smooth at
the coarse grid scale when used with low-order finite difference schemes in an inverse-cascade regime.
In contrast, temporal correlation of the backscatter is much less important for achieving realistic
energy spectra. It is expected that the spatial and temporal correlation properties of the simplified
backscatter schemes examined here will inform the development of stochastic backscatter schemes in
more realistic models.
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1. Introduction. Backscatter is the process of energy transfer from small to
large scales in turbulence. Quasigeostrophic (QG) and two-dimensional (2D) turbu-
lence, which are idealized models of large-scale geophysical turbulence, both include
regimes with a net transfer of kinetic energy from small to large scales [5, 7]. While
the dynamical regime of the atmosphere precludes significant net transfer to large
scales, there is evidence of an inverse transfer of kinetic energy in the oceans [36,37].
Ocean models used in coupled climate simulations are currently unable to resolve the
full range of scales that correspond to quasigeostrophic dynamics, and must model
the effects of the unresolved scales. When the dynamics transfer net energy upscale
across the model grid scale, a backscatter model is crucial to maintain an accurate
energy level for the resolved scales.

Representations of backscatter are included in many engineering and atmospheric
turbulence models, where the backscatter is much weaker. For example, backscatter
is incorporated in large-eddy simulations (LES) of three-dimensional isotropic tur-
bulence either by including a stochastic term in the equations for the resolved dy-
namics [20,24,25,35], or through nonlinear deterministic models [2,10,26]. In larger-
scale geophysical models backscatter has been also represented by stochastic forcing
terms [3, 9, 17, 18, 33] and by nonlinear deterministic models [15–17, 29–31,33]. These
models have been applied in situations where the net transfer of kinetic energy is either
downscale or negligible (see [16] for a possible exception), whereas, as noted above,
application to non-eddy-resolving ocean models requires the ability to represent a net
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2 Backscatter in Quasigeostrophic Turbulence

upscale transfer. Backscatter schemes are also often formulated in terms of spherical
harmonics [3,9,18], which is appropriate for applications to fluids in a spherical shell,
like the atmosphere. But application to domains with boundaries, like the ocean, pre-
cludes the use of Fourier modes or spherical harmonics in specifying the backscatter
model; a local approach is required, similar to those in [17, 20, 24, 25, 33, 35].

This paper studies the interplay between low-order finite-difference numerics and
the spatial and temporal correlation properties of stochastic backscatter using a
stochastic backscatter model with a local formulation in an idealized setting with
net upscale energy transfer. The stochastic backscatter used here is based on a sim-
plified form of stochastic superparameterization [12–14, 23] that has previously been
applied to quasigeostrophic turbulence in the inverse cascade regime. This original,
simplified scheme was initially developed in [13], section 3.3, and is described in §2;
its spatial correlation structure is analyzed and modified in §2.1, and temporal cor-
relation is added in §2.2. A main initial result of the current investigation is that
direct application of the original method, where the backscatter forcing is strongest
at the coarse grid scale, in a low-order finite-difference code gives very poor results,
much worse than in a model with spectral numerics (results in §5). The method
was originally developed in a setting where the under-resolved model used a spectral
discretization [12, 13]; the huge impact of simply changing the numerics underscores
the sensitivity of models to the details of backscatter parameterizations in the inverse
cascade regime.

The failure of the original method in the context of a low-order code results pri-
marily from the fact that the low-order model is unable to efficiently transfer energy
injected near the coarse grid scale to larger scales. Energy injected near the coarse grid
scale, failing to cascade to larger scales, accumulates until the simulation is eventually
swamped by small-scale energy. This is remedied by modifying the spatial correlation
structure of the backscatter scheme so that it injects zero energy at the coarse grid
scale, and smoothly transitions to the original scheme at larger, more well-resolved
scales. The spatial correlation structure is modified using a simple local spatial av-
erage. The improvements obtained by spatial smoothing suggest that results might
be further improved by adding temporal correlation to the stochastic backscatter;
this is natural since the real, physical forcing of the large scales by the unresolved
small scales has a finite decorrelation time, unlike the white-noise backscatter of the
original scheme. However, our experiments in §6 find minimal differences between
simulations with temporally-correlated backscatter and simulations with white-noise
backscatter. We only evaluate the performance of the schemes based on time-averaged
energy spectra, and it is possible that temporal correlation may improve other aspects
of the simulations. The kinetic energy spectra in the models with spatially-smoothed
backscatter are quite accurate, but their potential energy spectra are not because the
backscatter scheme only models the inverse transfer of kinetic energy and not the
direct transfer of potential energy from large to small scales. We briefly demonstrate
in §7 that the full stochastic superparameterization scheme of [13] with spatial and
temporal correlation is able to produce accurate kinetic and potential energy spectra.

The paper is organized as follows. Section 2 presents and analyses the stochastic
kinetic energy backscatter scheme, including the incorporation of spatial and temporal
correlation. Section 3 presents a high resolution simulation for comparison with low
resolution models in following sections. The results of low resolution models without
backscatter are presented in §4, to emphasize the need for backscatter. Sections 5
and 6 show the results of backscatter simulations with and without spatial and tem-
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poral correlations; §7 presents the results of the full stochastic superparameterization
scheme of [13] with the new spatial and temporal correlation properties. The results
are reviewed and conclusions are offered in §8.

2. The Stochastic Backscatter Model. Quasigeostrophic (QG) and incom-
pressible two-dimensional (2D) fluid dynamics are governed by conservation of a scalar
q, which is vorticity in 2D and potential vorticity in QG:

∂tq +∇h · (uq) = q̇ (2.1)

where q̇ denotes forcing and dissipation terms and ∇h = (∂x, ∂y). The scalar q is re-
lated to a streamfunction ψ for the incompressible horizontal velocity u = (−∂yψ, ∂xψ)
by an elliptic inversion

∇2
hψ + Lψ = q (2.2)

where L is a linear operator. In 2D dynamics L = 0 and in QG it is a second-
order negative semi-definite differential operator in z. Sections 3-7 will focus on the
simplest model of geophysical turbulence, the two-equal-layer QG model [40], where
the vertical direction is discretized into two levels j = 1, 2 and where the elliptic
inversion is

∇2
hψj +

k2d
2
(ψi − ψj) = qj , i �= j. (2.3)

The deformation radius k−1

d is related to the nonzero eigenvalue of L. The discussion
generalizes to multiple vertical levels in a straightforward manner.

In the two-layer case there is a scalar conservation equation of the form (2.4) for
each layer:

∂tqj +∇ · (ujqj) = q̇j . (2.4)

The unforced, inviscid dynamics with q̇j = 0 conserve energy in the form

1

2

∫∫ ∑
j

|uj |2 + k2d
2

(ψ1 − ψ2)
2 dxdy (2.5)

where the integral of k2d(ψ1 − ψ2)
2/4 is the potential energy.

An equation for the large-scale dynamics can be derived by applying a low-pass
spatial filter, denoted by (·), to (2.4)

∂tqj +∇ · (uj qj) = ∇ · (ujqj − uj qj) + q̇j . (2.6)

Examples of low-pass filters include truncation to a set of large-scale Fourier modes,
or a local Gaussian convolution, among others [22] (see also §3 and §6).

The subgridscale flux of potential vorticity can be further decomposed as follows

ujqj − uj qj =
(
uj qj − uj qj

)
+ ujq′j + u

′

jqj + u
′

jq
′

j (2.7)

where the prime denotes the small-scale part (·)′ = (·) − (·). These terms can all
be modeled separately [2, 8, 10, 21]; we instead model their combined effect while for-
mally assuming the filter is a Reynolds average, i.e. that it has the same properties
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as a statistical average. This approach follows the development of stochastic super-
parameterization [12, 13, 23], and has been used e.g. by [35] in the development of a
stochastic backscatter scheme in incompressible three-dimensional turbulence. Under
this assumption the divergence of the subgridscale potential vorticity flux becomes

∇ · (u′

jq
′

j) = ∇ ·
(
u
′

j∇2
hψ

′

j

)
+

k2d
2
∇ · (u′

j(ψ
′

i − ψ′

j)). (2.8)

The horizontal Laplacian of ψ′

j is the subgridscale vorticity ∇2
hψ

′

j = ζ′j = ∂xv
′

j −∂yu
′

j .

The subgridscale potential vorticity flux u
′

jq
′

j includes the vorticity flux u
′

jζ
′

j , whose
divergence can be further expanded as

∇h · (u′

jζ
′

j) =
(
∂2
x − ∂2

y

)
u′

jv
′

j + ∂xy

(
(v′j)

2 − (u′

j)
2

)
. (2.9)

This is the curl of the divergence of the Reynolds stress tensor u′

j ⊗ u
′

j . It has been
shown by [36] that the subgridscale vorticity flux divergence is responsible for the in-
verse kinetic energy cascade in two-layer QG turbulence. The stochastic kinetic energy
backscatter scheme developed here models the subgridscale vorticity flux divergence,
ignoring the remaining part of the subgridscale potential vorticity flux.

The effect of subgridscale Reynolds stresses can be modeled in general as the
sum of a deterministic drain on the resolved scales plus a stochastic forcing [18, 19,
22]. Careful analysis shows that the deterministic drain can be modeled to a good
approximation as a hyperviscous drain of momentum, which in this context implies
that the drain component of the vorticity flux divergence takes the form ν2n(−∇2)nζj
where n ≥ 0 depends on the grid scale and ν2n > 0 is the turbulent hyperviscosity
coefficient [18]. Eddy-permitting ocean models typically use a biharmonic viscosity
(n = 2), which we adopt here, leaving the coefficient ν4 as a tunable parameter.

The stochastic backscatter scheme developed here is based on the ‘uncorrelated’
closure from [13, section 3.3], which is a simplified version of the full stochastic SP
scheme of [13]. The subgridscale velocity in this closure is based on modeling the
subgridscale dynamics by randomly-oriented plane waves with wavenumbers in the
direction θ. In this closure the subgridscale velocity is assumed to be completely
independent of the large-scale flow. Note that the assumption of independence is
relaxed in the full stochastic superparameterization developed in [13]; the spatial and
temporal correlation properties developed in this section for the backscatter scheme
are incorporated into stochastic superparameterization in §7. Under the assumption of
independence from the large-scale flow, the multiscale description of the subgridscale
velocity field in [13] results in subgrid stresses of the form

u′

jv
′

j =
E0

2
sin(2θ), (v′j)

2 − (u′

j)
2 = E0 cos(2θ) (2.10)

where E0 is a constant subgridscale kinetic energy and θ is a random field, white in
space and time and with a uniform distribution θ ∈ [0, 2π). These stresses would
also be generated by subgridscale velocities with amplitude

√
E0 in the direction

orthogonal to θ, i.e.

u′

j =
√
E0 sin(θ), v′j =

√
E0 cos(θ). (2.11)

The direction θ is depth-independent, although a more general vertical correlation
structure is clearly possible. In this scheme the Reynolds stresses are thus identical in
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each layer; in the full stochastic superparameterization scheme the Reynolds stresses
are not completely set by the angle θ, and can be different in each layer even when
θ is the same in each layer. The original, ‘uncorrelated’ backscatter scheme of [13],
combined with a biharmonic drain, thus takes the form

∇ · (u′

jζ
′

j) =
E0

2

(
∂2
x − ∂2

y

)
sin(2θ) + E0∂xy cos(2θ) + ν4∇4

hζj (2.12)

The backscatter amplitude E0 and hyperviscosity coefficient ν4 are treated here as
tunable parameters, although if a prediction were available for the subgridscale kinetic
energy, e.g. through the subgridscale energy model of [13, section 3.4], it could be used
to provide a spatio-temporally variable prediction of E0. The subgridscale terms in
this scheme are completely independent of the large-scale variables; this is not entirely
realistic (Nadiga found that the subgridscale potential vorticity flux is correlated with
a nonlinear function of the large-scale gradients [27,28]), but it allows the spatial and
temporal correlation structure to be analyzed more readily.

2.1. Spatial Correlation. We now demonstrate that the model (2.10) leads to
a random forcing of the large-scale dynamics with a k5 spectrum. The large-scale
potential vorticity equation (2.6) has the form

∂tqj = −∇h · (ujqj) +
E0

2

(
∂2
y − ∂2

x

)
sin(2θ)− E0∂xy cos(2θ)− ν4∇4ζj + q̇. (2.13)

Recall that the random field θ has uniform distribution on the periodic interval [0, 2π)
and that it is spatially white, i.e. the values at different horizontal locations are
independent. These properties of θ imply that the terms sin(2θ) and cos(2θ) are
delta-correlated (white) in space, have zero mean, and are uncorrelated with each
other since

E [sin(2θ) cos(2θ)] =
1

2π

∫
sin(2θ) cos(2θ)dθ = 0 (2.14)

where E denotes the expecation.
Recalling that the Fourier transform of a delta-correlated (white) random field is

uniform, the Fourier transform of the backscatter forcing terms is proportional to

1

2
(k2x − k2y)Ak + kxkyBk (2.15)

where Ak and Bk are uncorrelated random variables with zero mean and equal vari-
ance. The expected value of the square amplitude of the Fourier transform is thus
proportional to k4, and the azimuthally-averaged (1D) spectrum is proportional to
k5. This implies that the stochastic backscatter scheme forces most strongly at the
coarse grid scale.

For comparison, a k4 spectrum is expected for momentum backscatter in homo-
geneous isotropic three-dimensional turbulence [19, 22, 35]. Schumann [35] points out
that although this can be justified by appeal to the Eddy-Damped Quasi-Normal
Markovian (EDQNM) model of turbulence, it is also expected based solely on the
assumption that the components of the Reynolds stress are independent, and spa-
tially uncorrelated. These are also the only assumptions that go into the proof of the
k5 spectrum for the current model, which suggests that the k5 behavior is a robust
quality of the backscatter spectrum in quasigeostrophic turbulence.
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Fig. 2.1. Angle-integrated (1D) backscatter forcing spectra that result from the three local-
average smoothers: the three-point average S3, the five-point average S5, and the three-point average
applied twice S2

3
. The plots assume a 96 × 96 coarse grid, with Nyquist wavenumber 48. The thin

black line shows an unsmoothed k5 forcing spectrum.

The backscatter scheme developed above was shown in [13] to give good results
when used with a low resolution model with spectral numerics, but in §5 we demon-
strate that it performs poorly in a model with a second order finite-difference dis-
cretization. The poor performance is a unique aspect of modeling in a regime where
the energy backscattered from unresolved scales to scales near the coarse grid scale is
then transferred to even larger scales in an inverse cascade; the nonlinear dynamics
of the inverse cascade are not as well represented in the second-order finite difference
model as in the spectral model, especially near the coarse grid scale.

In the theory of large-eddy simulation (LES) of homogeneous isotropic three-
dimensional turbulence it is common to identify the solution of a low resolution model
with a low-pass filtered version of the true dynamics, as in our derivation of the large-
scale dynamics (2.6). If the low resolution model uses a spectral numerical method
then it is natural to use a Fourier truncation as the filter, projecting the true dynamics
onto the spectrum of Fourier modes represented by the low resolution model. In
contrast, it is more appropriate to identify low-order finite difference models with
a locally smoothed version of the true dynamics, e.g. convolution with a Gaussian.
Leslie & Quarini [22] showed that the sharp k4 backscatter spectrum is associated
with a Fourier truncation filter, whereas the backscatter spectrum associated with
a smooth Gaussian filter is attenuated near the coarse grid scale, implying that the
spectrum of the backscatter forcing in a low-order finite difference code should be
attenuated near the coarse grid scale. This can be heuristically associated with the
fact that low order finite-difference methods represent the dynamics of the smallest
resolved scales less accurately than spectral methods.

To adapt the backscatter scheme for use in the finite-difference code we apply
spatial smoothing to the Reynolds stresses. This spatial smoothing should be defined
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by a local average in order to be easily implementable in a finite-difference code. Also,
since the Nyquist wavenumber is represented on the coarse grid but its dynamics are
not resolved we require the smoothing operator to damp the spectrum of the Reynolds
stresses to zero at the Nyquist wavenumber. There is only one symmetric three-point
moving average that completely removes the Nyquist wavenumber, and its coefficients
are 1/4, 1/2, 1/4. We denote this smoothing operator by S3. Application of this average
in the x and y directions modifies the Fourier coefficients of the backscatter forcing
terms to

cos2
(
kxΔx

2

)
cos2

(
kyΔy

2

)[
1

2
(k2x − k2y)Ak + kxkyBk

]
(2.16)

where Δx and Δy are the grid spacing and Ak and Bk are as in equation (2.15). The 2D
forcing spectrum is proportional to cos4(kxΔx/2) cos

4(kyΔy/2)k
4, which is no longer

isotropic, but reduces the forcing to zero for modes at the Nyquist wavenumbers
kx = π/Δx and ky = π/Δy. This particular choice of smoothing is ad hoc, but serves
to reduce the forcing smoothly to zero at the coarse grid scale without affecting the
forcing at large scales, and is easily implemented. In §5 we compare to two alternate
smoothers: double application of the 1/4, 1/2, 1/4 average, and application of a five-
point moving average with coefficients −1/16, 1/4, 5/8, 1/4, and −1/16. The five-point
average is denoted S5. Whereas the three-point smoother damps the coefficient of
a Fourier mode by a factor of cos2(kxΔx/2) cos

2(kyΔy/2), the five-point smoother
damps the coefficient of a Fourier mode by

1

4
cos2(kxΔx/2)(3− cos(kxΔx)) cos

2(kyΔy/2)(3− cos(kyΔy)). (2.17)

This smoothing operator sets the Nyquist wavenumbers to zero, but damps the re-
maining modes less than the three-point average.

The angle-averaged (1D) forcing spectra that result from these three smoothing
operators are plotted in figure 2.1 (i.e. the angle-averages of (2.16), (2.17), and a
version of (2.16) with both cos2 replaced by cos4), assuming a 96 × 96 coarse grid.
There are significant differences between these forcing spectra, both in the amplitude
of the peak forcing and in the wavenumber of the peak forcing. Nevertheless, in §5
we find that there is little qualitative difference in the results for these three different
smoothers. The main difference is that the optimal forcing amplitude E0 is different
for the three filters; it is higher for the double smoother, and lower for the five-point
smoother.

It is worth noting that the finite difference approximation to the derivatives of the
Reynolds stress terms in equation (2.12) does not reproduce exactly a k5 forcing spec-
trum due to truncation errors. For example, the standard centered second-order dif-
ference approximation of ∂2

x multiplies a single Fourier mode by −2 sin2(kxΔx/2)/Δx
2

rather than −k2x. However, as shown in §5 the smoothing effect of the second-order
finite-difference approximation is not sufficient to give good results in the finite dif-
ference code without additional smoothing of the Reynolds stresses.

Leith [20], Mason & Thomson [25], and Schumann [35] developed stochastic
backscatter schemes for low-order codes. Only Mason & Thomson included spa-
tial smoothing of the Reynolds stresses (via the same three-point average used here),
but Schumann noted that it was not necessary since good results could be obtained
without it. We expect that the primary difference is that in their applications the
net energy transfer was downscale. Energy backscattered near the grid scale of the
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coarse model simply dissipates away under the linear action of coarse-model viscosity,
and this process is accurately represented even by low-order numerics, whereas in
the inverse cascade it must be nonlinearly transferred to larger scales, and low-order
numerics do not represent these nonlinear dynamics accurately near the grid scale.

2.2. Temporal Correlation. Leith [20], Mason & Thomson [25], and two of
the current authors [12, 13] have developed backscatter schemes where the subgrid-
scale stresses are white (delta-correlated) in time; this is implemented simply by
updating the random variables at each time step [12, 13, 20], or every other time
step [25]. Of course, real subgrid stresses have a nonzero decorrelation time because
they are generated by deterministic subgridscale dynamics, and Schumann [35], follow-
ing Bertoglio [4], incorporated a nonzero decorrelation time in his model of stochastic
backscatter.

To give the subgrid stresses a realistic nonzero decorrelation time we model the
random field θ at each coarse grid point by a Weiner process on the circle

dθ = σdW. (2.18)

We prove in the appendix that this leads to an exponential lagged autocorrelation
with a decorrelation time of (2σ2)−1 for the modeled Reynolds stress terms u′v′ and
(v′)2−(u′)2. The proof makes use of the Fokker-Planck equation for (2.18) on a circle,
which has the uniform distribution as a stationary solution. The evolution of the Dirac
delta under the action of the Fokker-Planck equation is given in terms of its Fourier
series, which together with some trigonometric identities allows us to prove that the
lagged autocorrelation function of sin(2θ) or cos(2θ) is exponential with decay scale
(2σ2)−1. A natural physical timescale that can be associated with this is the eddy
turnover time 	/U , where U is the RMS velocity and 	 is a characteristic eddy length
scale. In §6 the decorrelation time of the Reynolds stresses is measured directly, and
agrees well with a turnover time based on the deformation radius 	 = k−1

d .
Although the spatially-discretized fluid equations with stochastic backscatter are

SDEs, the time integration methods used with these backscatter schemes are ad hoc,
because the SDEs are generally not in the standard form for which numerical meth-
ods are well studied, i.e. dX = f(X, t)dt+ g(X, t)dW where W is a Weiner process.
Leith [20] notes that in order for his method to be robust to changing time steps the
amplitude of the forcing should vary as (Δt)−1/2 where Δt is the time step size; since
the forcing is multiplied by Δt in the time integration scheme the overall method is
analogous to the Euler method for Itō SDEs, which multiplies the stochastic forcing
term by (Δt)1/2 instead of Δt. Although the backscatter scheme developed here does
not result in a standard-form SDE, we find similar behavior in §6: when the backscat-
ter is white in time the scheme is robust to changing time steps when the amplitude
E0 is scaled by the square root of the time step.

We implement the backscatter forcing as follows. When the forcing is white in
time the integration scheme multiplies the forcing terms by (Δt)1/2 instead of Δt and
the forcing terms are held constant through all stages of the Runge–Kutta time step.
When the forcing has an exponential decorrelation as described above, the integration
scheme multiplies the forcing terms by Δt as usual, and the angle θ evolves under
equation (2.18) during the internal stages of the Runge–Kutta time step. We find in
§6 that both of these schemes are robust to changes in the time step.

3. An Eddy-Resolving Baseline Simulation. Development of the backscat-
ter model is provided here in the context of the two-layer quasigeostrophic (QG)
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Fig. 3.1. Properties of the high-resolution reference simulation: (a) Growth rate of linear
baroclinic instability, (b) Snapshot of upper-layer potential vorticity q1, (c) Time-averaged kinetic
(solid) and potential (dashed) energy spectra. The thin vertical line in (c) indicates the deformation
wavenumber kd = 50.

model

∂tq1 = −∇ · (u1q1)− ∂xq1 − k2dv1 − ν8∇8q1,

∂tq2 = −∇ · (u2q2) + ∂xq2 + k2dv2 − ν8∇8q2 − r∇2ψ2 (3.1)

q1 = ∇2ψ1 +
k2d
2
(ψ2 − ψ1), q2 = ∇2ψ2 − k2d

2
(ψ2 − ψ1),

where qj is the potential vorticity in the upper (j = 1) and lower (j = 2) layers,
∇2ψj = ζj is the relative vorticity, the velocity-streamfunction relation is uj = −∂yψj ,
vj = ∂xψj , kd is the deformation wavenumber (k−1

d is the deformation radius), the
coefficient r specifies the strength of linear bottom friction (Ekman drag) and ν8
is the hyperviscous Reynolds number. A large-scale zonal (east-west, x-direction)
vertical shear is applied with equal and opposite unit velocities in the upper and
lower layers; this imposed velocity is associated with the terms (−1)j(∂xqj + k2dvj).
The imposed vertical shear leads to a baroclinic instability that drives the system
dynamics [40]. The doubly-periodic, two-layer QG model driven by imposed shear is
a classical idealized model of synoptic-scale turbulence in the atmosphere and oceans
though there are, of course, many realistic features of ocean dynamics that are lacking
from this model (e.g. topography, lateral boundaries, diabatic effects, etc.).

A high resolution reference simulation of equations (3.1) in a 2π-periodic domain
with a 512 × 512 computational grid was run to provide a baseline for comparison
with the low resolution simulations of the next sections. The simulations use a Fourier
spectral method with semi-implicit fourth-order Runge–Kutta time integration; de-
tails of the numerical method are exactly the same as [13]. As in [12,13], the friction
parameter is r = 16 and the deformation wavenumber is kd = 50, but we here use a
smaller viscous coefficient ν = 10−17, which is the same as used by [39]. The different
viscous coefficient has minimal impact on the results compared to [13], affecting only
the smallest scales. The simulation starts from a low-energy initial condition, and
statistics are computed after the total kinetic energy is saturated, which occurs at
approximately t = 4.

Figure 3.1(a) shows the growth rate of the linear instability that drives the turbu-
lence. Specifically, it shows the growth rate of Fourier modes of the linearized system
(3.1); the most unstable modes at fixed kx have ky = 0 so only these modes are shown.
The most unstable mode has kx ≈ 31.3, and the instability drops to negligible rates



10 Backscatter in Quasigeostrophic Turbulence

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

��

�
10

0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

��

����	
 ��	�
 ��	
�

Fig. 4.1. Time-averaged kinetic (left) and potential (right) energy spectra from simulations
with the spectral code at N = 512, 192, and 128.

for k > kd = 50. Figure 3.1(b) is a snapshot of the upper-layer potential vorticity q1,
which is dominated by small-scale coherent vortices. Figure 3.1(c) shows the time-
averaged kinetic (solid) and potential (dashed) energy spectra; the thin vertical line
indicates the deformation wavenumber kd = 50. The imposed shear is equivalent to
the effect of an imposed streamfunction in the upper and lower layers of the form
(−1)jy, which is associated with a meridional potential vorticity gradient of the form
(−1)jk2d. The dynamics generate a net potential vorticity flux vjqj that acts counter
to this imposed gradient. The net potential vorticity flux is equal and opposite in
each layer, and is proportional to the area integral of (v1 + v2)(ψ1 − ψ2)/4, which we
refer to as the ‘heat flux’. The reference simulation generates a net, time-averaged
heat flux of 226.

As described in §2, the backscatter amplitude E0 can be related to the subgridscale
kinetic energy via equation (2.11); a similar relation holds for the full stochastic
superparameterization scheme of [13]. Although we treat E0 as a tunable parameter
in the following sections, it is of interest to diagnose the subgridscale kinetic energy
for comparison with the tuned values of E0. To diagnose the subgrid kinetic energy we
define a low-pass filter (·) by multiplying the Fourier coefficients of the high resolution
reference simulation by 1 − (k/48)12 for k ≤ 48, and by 0 for k > 48, where k =
(k2x + k2y)

1/2. This has the effect of smoothly transitioning from large scales with
k < 48 to small scales with k ≥ 48, where 48 is the Nyquist wavenumber of the
coarse model grid. A corresponding high-pass filter is defined by (·)′ = (·) − (·). For
comparison with E0 we diagnose

(u′

j)
2 + (v′j)

2 (3.2)

from the high resolution reference simulation. The distribution is skewed to large
values with a median of 57 and a mean of 268. We tested low-pass filters with
exponents 8 and 10 instead of 12, and found that the diagnosed subgridscale energy
is not very sensitive to the exponent in the filter,
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Fig. 4.2. Time-averaged kinetic (left) and potential (right) energy spectra from simulations
with the spectral code at N = 512, and from the FD code at N = 384, 256, and 96.

4. Low-Order and Spectral Model Results at Eddy-Permitting Reso-

lutions without Backscatter. In this section we describe a low-order code for the
two-layer QG equations that is loosely analogous to large-scale ocean models, at least
insofar as it uses a second-order finite difference discretization of the nonlinear terms;
we call this code the ‘FD’ (finite-difference) code to distinguish it from the code that
uses fully spectral numerics. We then compare simulations of the spectral and FD
codes at various low resolutions and without backscatter schemes, emphasizing the
differences between the codes and the need for backscatter.

Most large-scale ocean models use low-order numerical methods based on finite
differences, finite elements, or finite volumes. Also, when the spatial grid is sufficient
to allow some eddy variability (‘eddy-permitting’), they typically use biharmonic dif-
fusion of momentum. The FD code solves the large-scale QG equations (2.13) in the
following form

∂tq1 = −∇ · (u1 q1)− ∂xq1 − k2dv1 − ν4∇4ζ1, (4.1)

∂tq2 = −∇ · (u2 q2) + ∂xq2 + k2dv2 − ν4∇4ζ2 − r∇2ψ2 (4.2)

using the energy- and enstrophy-conserving second-order finite-difference discretiza-
tion of the Jacobian developed by Arakawa [1]. All other spatial derivatives are ap-
proximated using spectral Fourier methods, and in this section there is no backscatter,
i.e. E0=0. Time integration is achieved using the third-order Runge–Kutta scheme
of [6], paired with a PI.3.4 adaptive time step algorithm [38].

We run simulations using both the spectral and FD codes on N × N grids with
at N = 96, 128, 192, 256, and 384; the viscous coefficients ν8 and ν4 are tuned at
each resolution to give results with reasonable energy spectra. The goal is to find
the minimal resolution necessary to achieve good results in each code. Figure 4.1
shows the time-averaged kinetic and potential energy spectra from simulations with
the spectral code at N = 512, 192, and 128. The simulation with N = 192 used
ν8 = 10−14, and the simulation with N = 128 used ν8 = 5 × 10−13. Although the
simulation with N = 192 is not perfect, the most energetic modes are approximately
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Fig. 5.1. Time-averaged kinetic (left) and potential (right) energy spectra from simulations
with the FD code at N = 96, where the backscatter terms are differentiated using spectral (dashed)
and second-order finite difference (dotted) approximations. The solid lines are from the reference
simulation, and the Reynolds stresses are not spatially smoothed.

correct and the mean heat flux is 238, quite close to the true value of 226. At N = 128
the total energy drops significantly, and the flux drops to 109, approximately half the
correct value; the poor results at N = 128 cannot be ameliorated by tuning the
viscosity.

Figure 4.2 shows the time-averaged kinetic and potential energy spectra from
simulations with the spectral code at N = 512 and from the FD code at N = 384,
256, and 96. The simulation with N =384 used ν4 = 5 × 10−7, the simulation with
N =256 used ν8 = 2 × 10−7, and the simulation with N = 96 used ν4 = 1.5 × 10−5.
There is similar behavior to the spectral model results, but at higher resolution: the
results at N = 384 are acceptable (the heat flux is 245), but the results at N = 256
have too little energy and too little heat flux (172), which can’t be improved by
tuning the viscosity. The results at N = 96 are terrible, but they are included
for comparison with results in the following sections that use N = 96 and have a
backscatter parameterization.

The significant differences between the performance of the under-resolved spectral
and FD codes are striking. The spectral code performs much better at low resolution
than the FD code, which underscores the importance of developing parameterizations
in the more difficult and more realistic context of the FD code. The spectral and FD
codes have different viscous operators and Runge–Kutta integration schemes, but we
have verified that the discretization of the advection terms is primarily responsible
for the differences in performance by running simulations using the same biharmonic
viscosity and Runge–Kutta scheme as the FD code but using the spectral Jacobian
(not shown).

5. Stochastic Backscatter: Spatial Smoothing. In this section we examine
the effect of spatial smoothing on the backscatter model. The FD code is used to
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Fig. 5.2. Time-averaged kinetic (left) and potential (right) energy spectra from simulations with
the FD code at N = 96, where the backscatter terms are smoothed by three different local averages,
denoted S5 (least smoothing), S3 (more smoothing), and S2

3
(most smoothing).

solve the equations

∂tq1 = −∇ · (u1 q1) +
E0

2

(
∂2
y − ∂2

x

)
[S sin(2θ)]− E0∂xy [S cos(2θ)]

− ∂xq1 − k2dv1 − ν4∇4ζ1, (5.1)

∂tq2 = −∇ · (u2 q2) +
E0

2

(
∂2
y − ∂2

x

)
[S sin(2θ)]− E0∂xy [S cos(2θ)]

+ ∂xq2 + k2dv2 − r∇2ψ2 − ν4∇4ζ2 (5.2)

where S denotes a smoothing operator. We denote no smoothing by S0, the three-
point moving average with coefficients 1/4, 1/2, 1/4 in each direction by S3, and the
five-point moving average with coefficients −1/16, 1/4, 5/8, 1/4, −1/16 in each direction
by S5. Double application of the three-point moving average is denoted S2

3 .
In all simulations in this section θ is a random field that is white in time. Following

[12,13] the random field θ is updated at the beginning of each Runge–Kutta time step,
and held constant through all stages. The FD code uses a time step Δt = 5 × 10−5;
for comparison, the spectral simulation with N = 512 adaptively chooses a time step
on the order of 2.5× 10−5, so Δt = 5× 10−5 should be sufficiently small in the coarse
code at N = 96. Furthermore, as shown in the next section the results are robust to
varying the step size by a factor of 2 in either direction.

In all simulations both E0 and ν4 are tuned to optimize the kinetic and energy
spectra in comparison with the spectral reference simulation. Overall the results are
less sensitive to viscosity than to the backscatter amplitude, so for the sake of brevity
we choose to present results only for ν4 = 2×10−5. This value gives reasonable results
with all types of smoothing operator.

Figure 5.1 shows the time-averaged kinetic and potential energy spectra from
simulations with no smoothing; in one simulation the derivatives of the backscatter
terms are evaluated using a spectral numerical method, and in the other they are



14 Backscatter in Quasigeostrophic Turbulence

evaluated using centered second-order finite differences. Both simulations use the
same backscatter amplitude E0 = 76. Neither simulation gives good results (and the
results can’t be qualitatively improved by using different E0 or ν4), but the simulation
with spectral differencing gives worse results. This simply illustrates the beneficial
smoothing effect of finite differences, but shows that this smoothing by itself is insuf-
ficient. All remaining simulations in this section, and in §6 and §7, use second order
finite differences to approximate the derivatives acting on the Reynolds stress terms.

Figure 5.2 shows the time-averaged kinetic and potential energy spectra from sim-
ulations where three different spatial smoothing operators are applied to the Reynolds
stress terms: the five-point local average S5, the three-point local average S3, and the
three-point average applied twice S2

3 . The S5 simulation uses E0 = 69, the S3 simu-
lation uses E0 = 92, and the S2

3 simulation uses E0 = 123; these values are between
the median value of 57 and the mean value of 268 diagnosed from the reference simu-
lation. The primary difference in the results is in the kinetic energy spectra, at scales
between the peak and the grid scale. As might be expected, the simulation with the
least smoothing (S5) has more kinetic energy at these scales than the simulation with
the most smoothing (S2

3 ).

All the coarse simulations have relatively accurate kinetic energy spectra, but the
potential energy spectra all have a pronounced bump at small scales. This pileup
of potential energy at small scales may be related to the dual energy cascade of
quasigeostrophic turbulence [34, 36]: potential energy is transferred to scales near
the deformation radius, where it converted to kinetic energy before being cascaded
back to large scales. In the low resolution model simulations the coarse grid Nyquist
wavenumber is k = 48, and the dynamics of potential energy conversion near the de-
formation wavenumber kd = 50 are poorly resolved. Thus, potential energy cascades
to small scales, but piles up instead of being converted to kinetic energy. We show in
§7 that the full superparameterization closure, which includes terms responsible for
absorption of the downscale cascade of potential energy, removes this bump in the
potential energy spectrum.

The simulations all have similar heat flux, which is too large. In comparison with
the reference simulation’s heat flux of 226, S5 generates 292, S3 generates 310, and
S2
3 generates 312. The fact that the heat flux is too large for all of these simulations

may be related to the bump in the potential energy spectrum, and like that bump it
is improved by the full superparameterization algorithm in §7.

The main results of this section are that it is crucial to smooth the k5 backscatter
spectrum in a low-order code, and that good results can be obtained with several
easily-implemented local averages. The degree of smoothing applied to the Reynolds
stresses is inversely proportional to the value of E0 required to achieve good results:
more smoothing requires larger E0.

6. Stochastic Backscatter: Temporal Correlation. In this section we in-
corporate temporal correlation into the backscatter by making the random angle θ
a Weiner process on the circle, as described in §2.2. We set the decorrelation time
by comparison with the high resolution reference simulation by measuring the decor-
relation time of the subgridscale Reynolds stress terms. The measured decorrelation
time is very close to the eddy turnover time (Ukd)

−1 where U is the RMS velocity,
which suggests that the decorrelation time could be set using the eddy turnover time
without having to measure it directly. This is useful because the turnover time can
be estimated from the resolved large-scale dynamics, without the need to diagnose it
from a high resolution reference simulation.
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Fig. 6.1. Empirical lagged autocorrelation for the subgridscale Reynolds stresses (solid) com-
pared to an exponential approximation exp{−600τ} (dashed).

Specifically, we define a low-pass filter (·) (as in §3) by multiplying the Fourier
coefficients of the high resolution reference simulation by 1− (k/48)12 for k ≤ 48, and
by 0 for k 48, where k = (k2x + k2y)

1/2. This has the effect of smoothly transitioning
from large scales with k < 48 to small scales with k ≥ 48, where 48 is the Nyquist
wavenumber of the coarse model grid. The low-pass filtered fields correspond loosely
to the solution of a finite-difference model on a 96× 96 grid, and they obey equation
(2.6). The backscatter model is intended to approximate the subgridscale vorticity
flux divergence, which has the form

∇ · (ujζj − ujζj
)
=(

∂2
x − ∂2

y

)
(ujvj − ujvj) + ∂xy

[(
(vj)2 − (uj)2

)
− (

v2j − u2
j

)]
. (6.1)

Time series of the subgridscale Reynolds stress terms ujvj − ujvj and ((vj)2 −
(uj)2) − (v2j − u2

j) were computed from the reference simulation along a line of 16
equispaced points at constant x in each layer. The lagged autocorrelation function
was then computed at for each Reynolds stress term at each location. Recall that the
lagged autocorrelation function for a zero-mean stationary stochastic process A(t) is
defined as

C(τ) =
E [A(t)A(t + τ)]

Var [A(t)]
(6.2)

where Var[·] denotes the variance. The expectation E and the variance are computed
using a time average. An approximate decorrelation time is computed from the lagged
autocorrelation function as

τd =

∫
∞

0

C(τ)dτ, (6.3)

which is exact for for exponential lagged autocorrelation functions C(τ) = exp{−τ/τd}.
Figure 6.1 shows the average of all the lagged autocorrelation functions for each

Reynolds stress term and at each location compared to an approximate exponential
lagged autocorrelation function with τd = 1/600, which fits the data reasonably well.
This decorrelation time implies a value of σ2 = 300 for the temporally correlated
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Fig. 6.2. Time-averaged kinetic (left) and potential (right) energy spectra from simulations
with the FD code at N = 96, where the backscatter terms are white in time (dashed) or have an
exponential decorrelation time (dotted).

model of θ (equation (2.18), and this value is used in simulations. For comparison,
the eddy turnover time (Ukd)

−1 is approximately 1/650.

To test the effect of the addition of temporal correlation we run a simulation with
the three-point average S3, time step Δt = 5× 10−5, and viscosity ν4 = 2× 10−5, and
with empirical decorrelation time corresponding to σ2 = 300. Figure 6.2 compares
this simulation to the analogous result with no temporal correlation. The kinetic
and potential energy spectra are essentially indistinguishable, but there is a small
difference in heat flux: the simulation with temporal correlation has a heat flux of
293, as compared to a heat flux of 310 without temporal correlation (the reference
simulation has a heat flux of 226). The main difference is in the optimal backscatter
amplitude: the simulation without temporal correlation uses E0 = 92, whereas the
simulation with temporal correlation uses E0 = 1625. Part of the discrepancy is
related to the fact that E0 is scaled by the square root of the time step in the white
noise scheme, but not in the scheme with temporal correlation.

The robustness of the schemes with and without temporal correlation has been
tested by running simulations using time steps half as long and twice as long as those
given above. In both cases the results are so similar that the energy spectra are
indistinguishable in plots (not shown). Similarly, the heat flux varies by less than 1%
as the time step is changed.

Overall the addition of temporal correlation seems to have minimal effect on the
simulation results. The optimal backscatter amplitude E0 = 1625 for the scheme with
temporal correlation is much too large in comparison with the values diagnosed from
the reference simulation (median 57, mean 268). On the other hand the Reynolds
stresses diagnosed from the reference simulation clearly have a nonzero decorrelation
time. The addition of temporal correlation is clearly not as crucial to success as the
addition of spatial correlation, although it remains unclear whether it may have some
hidden benefit to the large-scale dynamics.
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Fig. 7.1. Time-averaged kinetic (left) and potential (right) energy spectra from simulations with
the FD code at N = 96, comparing the simplified backscatter scheme (dashed) to the full stochastic
superparameterization (dotted).

7. Stochastic Superparameterization. In this section we incorporate spatial
and temporal smoothing into the full stochastic superparameterization scheme of [12,
13]. The primary goal is to demonstrate that the full stochastic superparameterization
improves the potential energy spectrum and net heat flux as compared to the simplified
backscatter scheme of the previous sections.

Stochastic superparameterization makes use of a formal multiscale ansatz to
model the dynamics of the unresolved scales in turbulence; the subgrid dynamics
are approximated by local linear stochastic models that respond to the local large-
scale velocity and vorticity gradient [12,13,23]. It also makes use of a field of random
angles, and the subgridscale Reynolds stress terms have the form

u′

jv
′

j =
A

2
Fu,j(u1, u2,∇hq1,∇hq2, θ; ε) sin(2θ),

(v′j)
2 − (u′

j)
2 = AFu,j(u1, u2,∇hq1,∇hq2, θ; ε) cos(2θ).

(7.1)

In the simplified backscatter model the functions Fu,j are identical constants (compare
to equation (2.10)). Note that the Reynolds stresses in stochastic superparameteri-
zation are not identical in the upper and lower layers, like they are in the simplified
model. The simplified backscatter model ignores part of the potential vorticity flux
divergence k2du

′

j(ψ
′

i − ψ′

j) where i �= j. In stochastic superparameterization these
components of the potential vorticity flux take the form

u′

1(ψ
′

1 − ψ′

2) = AFb(u1, u2,∇hq1,∇hq2, θ; ε) sin(θ),

v′1(ψ
′

1 − ψ′

2) = AFb(u1, u2,∇hq1,∇hq2, θ; ε) cos(θ), (7.2)

u′

2(ψ
′

2 − ψ′

1) = −u′

1(ψ
′

1 − ψ′

2), v′2(ψ
′

2 − ψ′

1) = −v′1(ψ
′

1 − ψ′

2).

In stochastic superparameterization the functions Fu,j and Fb are computed from
solutions of the local stochastic models of the subgridscale dynamics; the stochastic
subgrid dynamics evolve for a time length ε−1 while the large scales are held fixed,
and ε is considered a tunable parameter. The stochastic subgridscale dynamics are
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assumed to evolve on length scales corresponding to wavenumbers with magnitude

k =
√
k2x + k2y ≥ 48, which is the Nyquist wavenumber of the coarse grid. The

coefficient A is a tunable parameter analogous to E0.
We apply the stochastic superparameterization algorithm exactly as described

in [13] with the following modifications: (i) the Reynolds stress terms and the poten-
tial vorticity flux are smoothed using the three-point average S3, and their derivatives
are approximated with centered second-order finite differences, and (ii) the random
angles θ evolve according to equation (2.18) with the empirical value σ2 = 300. Figure
7.1 compares the results of the full stochastic superparameterization to the simplified
backscatter scheme; both simulations use the empirical decorrelation time correspond-
ing to σ2 = 300, and the three-point average S3. The stochastic superparameterization
scheme uses A = 17500, and ε = 800. The kinetic energy spectra of the simplified
scheme and the superparameterization are very similar, differing only near the coarse
grid scale. The potential energy spectrum of the superparameterization scheme does
not have the bump at small scales, and is a good fit to the potential energy spectrum
of the reference simulation. The superparameterization has a net heat flux of 280,
which is smaller than the heat flux of 293 from the simplified scheme, but still bigger
than the value of 226 from the reference simulation. Overall, the full stochastic su-
perparameterization scheme with spatial and temporal correlations improves over the
simplified backscatter scheme. Simulations using stochastic superparameterization
without temporal correlation are very similar, provided the amplitude A is retuned
(not shown).

8. Conclusions. Kinetic energy backscatter is the process of kinetic energy
transfer from small to large scales in turbulence. We have developed stochastic
schemes to model backscatter in the inverse kinetic energy cascade of quasigeostrophic
turbulence, where backscatter drives a net transfer from small to large scales. The
main proposed application of these schemes is in eddy-permitting ocean modeling,
where low-resolution models do not resolve the energy transfer from subgrid scales.
In addition to improving the accuracy of low-resolution models, stochastic backscatter
is expected to improve ensemble filtering and prediction schemes [3, 11].

In §2.1 we showed that a simplified stochastic backscatter scheme from [13], based
on stochastic superparameterization, corresponds to an isotropic random forcing with
spectrum proportional to k5 where k is the wavenumber magnitude, i.e. it forces
very strongly near the coarse grid scale. This backscatter spectrum is analogous
to the backscatter spectrum for smaller-scale three-dimensional isotropic turbulence
[19,22,35]. In §5 we showed that the scheme of [13] performs poorly in a low resolution
model using second-order finite differences to approximate the nonlinear advection
terms, whereas it was shown in [13] that the scheme performed well in a low resolution
model with spectral numerics. We argue that the poor performance is due to the fact
that the energy backscattered near the coarse grid scale is supposed to be transferred
to larger scales by the nonlinear dynamics, but the low-order model is not able to
represent this process accurately so energy accumulates near the grid scale, ultimately
ruining the simulation.

The use of a low order numerical method requires the numerical solution to be
relatively smooth, even in a low resolution model, and we showed in §5 that very good
results can be obtained by smoothing the forcing with a local average. This has the
effect of damping the backscatter forcing spectrum to zero at the coarse grid scale, so
that the backscatter injects energy at a scale where the nonlinear dynamics are better
resolved by the low-order numerics. Smoothing methods for non-equispaced grids
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developed in [32, 41] could be used in more realistic applications of our backscatter
schemes.

The spatially-smoothed backscatter scheme of §5 corresponds to a forcing that
is delta-correlated (white) in time. Since the backscatter is supposed to model the
nonlinear effects of unresolved deterministic dynamics, it is more realistic for the
backscatter model to have a nonzero decorrelation time. We showed in §2.2 and in
the Appendix how to add temporal correlation to the backscatter scheme in such a
way that the backscatter has an exponential lagged autocorrelation function. The
appropriate decorrelation timescale was diagnosed from a high resolution reference
simulation in §6, and agreed with the eddy turnover time (Ukd)

−1 where U is the
RMS eddy velocity and k−1

d is the deformation radius. Incorporation of the nonzero
decorrelation time had a minimal impact on the results, although it remains possible
that there is some hidden benefit. For example, the short-term prediction and filtering
performance of the model might be improved through the use of nonzero temporal
decorrelation time.

The stochastic backscatter scheme with spatial and temporal correlation gives
good results for the time-averaged kinetic energy spectrum, but the results invariably
include a bump in the potential energy spectrum at small scales. This bump is related
to the fact that the stochastic kinetic energy backscatter scheme does not include a
mechanism for absorbing the downscale cascade of potential energy. In §7 we showed
that incorporating spatial smoothing and temporal correlation into the full stochastic
superparameterization algorithm of [12, 13] gives excellent results overall, matching
both the kinetic and potential energy spectra quite accurately.

Appendix. In this section we prove the following theorem
Theorem A.1. The Reynolds stress terms modeled as sin(2θ) and cos(2θ) using

dθ = σdW (A.1)

have stationary lagged autocorrelation functions of the form exp{−2σ2τ}.
Proof. The Fokker-Planck equation for (A.1) is simply

∂tp =
σ2

2
∂2
θp. (A.2)

On a periodic domain of size 2π the invariant measure is uniform p = (2π)−1. The
stationary lagged autocorrelation function for the sine term is defined as

C(τ) = 2E [sin(2θt) sin(2θt+τ )] = 2E [sin(2θt) sin(2(θt +Δτ ))] (A.3)

where τ is the lag, θt denotes θ at time t, and Δτ = θt+τ − θt. Dependence on t drops
out in the stationary state, i.e. the long time limit.

The proof relies on an explicit expression for the probability density of Δτ , which
is a Dirac delta distribution at zero lag τ = 0. This can be obtained from the Fourier
expansion of the Dirac delta distribution and its explicit evolution under the Fokker-
Planck equation (A.1). Specifically, the probability distribution for Δτ is

p(Δτ ) =
1

2π
+

1

π

∞∑
n=1

e−n2σ2τ/2 cos(nΔτ ). (A.4)

The proof that the lagged autocorrelation function (A.3) is exponential proceeds
as follows. First, simple trigonometric identities imply

C(τ) = 2E [sin(2θt) (sin(2θt) cos(2Δτ ) + cos(2θt) sin(2Δτ ))] . (A.5)
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Second, the non-anticipating property of solutions to (A.1) implies that θt is indepen-
dent of Δτ for τ > 0; the above expression therefore simplifies to

C(τ) = 2
(
E
[
sin2(2θt)

]
E [cos(2Δτ )] + E [sin(2θt) cos(2θt)]E [sin(2Δτ )]

)
. (A.6)

Since we are interested in the stationary lagged autocorrelation function the distribu-
tion of θt is considered uniform, which implies that the second term above drops out
and the expected value of sin2(2θt) is 1/2, leaving

C(τ) = E [cos(2Δτ )] . (A.7)

This expectation can be written as an integral against the known probability distri-
bution of Δτ , which gives

C(τ) =

∫ π

−π

(
1

2π
+

1

π

∞∑
n=1

e−n2σ2τ/2 cos(nΔτ )

)
cos(2Δτ )dΔτ = e−2σ2τ . (A.8)

This proves that the stationary lagged autocorrelation function for the sine term is
exponential with decorrelation time scale (2σ2)−1; the proof for the cosine term is the
same.
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