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Abstract

The recovery of a random turbulent velocity field using Lagrangian tracers that
move with the fluid flow is a practically important problem. This paper studies the
filtering skill of L noisy Lagrangian tracers in recovering random rotating compress-
ible flows that are a linear combination of random incompressible geostrophically
balanced (GB) flow and random rotating compressible gravity waves. The ideal-
ized random fields are defined through forced damped random amplitudes of Fourier
eigenmodes of the rotating shallow water equations with the rotation rate measured
by the Rossby number ε. In many realistic geophysical flows, there is fast rotation
so ε satisfies ε � 1 and the random rotating shallow water equations become a
slow-fast system where often the primary practical objective is the recovery of the
GB component from the Lagrangian tracer observations. Unfortunately, the L-
noisy Lagrangian tracer observations are highly nonlinear and mix the slow GB
modes and the fast gravity modes. Despite this inherent nonlinearity, it is shown
here that there are closed analytical formulas for the optimal filter for recovering
these random rotating compressible flows for any ε involving Ricatti equations with
random coefficients. The performance of the optimal filter is compared and con-
trasted through mathematical theorems and concise numerical experiments with
the performance of the optimal filter for the incompressible GB random flow with
L noisy Lagrangian tracers involving only the GB part of the flow. In addition,
a sub-optimal filter is defined for recovering the GB flow alone through observ-
ing the L noisy random compressible Lagrangian trajectories, so the effect of the
gravity wave dynamics is unresolved but effects the tracer observations. Rigorous
theorems proved below through suitable stochastic fast-wave averaging techniques
and explicit formulas rigorously demonstrate that all these filters have comparable
skill in recovering the slow GB flow in the limit ε→ 0 for any bounded time inter-
val. Concise numerical experiments confirm the mathematical theory and elucidate
various new features of filter performance as the Rossby number ε, the number of
tracers L and the tracer noise variance change.
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1 Introduction

Lagrangian tracers, such as floats and drifters, are usually the only source for many real-
time data in the center of oceans [1, 2]. One key application of the Lagrangian data is the
recovery of the current underlying velocity field. Motivated by this practical question,
various approximate filters have been applied to Lagrangian data [3, 4, 5], and properties
of these filters have been revealed through numerical experiments [6, 7].

Due to the nonlinear dynamics of the Lagrangian tracers, the classical analysis of
the filters are carried out by numerical experiments, which in turn impedes systematic
understanding. Fortunately, a recent work of the authors for random incompressible
flows [8] established a clean theoretical framework for filtering noisy Lagrangian tracers
by identifying the signal-observation system as a conditional Gaussian process despite
the strong nonlinearity of the noisy tracer observations. Based on the theory of [9], the
optimal filter is given by a Gaussian distribution with clean analytical formulas for the
posterior mean and covariance involving Ricatti equations with random coefficients. In
particular, when the underlying flow is incompressible, we show in [8] that the optimal
filters have universal behavior when the tracer number L is large.

In geoscience, it is well known from real data that in mid-latitude, the slow vary-
ing geophysical flows are well approximated by geostrophically balanced (GB) flows
[10, 11, 12, 13], which are incompressible. Thus it is tempting to apply the optimal
filter constructed in [8] to the GB flows. Yet, this is an oversimplification. According
to the mathematical explanation of the geostrophic approximation theory [14, 15], the
compressible components in geophysical flows, gravity waves, do not really vanish, but
rather decouple from the GB part and possess fast oscillating patterns in the limit of
fast rotation, measured by ε, the Rossby number, satisfying ε � 1. It is due to the
fast-wave averaging phenomenon that their contribution to the climate scale data van-
ishes. Whether the gravity waves can be ignored for filters remains elusive, because the
Lagrangian tracers’ dislocation, as the observation, depends nonlinearly upon the whole
history of the gravity waves.

Motivated by the previous question, the first objective of the present paper is to
understand the filtering skill of noisy Lagrangian tracers in a compressible random flow,
and how much does it deviate from the incompressible scenario, which is well understood
in [8]. The direct approach for this purpose is comparing filters derived for the two
scenarios: a full filter that models the underlying flow as superposition of gravity waves
and GB flow, and a GB filter that models the underlying flow as the former’s projection to
the GB parts. As verified below, both filters lie in the conditional Gaussian framework,
hence possess concrete formulas. The gravity waves’ impact over the filter can then
be picked out and carefully analyzed through both mathematical theory and idealized
numerical experiments which only involve quadrature of exact formulas.

The second motivation of present paper comes from a practical consideration. Filter-
ing real turbulent flows in nature is rarely the same as numerical simulations. Most often,
it is common practice to implement simplified imperfect filters involving only resolved
scale dynamics, because the unresolved dynamics are too delicate to model and not of
major concern. In the current context, a filter that recovers and requires only the GB
flow dynamics is desired, as the gravity waves are too fast or noisy to be resolved. The
simplest filter for this purpose is given by formal application of the GB filter’s formulas to
the tracers transported by the full flow. As the observations are also advected by gravity
waves, the working conditions of the GB filter are actually violated. The potential error
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in this imperfect filter must be analyzed with caution, since according to [16, 17, 18, 19],
certain information may be impossible to recover due to modeling errors. On the other
hand, the estimation of such errors characterizes the impact of the geostrophic approxi-
mation over Lagrangian data assimilation from a different perspective.

In this paper, a simplified setup is considered where a random rotating flow is modeled
by a finite number of Fourier modes with random amplitudes:

~v(~x, t) =
∑
k∈K

v̂k(t) exp(i~k · ~x)~rk, (1.1)

where ~k is the wavenumber for index k. The finite index set K splits into the GB subset
KB and the gravity subset Kg, and each subset contains modes forming conjugate pairs
so ~v is real-valued. Each v̂k(t) is modeled by an Ornstein-Uhlenbeck (O.U.) process:

dv̂k(s) = (−dk + iωk)v̂kds+ fkds+ σkdW v
k (s), (1.2)

where fk(s) is the deterministic forcing; ωk is zero for GB modes, i.e. k ∈ KB, and
of order reciprocal to the Rossby number ε for gravity modes, i.e. k ∈ Kg. On the
other hand, the observation process is given by the trajectories of L Lagrangian tracers
involving some noise, which are modeled by the following

d ~Xl(s) = ~v( ~Xl(s), s)ds+ σxdW
x
l (s)

=
∑
k∈K

v̂k(t) exp(i~k · ~Xl(s))~rkds+ σxdW
x
l (s), l = 1, . . . , L. (1.3)

Here σxdW
x
l (s) models the combined effects of random perturbation from the turbulent

flow and the intrinsic instrumental noise, since ~v is essentially a Galerkin truncation
of a real turbulence which has a residual part that is not accounted. In the standard
terminology of filtering, σxdW

x
l (s) can be seen as an observation noise.

The fundamental mathematical observation [8] which forms the basis for further anal-

ysis here is that the full signal-observation system (~vk(s),k ∈ K; ~Xl(s), l ≤ L) is a condi-

tional Gaussian process, as they are jointly linearly once the observations ~Xl(s) are fixed.
Therefore by [9] the optimal filter is given by a Gaussian distribution πs|s = N (ms, Rs),
where ms, Rs follow explicit differential equations. As πs|s includes both GB part and
gravity waves in its model, it will be named as the full or perfect filter. It can tell us the
uncertainty reduced by Lagrangian tracers, for both the geostrophic and gravity wave
parts of the flow, and can be used to quantify the error made by the simplified filter.

By applying the geostrophic approximation, (1.1) and (1.3) are projected to their GB
part:

~vB(~x, t) =
∑
k∈KB

v̂k(t) exp(i~k · ~x)~rk, d ~XB
l (s) = ~vB( ~XB

l (s), s)ds+ σxdW
x
l (s). (1.4)

Like the full model, (~vk(s),k ∈ KB; ~XB
l (s), l ≤ L) jointly form a conditional Gaussian

process, hence the optimal filter is given by a Gaussian distribution πGs|s = N (mG
s , R

G
s ),

which will be named as the GB filter. Since ~vBs is incompressible, the results of [8] can be

directly applied to the GB filter, i.e. 1) ~XB
l (s) has uniform distribution on T2 = [−π, π]2

as their invariant distribution; 2) the uncertainty reduction grows on the order of lnL for
increasing L. If the full filter behaves similarly to the GB filter, then the previous results
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provide a good reference for understanding filters of compressible flows and the role of
gravity waves as the Rossby number varies.

The imperfect filter that utilizes only the GB modes’ dynamics is obtained by applying
the formulas of the GB filter to the observations from the full model, i.e. the observa-
tions ~X1(s), . . . , ~XL(s) are used as input for the GB filter. Evidently the assumptions of
conditional Gaussian theory are not valid, so the output produced, denoted by πrs|s, is a
reduced sub-optimal filter. This mimics the scenario that frequently happens in reality,
that is an over simplified model is applied to a complicated object. Yet it is sometimes
the only available choice for filtering because: 1) it uses only the resolved dynamics of
GB flow which is sometimes the only available dynamics; 2) it is computationally much
more efficient than the full filter. The precision of this reduced filter can be measured by
its difference with the GB part of the full filter πs|s.

As the full, GB and reduced filters all follow concrete formulas, their differences can
be studied by both simple numerics and rigorous math. Recall that in [11, 14, 20] the
rigorous validation of the geostrophic adjustment theory requires that ε � 1, i.e. a fast
rotational scenario. Hence intuitively, the key parameter here is the Rossby number ε,
and the geostrophic approximation should make little difference in the filters when ε is
small. By exploiting the fast-wave averaging phenomenon of gravity waves, this claim is
validated in a mathematical proof below showing the differences between the filters are
scaled with ε for any finite moments. In other words, when the ambient rotation is fast

• The geostrophic approximation makes little difference for the recovery of GB flow
using Lagrangian tracers;

• The behavior of GB filter, which is well understood in [8], is a good reference for
Lagrangian data assimilation in a rapidly rotating compressible flow.

Corresponding numerical experiments implemented with different combinations of Rossby
number ε, the number of tracers L, and observation noise strength σx not only validate
our claims, but also reveal the joint effect of the observation parameters and fundamental
differences between filtering in slow and fast rotational regimes.

The remainder of this paper is arranged as follows: in Section 2, we formulate a
random rotating shallow water equation explicitly as an example for the general filtering
framework while the full filter, the GB filter and the reduced filter are carefully derived.
In Section 3 we offer a rigorous mathematical explanation of our key finding while the
detailed proofs are left to Section 4. Section 5 reports on the numerical experiments and
comparison of the filters with different Rossby number ε. For readers interested in new
phenomena rather than the detailed proof, Section 4 can be skipped in a first reading.
Section 6 concludes this paper while discussing issues related to this topic.

2 Basic set-up

2.1 Random rotating compressible shallow water flows

To begin with, a random two dimensional rotating compressible shallow water velocity
field ~v with corresponding height function h ∈ R is formulated below as an explicit
example of the general setup (1.1):[

~v(~x, t)
h(~x, t)

]
=

∑
~k∈K,α∈{0,±}

v̂~k,α(t) exp(i~k · ~x)~r~k,α. (2.1)
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Here K is some finite symmetric subset of Z2, while modes with α = 0 represent the
geostrophically balanced (GB) part and modes with α = ± represent the gravity waves.
The vectors ~r~k,α are the eigenvectors associated with different modes, where the projection

of ~r~k,0 on the velocity components is perpendicular to ~k [12, 14, 15] due to the incompress-
ibility of the GB part and ~r~k,± indicate the direction of the compressible gravity wave. To
model the stochastic nature of all these modes, we drive the random amplitudes v̂~k,α(s)
with stochastic forcing and damping terms that stabilize the system:

dv̂~k,0(t) =
(
− dB v̂~k,0 + f~k,0(t)

)
dt+ σ~k,0dW~k,0(t),

dv̂~k,±(t) =
(
(−dg + iω~k,α)v̂~k,±(t) + f~k,±(t)

)
dt+ σ~k,±dW~k,±(t).

(2.2)

Here dB, dg are both positive numbers and notice that (2.2) also contains deterministic
forcing. In order for (2.1) to be real-valued, we require that ~r ∗~k,α = ~r−~k,−α and (v̂~k,α)∗ =

v̂−~k,−α. The first conjugation equality is met by the detailed formulation of ~r~k,α below and
the second conjugation equality can be enforced by requiring each term in (2.2) to form
conjugate pairs. For a detailed description of this enforcement, we refer to Appendix A.1
of [8]. Such a modeling strategy for turbulence has also been applied in general in [21].

In order to understand the intuition behind this model and to see the natural choice
of ~r~k,α and ω~k,α, recall the non-dimensional linearized shallow water equation, Section 4.4
[12]:

∂~u

∂t
+ ε−1~u⊥ = −ε−1∇η,

∂η

∂t
+ ε−1δ∇ · ~u = 0.

(2.3)

Here ~u is a horizontal two dimensional velocity field and η is the height function. We
denote the non-dimensional parameters ε = Ro, δ = Ro2Fr−2 with Ro being the Rossby
number which represents the ratio between the Coriolis term and the advection term, and
Fr being the Froude number. For most atmosphere-ocean problems, ε is a small number
representing fast rotation and δ is either O(1) or O(ε). Following Section 4.4 of [12], the
general solution of (2.3) is given by a superposition of plane waves:[

~u(~x, t)
η(~x, t)

]
=

∑
~k∈Z2,α∈{0,±}

û~k,α exp(i~k · ~x− iω~k,αt)~r~k,α. (2.4)

The modes with α = 0 represent the geostrophically balanced (GB) modes, also known
as the vortical waves. The geostrophic balance relation ~u⊥ = −∇η always holds [12].
The associated rotational speed ω~k,0 = 0 and the normalized eigenvector ~r~k,0 is given by

~r~k,0 =
1√
|~k|2 + 1

 −ik2

ik1

1

 . (2.5)

The modes with α = ± represent the gravity modes also known as the Poincaré waves
[12]. They have a nonzero phase speed:

ω~k,± = ±ε−1

√
δ|~k|2 + 1. (2.6)
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The associated normalized eigenvectors ~r~k,± are given by

~r~k,± =
1

|~k|
√

(δ + δ2)|~k|2 + 2

 ik2 ± k1

√
δ|~k|2 + 1

−ik1 ± k2

√
δ|~k|2 + 1

δ|~k|2

 . (2.7)

For the special case, ~k = ~0, the Poincaré waves have no gravity component and coin-
cide with the inertial waves. The resulting eigenvalues become ω~0,± = ±ε−1 with the
eigenvectors

~r~0,+ =
1√
2

 i
1
0

 and ~r~0,− =
1√
2

 −i
1
0

 .
By taking a finite Fourier truncation and replacing the deterministic coefficients û~k,α exp(−iω~k,αt),
in (2.4) with the stochastic processes ~v~k,α modeled by (2.2), we arrive at the basic rotat-
ing compressible random field model in (2.1)-(2.2). The additional linear coefficient iω~k,α
from (2.6) for the gravity waves model their oscillations, which are fast for ε � 1. It
is worth noticing that the Rossby number ε and δ enter the dynamics only through the
gravity waves: they appear only in ~r~k,± and ω~k,±. Moreover, ω~k,± is a parameter of order

ε−1; its appearance in the linear coefficient for the gravity modes, (2.2), represents the
same rotational effect as in the deterministic setting.

2.2 Filters for noisy Lagrangian tracers

We consider the random rotating compressible flows defined in (1.1) and (1.2). Evidently,
the stochastic processes {v̂k} is the signal process we need to recover. For better illustra-
tion, group all the signals from balanced geostrophic modes into a column vector process
UB
s and likewise the gravity modes into Ug

s. They jointly form a full signal column vector
process Us. Regarding notation, we will assign the superscript B for the GB parts, and g
for the gravity parts. The dynamics of these signal process, according to (2.1) and (2.2),
can be regrouped and written as:

dUB
s = −ΓBUB

s ds+ FB
s ds+ ΣB

u dWB
u (s), (2.8)

dUg
s = (−Γg + iΩε)U

g
sds+ F g

s ds+ Σg
udW

g
u (s), (2.9)

and jointly:
dUs = −ΓUsds+ Fsds+ ΣudWu(s). (2.10)

Here Ωε is diagonal with k-kth entry

ωk = ±ε−1

√
δ|~k|2 + 1, k ∈ Kg. (2.11)

The velocity field generated by the two parts can be written down as:

~vB(~x, s) = PB
X (~x)UB

s , ~vg(~x, s) = P g
X(~x)Ug

s.

with
PH
X (~x) = [· · · , exp(i~k · ~x)~rk, · · · ]k∈KH

, H = B, g.
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Their sum is the full flow:

~v(~x, s) = ~vB(~x, s) + ~vg(~x, s) = PX(~x)Us, PX = [PB
X , P

g
X ].

Therefore, it is equivalent to know the flow field ~v,~vB or the signal process U,UB respec-
tively.

Assuming that the deterministic forcing Fs is periodic, the signal process Ut has an
equilibrium distribution, which is Gaussian πattt = N (matt

t , Ratt). Using the Fokker-Plank
equation, the equilibrium mean and covariance are given by:

matt
t =

∫ t

−∞
exp(−Γ(t− s))Fsds, Ratt = [2Re(Γ)]−1ΣuΣ

∗
u.

As the GB marginal of Ut, UB
t has an equilibrium distribution πattB,t being the marginal

distribution of πattt for the GB part. Notably, without any observation, πattt and πattB,t
give the least biased states of Ut and UB

t respectively. They naturally serve as the initial
state of the filters. And due to the chaotic nature of random flows in nature, they contain
generally little information.

Given one realization of the velocity field ~vt≥0, the trajectory of each one of the L noisy
Lagrangian tracers advected by the full flow follows the stochastic differential equation
(SDE):

d ~Xl(s) = PX( ~Xl(s))Usds+ σxdW
x
l (s).

Group all ~Xl(s) together as

Xs =

 ~X1(s)
...

~XL(s)

 .
This observation process follows:

dXs = PX(Xs)Usds+ σxdW
x
s , (2.12)

with

PX(Xs) =

PX( ~X1(s))
...

PX( ~XL(s))

 =

· · · exp(i~k · ~X1(s))~rk · · ·
...

...
...

· · · exp(i~k · ~XL(s))~rk · · ·

 = [PB
X(Xs),P

g
X(Xs)].

On the other hand, by formally applying mode reduction over the gravity waves, one
models the random flow using ~vB only. Hence a noisy Lagrangian tracer drifted by the
GB flow ~vB follows SDE:

d ~XB
l (s) = PB

X ( ~XB
l (s))UB

s ds+ σxdW
x
l (s).

For L tracers, group them together as XB
s , then

dXB
s = PB

X(XB(s))UB
s ds+ σxdW

x
s . (2.13)
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2.2.1 Full optimal filter

Us,Xs jointly form the signal-observation process of the full model. Their joint evolution,
(2.10) and (2.12), is linear once the observation process Xt≤T is given. If moreover,
the initial prior distribution for U0 is given by a Gaussian distribution, say πatt0 , then
(Us,Xs) is qualified to be a conditional Gaussian process as described in detail in [8] for
the incompressible case. By Theorem 12.7 of [9], the conditional distribution of Ut given
the value of Xt≤T is given by the Gaussian distribution πt|t = N (mt, Rt), where mt, Rt

solve the following equation:

dmt = [−Γmt + Ft]dt+ σ−1
x RtP

∗
X(Xt)[dXt −PX(Xt)mtdt], (2.14)

dRt = [−ΓRt −RtΓ + ΣuΣ
∗
u − σ−2

x RtP
∗
X(Xt)PX(Xt)Rt]dt. (2.15)

As we will be interested in the GB part of this filter, we will decompose vectors and
matrices into sub-vectors and sub-matrices with indices in either KB or Kg:

Ut =

[
UB
t

Ug
t

]
, mt =

[
mB
t

mg
t

]
, Rt =

[
RB
t , St
S∗t , Rg

t

]
. (2.16)

Therefore, the conditional law for UB
t given Xt≤T is N (mB

t , R
B
t ).

2.2.2 Geostrophically balanced (GB) filter

By applying the geostrophic approximation, one can model the velocity field using ~vB

and noisy Lagrangian tracers using ~XB
l (s). The GB signal-observation system (UB

s ,X
B
s )

is conditional Gaussian again because (2.8) and (2.13) are jointly linear conditioned on
XB
s as developed in detail in [8]. The conditional distribution of UB

t given observation of
XB
t≥0 is N (mG

t , R
G
t ), where (mG

t , R
G
t ) are solutions to the following:

dmG
t = [−ΓBmG

t + FB
t ]dt+ σ−1

x RG
t PB∗

X (XB
s )[dXB

s −PB
X(XB

s )mG
t dt], (2.17)

dRG
t = [−ΓBRG

t −RG
t ΓB + ΣB

u ΣB∗
u − σ−2

x RB
t PB∗

X (XB
s )PB

X(XB
s )RB

t ]dt. (2.18)

We will assign the superscript G to every process related to this GB filter. By definition,
we can write πGt|t = ΠG

t (XB
t≤T ), i.e. the optimal filter is a function of the observation

process XB
t≤T .

As mentioned in Section 1, because ~vBs is incompressible, all the results of [8] are
applicable to this GB filter. The clear knowledge of the GB filter’s behavior listed in
Section 1 will be frequently referred to in order to understand the fundamental difference
made by the compressibility of the flows and how they depend on the Rossby number ε.

Note that this filter is an optimal perfect filter for the geostrophically balanced flow.
However the GB filter requires the Lagrangian trajectories of the GB flow field alone as
the observations. Such observations of trajectories due to the GB part of the flow are
inaccessible practically; actually only noisy Lagrangian trajectories associated with the
full rotating compressible flow field are observed in practice. This motives the reduced
filter discussed next.
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2.2.3 Reduced Filter

A reduced filter can be obtained by inputting the GB filter with noisy tracer observations
from the full compressible model, i.e. let πrt|t = ΠG

t (Xt≤T ). According to the setup of the

GB filter, πrt|t = N (mr
t , R

r
t ) with (mr

t , R
r
t ) following (2.17) and (2.18) while the observation

XB
t there is replaced by Xt. In other words, they follow:

dmr
t = −ΓBmr

tdt+ FB
t dt+ σ−2

x Rr
tP

B∗
X (Xt)[dXt −PB

X(Xt)m
r
tdt], (2.19)

dRr
t = [−ΓBRr

t −Rr
tΓ

B + ΣB
u ΣB∗

u − σ−2
x Rr

tP
B∗
X (Xs)P

B
X(Xs)R

r
t ]dt. (2.20)

Unlike the previous two filters, πrt|t is not the optimal filter for UB
t given Xt≤T , since when

we know the GB part of πt|t, N (mB
t , R

B
t ), is the optimal filter in this case. πrt|t can be

interpreted as an imperfect filter obtained by geostrophic approximation. Nevertheless,
it is possible that πrt|t is a close approximation to the optimal filter. In that case, the
reduced dynamics is safe to apply for a Lagrangian tracers’ filter.

2.2.4 Uncertainty Reduction

One practical question in filtering is how much uncertainty is reduced by one filter com-
pared with the unfiltered velocity field, meaning the absence of observations. Here the
prior distribution is given by the equilibrium distribution πattt , with mean ~matt

t and co-
variance Ratt. Empirical information theory, as in [17, 18, 22, 23], is applied to measure
this uncertainty reduction.

In the information-theoretic framework, one natural way to measure the lack of in-
formation in one probability density q, when the real distribution is p, is through the
relative entropy

P(p, q) =

∫
p ln

p

q
.

For our purposes, of key importance is the so-called Bayesian-update interpretation of
relative entropy. It states that if p = πt|t is a posterior distribution conditioned on
the observation Xt≤T and q is the corresponding prior distribution, which is the case
for q = πattt , then P(πt|t, π

att
t ) measures the additional information beyond πattt gained by

having observed Xt≤T , namely, the uncertainty reduction. Likewise, P(πGt|t, π
att
B,t) measures

the additional information from XB
t≤T for UB

s .
In the present paper, a special formula of relative entropy for Gaussian distributions

is particularly useful. Consider p ∼ N (~mp, Rp) and q ∼ N (~mq, Rq) are Gaussian, the
relative entropy is [24, 25]:

P(p, q) =
[

1
2
(~mp − ~mq)

TR−1
q (~mp − ~mq)

]
+ 1

2

[
tr(RpR

−1
q )−N − ln det(RpR

−1
q )
]
, (2.21)

where N is the dimension of both the distributions. The first term in brackets in (2.21)
is called the “signal”, it measures the lack of information in the mean weighted by model
covariance; the second term in brackets is called the “dispersion” and involves only the
covariance ratio. For our filtering application, (2.21) can be directly applied to compute
P(πt|t, π

att
t ) and P(πGt|t, π

att
B,t). This is because the complex-valued processes form conjugate

pairs, interested readers are directed to Appendix A.2 of [8] for detailed validations.
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3 Difference between filters in the small Rossby num-

ber limit

Following the discussion of Section 1, the impact of the geostrophic approximation over
filtering can be measured by the differences between the GB part of full filter (mB

t , R
B
t )

(2.14)-(2.15), the GB filter (mG
t , R

G
t ) (2.17)-(2.18), and the reduced filter (mr

t , R
r
t ) (2.19)-

(2.20). The objective of this section is to state theorems showing that these differences
are small when the Rossby number ε� 1.

As we will be interested in the limiting behavior as ε → 0, it is necessary for us to
think of families of processes parameterized by ε. Notice that the Rossby number ε and
the ratio δ do not enter the equation of GB flow UB

s as in (2.8); it is intuitive to fix a
realization of UB

t≥0, or equivalently ~vBt≥0 while changing the value of ε, δ. As a result, for
each fixed realization of ~vBt≥0, a family of Ug

t≥0 is coupled with it. For this purpose, in
certain situations the conditional distribution with a given realization of ~vBt≥0 is considered,
which is denoted as P~vB . For a.e. realization of ~vBt≥0, UB

t≤T is a bounded deterministic
process under P~vB . On the other hand, when one averages over all realization of ~vBt≥0, the
corresponding probability will be called the super-ensemble probability P.

Remark 3.1. Technically speaking, the conditional distribution P~vB defined here is a
regular conditional distribution, and its existence is due to the fact that the spaces we
considered here, R and C[0, t], are Polish under the uniform metric. For the technical
details, we refer to Theorems 6.3 and A1.1 of [26].

3.1 Statements of theorems

In order for two filters to have comparable results, it is necessary to require that they
have comparable initial conditions. An assumption over initial condition is defined:

Assumption 3.2. For a filter πt|t = N (mt, Rt) of the full modes and a filter π̃t|t =

N (m̃t, R̃t) of the GB modes, we say their initial values are comparable if

mB
0 = m̃0, RB

0 = R̃0, S0 = 0.

Here we use the decomposition as stated in (2.16), so it is assumed that there is no
correlation in the initial data between the GB modes and the gravity modes.

It is easy to check that the full filter, GB filter and reduced filter meet this requirement
if the equilibrium measures, πatt0 and πattB,0, are used as initial condition. Our first result
studies the difference between the optimal filter for Ut given Xt≤T and the reduced filter:

Theorem 3.3. Suppose both the full filter (2.14)-(2.15) and the reduced filter (2.19)-
(2.20) are started with comparable initial conditions as Assumption 3.2 states, then for any
fixed q ≥ 1, T > 0, the geostrophically balanced (GB) part of the full filter (mB

t≤T , R
B
t≤T )

and the reduced filter (mr
t≤T , R

r
t≤T ) have their difference bounded by the following moment

constraints with a proper ε-uniform constant M = M(q, T ):

(i) [E supt≤T ‖RB
t −Rr

t‖2q]
1
2q ≤ εM ;

(ii) [E supt≤T |mB
t −mr

t |q]
1
q ≤ εM .

10



Moreover, both claims hold when E is replaced by the conditional distribution with given
realization of ~vBt≥0, i.e. E~vB , for a.s. ~vBt≥0. However the ε-uniform constant M may
depend on ~vBt≥0 in this case.

The second results regards a similar phenomenon for the difference between the GB
filter and full filter:

Theorem 3.4. Suppose the full filter (2.14)-(2.15) and the GB filter (2.17)-(2.18) are
started with comparable initial conditions as Assumption 3.2 states. Suppose the proba-
bility space of the two filters are coupled so that the GB part of full flow, ~vBt≥0, coincides
with the flow of the GB filter and the stochastic forcing driving the tracers in two flows,
W x
s in (2.12) and (2.13) are identical, then for any q ≥ 1, T > 0, the GB part of the full

filter (mB
t≤T , R

B
t≤T ) and the GB filter (mG

t≤T , R
G
t≤T ) have their difference bounded by the

following moment constraints with a proper ε-uniform constant M = M(q, T,~vBs≥0) :

(i) [E~vB supt≤T ‖RB
t −RG

t ‖2q]
1
2q ≤ εM ;

(ii) [E~vB supt≤T |mB
t −mG

t |q]
1
q ≤ εM .

Both claims hold for a.e. realization of ~vBt≥0.

3.2 Mathematical framework: uniformly bounded moments

As the differences between stochastic processes are our major concern, fixing particular
norms will be helpful. Two relative strong and standard norms for stochastic processes
are the Lq(Ω, [0, T ]) norm and Lq(Ω, C([0, T ])) norm with a q ≥ 1, which are defined by:

‖xt≤T‖Lq([0,T ]) =

[
EQ

∫ T

0

|xt|qdt
] 1

q

, ‖xt≤T‖Lq(Ω,C([0,T ])) =

[
EQ sup

t≤T
|xt|q

] 1
q

.

Here xt can be scalar, vector or matrix valued, and | · | is the corresponding norm for
different spaces; the spectral norm is applied for matrices in this case.

For sake of brevity, T will be fixed as a constant in the following and we write Lq for
Lq(Ω, [0, T ]), LqC for Lq(Ω, C([0, T ])). As we will consider time intervals of finite length,
LqC-norm is a stronger norm than Lq-norm.

We will say a family of stochastic processes {xεt≤T} parameterized by ε > 0 under a
probability measure Q is

1. ε-uniformly Q-a.s. bounded, if there exists an M such that |xεs| ≤M , Q-a.s. for all
t ≤ T, ε > 0;

2. ε-uniformly bounded in Lq (or LqC) under Q, if there exists an M so ‖xt≤T‖Lq ≤M
(or ‖xt≤T‖Lq

C
≤M);

3. of order εd in Lq or LqC under Q, if {ε−dxεt≤T} is ε-uniformly bounded in Lq or LqC
respectively.

For example, the first claim of Theorem 3.3 can be stated as ‖Rr
t − RB

t ‖ is of order ε in
L2q
C ; the other claims of two theorems can also be stated in similar fashion. Occasionally

we also consider a family of random variables, rather than random processes, and then
the definitions above can be easily generalized under the norm ‖X‖Lq = (EXq)1/q.

The following lemma states the basic arithmetic properties of these concepts; we will
use it without detailed referencing in the following as it is applied frequently.

11



Lemma 3.5. Fix any q ≥ 1, let {vεt≤T} be ε-uniformly Q-a.s. bounded; {wεt≤T}, {xεt≤T} be
ε-uniformly bounded in LqC under Q; {yεt≤T}, {zεt≤T} be ε-uniformly bounded in Lq under
Q. Then the following hold under Q:

1. {vεt≤T} is ε-uniformly bounded in LqC; {wεt≤T} is ε-uniformly bounded in Lq;

2. {xεs + wεs} is ε-uniformly bounded in LqC; {yεs + zεs} is ε-uniformly bounded in LqC;

3. {vεsxεs} is ε-uniformly bounded in LqC; {vεsyεs} is ε-uniformly bounded in Lq;

4. {wεsxεs} is ε-uniformly bounded in L
q
2
C; {yεszεs} is ε-uniformly bounded in L

q
2 ;

5. If q ≥ 2, {
∫ s

0
yεrz

ε
rdr} is ε-uniformly bounded in L

q
2
C.

Proof. The first three claims are just verification of the definitions using Minkowski in-
equality. For the fourth, apply Cauchy Schwarz:

EQ sup
t≤T
|wεsxεs|

q
2 ≤ EQ sup

t≤T
|wεs|

q
2 sup
t≤T
|xεs|

q
2 ≤

[
EQ sup

t≤T
|wεs|qEQ sup

t≤T
|xεs|q

] 1
2

;

EQ

∫ T

0

|yεszεs |
q
2 ds ≤ EQ

∫ T

0

|yεs|qds EQ

∫ t

0

|zεs |qds.

The fifth claim comes by applying Young’s inequality, Minkowski inequality and Hölder’s
inequality in a sequel:[

sup
t≤T

∫ t

0

yεsz
ε
sds

] q
2

≤
[ ∫ T

0

|yεs||zεs |ds
] q

2

≤
[ ∫ T

0

1
2
|yεs|2 + 1

2
|zεs |2ds

] q
2

≤
[ ∫ T

0

|yεs|2ds

] q
2

+

[ ∫ T

0

|zεs |2ds

] q
2

≤
∫ T

0

(|yεs|q + |zεs |q)ds.

Taking expectation with Q on both hand sides gives us the claim.

3.3 Intuition: fast-wave averaging

Underneath the forthcoming proof lies a simple idea: for a complex valued process with
constant fast angular rotation on the complex plane, e.g. exp(iε−1t), its integral is of
an order reciprocal to its angular speed, say ε. Moreover, for any fixed C1 process f(t),
the time integral of its product with exp(iε−1t) is or order ε as well, using the following
integration by parts formula:∫ T

0

f(t) exp(iε−1t)dt = iε

[
− exp(iε−1t)f(t)

∣∣∣∣T
0

+

∫ T

0

ḟ(t) exp(iε−1t)dt

]
.

As a matter of fact, this Riemann-Lebesgue lemma type of argument was also used in
the classical deterministic shallow water equation to explain the mode reduction in the
singular limit. In [12, 14, 15], it is shown that the velocity field can be decomposed as
~vt = ~vBt + exp(−it/ε)~wt + o(1) as ε → 0, where the first and second term represent the
GB modes and gravity modes.

In our context, the gravity modes are evidently fast rotating. Looking back at their
dynamics (1.2), v̂k has roughly an angular speed ωk, which is of order ε−1. What is left to

12



prove for our theorems is two fold: to show gravity waves’ contribution to other elements
in the filter, say the full filter’s GB part, comes from integrated equations; we also need
to construct a Riemann-Lebesgue lemma type of argument for stochastic processes under
the setting of Section 3.2. The first objective is done by writing down the equations
(2.14)-(2.20) in the fashion that Ug

s are shown explicitly. This will be carried out in
detail during the proofs of Theorem 3.3 and 3.4. The second objective is fulfilled by the
following two lemmas:

Lemma 3.6. Let xεt be a family of d-dimensional processes under a probability measure
Q with dynamics:

dxεt = (Aεt + iΩε)x
ε
tdt+ bεtdt+Dε

tdWt.

If {Aεt≤T} is ε-uniformly Q-a.s. bounded, and {xε0}, {bεt≤T}, {Dε
t≤T} are ε-uniformly bounded

in L2q under Q for a q ≥ 1, while Ωε is a real diagonal matrix, then {xεt≤T} is ε-uniformly

bounded in L2q
C under Q.

Proof. Let yεt = exp(−iΩεt)x
ε
t , then by Itô’s formula, yεt solves:

dyεt = [exp(−iΩεt)A
ε
t exp(iΩεt)]y

ε
tdt+ exp(−iΩεt)b

ε
tdt+ (exp(−iΩεt)D

ε
t )dWt.

This can be seen as a diffusion process. Notice that ‖ exp(±iΩεt)‖ = 1, we can simply
apply Theorem 2.4.9 of [27] with x̃t ≡ 0, which yields

E sup
t≤T
|xεt |2q = E sup

t≤T
|yεt |2q ≤ N(q, A, T )(‖xε0‖

2q
L2q + ‖bεt≤T‖

2q
L2q + ‖Dε

t≤T‖
2q
L2q)

with a function N . Here A is a constant such that ‖Aεt‖ ≤ A a.s. for all t ≤ T .

Lemma 3.7. Consider a family of d-dimensional processes under a probability measure
Q with dynamics:

dxεt = (Aεt + iΩε)x
ε
tdt+ bεtdt+Dε

tdWt.

Assume all the conditions in Lemma 3.6 hold and εΩε has a non singular limit for ε→ 0,
then the following two hold:

(i) Suppose q ≥ 2, and there is a family of processes

cεt = cε0 +

∫ t

0

hεsds+

∫ t

0

Hε
sdWs,

with {cε0}, {hεt≤T} and {Hε
t≤T} being ε-uniformly bounded in L2q under Q, then the

process zεs :=
∫ s

0
cε∗r x

ε
rdr is of order ε in LqC under Q.

(ii) Assume moreover that Aεt ≡ Aε, Dε
t ≡ 0 and xε0 = 0, while the drift bεt follows the

dynamics:
dbεt = ψεtdt+ Ψε

tdWt

with {ψεt≤T} being ε-uniformly bounded in L2q under Q and {Ψε
t≤T} being ε-uniformly

a.s. bounded, then {xεt≤T} is of order ε in L2q
C under Q.

Remark 3.8. Our problem can also be interpreted in the classical multi-scale analysis
setting, as the complex argument of the gravity modes are fast processes while the GB
modes and the modulus of the gravity modes are slow processes. Yet, as the filter equa-
tions involve multiple processes, the classical multi-scale decomposition analysis is more
cumbersome than the direct approach through Lemma 3.7.
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Proof. Since there is only one measure Q in this lemma, we will omit its appearance.
Part (i) Denote f εt = Aεtx

ε
t + bεt , by Lemma 3.6 and Hölder’s inequality, {f εt≤T} is ε-

uniformly bounded in L2q. Denote the jth diagonal entry of Ωε as wεj , then the jth
component of xεt is the solution to

d(xεt)j = iωεj (x
ε
t)jdt+ [f εt dt+Dε

tdWt]j,

here and after ( )j denotes the jth component of a vector. Hence (xεt)j can be written as

(xεt)j = exp(iωεj t)(x
ε
0)j +

∫ t

0

exp(iωεj (t− s))[f εsds+Dε
sdWs]j. (3.1)

Therefore if we denote gεt =
∫ t

0
xεsds, g

ε
t is progressively measurable with the following

formulation using Fubini’s theorem for stochastic integral [28]:

ε−1gεt =
1

iεωεj

[
(exp(iωεj t)− 1)(xε0)j +

∫ t

0

(exp(iωεj (t− s))− 1)[f εsds+Dε
sdWs]j

]
. (3.2)

Notice that, first, | exp(iωεjs)| ≤ 1 and εωεj are both ε-uniformly bounded; second the
process

φεt :=

∫ t

0

(exp(iωεj (t− s))− 1)[f εsds+Dε
sdWs]j

is an Itô process with terms ε-uniformly bounded in L2q, so by Lemma 3.6, {φεt≤T} is

ε-uniformly bounded in L2q
C . So in the view of (3.2), {gεt≤T} is of order ε in L2q

C .
Apply the integration by parts formula for stochastic integrals to zεt , we have

ε−1zεt = cε∗t (ε−1gεt )−
∫ t

0

hε∗s (ε−1gεs)ds−
∫ t

0

[(ε−1gε∗s )Hε∗
s dWs]

∗.

Using Lemma 3.6 and the conditions in this lemma, {cεt≤T} is ε-uniformly bounded in

L2q
C . Hence cε∗s (ε−1gεs) is ε-uniformly bounded in LqC . Moreover,

w̃εt :=

∫ t

0

hε∗s (ε−1gεs)ds+

∫ t

0

[(ε−1gε∗s )Hε∗
s dWs]

∗

is an Itô process with terms ε-uniformly bounded in Lq, so by Lemma 3.6, {w̃εt≤T} is
ε-uniformly bounded in LqC . As a consequence, {zεt≤T} is of order ε in LqC .

Part (ii) With xε0, D
ε
t = 0, (3.1) becomes: (xεt)j =

∫ t
0

exp(iωεj (t− s))(f εs )jds. Apply Itô’s
formula to f εt = Aεxεt + bεt ,

df εt = [Aε[(Aε + iΩε)x
ε
t + bεt ] + ψεt ]dt+ Ψε

tdWt.

Denote uεt = Aε[(Aε+iΩε)x
ε
t +b

ε
t ]+ψ

ε
t , according to Lemma 3.6, it is ε-uniformly bounded

in L2q. Consider the following integration by part formula applied to (3.1):

ε−1(xεt)j = ε−1

∫ t

0

exp(iωεj (t− s))(f εs )jds

=
exp(iωεj t)

iωεjε

[
(f ε0 )j(1− exp(−iωεj t))−

∫ t

0

(1− exp(−iωεjs))(u
ε
sds+ Ψε

sdWs)j

]
.

The integral process
∫ t

0
(1 − e−iω

ε
j s)(uεsds + Hε

sdWs)j fits the conditions of Lemma 3.6,

hence {xεt≤T} is of order ε in L2q
C .
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4 Proofs for the theorems

4.1 Limiting reduced filter behavior

Proof of Theorem 3.3. We will only prove the statements under P, hence we do not men-
tion P explicitly. The proof for the case of P~vB is identical. To see this it suffices to single
out the process UB

t in our proof, which under P~vB is a deterministic bounded process for
a.e. realization of ~vBt≥0.

In order to analyze the GB part and gravity part of the vector and matrix processes,
we use the following notation:

Rt =

[
RB
t , St
S∗t , Rg

t

]
, Pt =

[
Pv∗
X (Xt)P

B
X(Xt) Pv∗

X (Xt)P
g
X(Xt)

Pg∗
X (Xt)P

B
X(Xt) Pg∗

X (Xt)P
g
X(Xt)

]
:=

[
PB
t Qt

Q∗t Pg
t

]
,

one can check explicitly that entry-wise (Pt)j,k =
∑L

l=1 exp(i(~k −~j) · ~Xl(t))(~r
∗
j~rk).

Γ =

[
ΓB 0
0 Γg − Ωεi

]
, Ωε =


. . .

ωk

. . .

 , Σ = ΣuΣ
∗
u =

[
ΣB∗
u ΣB

u 0
0 Σg∗

u Σg
u

]
=

[
ΣB 0
0 Σg

]
.

Part (i) First of all, Pt, PX(Xt) and their sub-matrices are all ε-uniformly a.s. bounded,
since these matrices have entries bounded by either L or 1 in norm. Next we show {Rt≤T}
is ε-uniformly a.s. bounded. This can be done by seeing Rt is the solution to the Riccati
equation (2.15). By the comparison theorem, Theorem 4.1.4 [29], Rt will be bounded
above in the Hermitian sense by the solution of the following:

dUt = [−ΓUt − UtΓ∗ + Σ]dt.

As this equation is diagonalizable, and ‖ exp(−Γs)‖ is ε-uniformly bounded for t ≤ T ,
one can easily find an ε-uniform upper bound for Rt. Therefore as sub-matrices, RB

t , R
g
t

are also ε-uniformly a.s. bounded. A similar ε-uniformly a.s. upper bound can be found
for ‖Rr

t‖.
Next, we will show the off-diagonal term of Rt, denoted by St in (2.16), is of order ε

in L2q
C . Rewrite the differential Riccati equation (2.15) in sub-matrices form:

dRt =

[
−2ΓBRB

t + ΣB [−2Γ + iΩε]St
[−2Γ− iΩε]S

∗
t −2ΓGRg

t + ΣG

]
dt− σ−2

x RtPtRtdt, 2Γ := ΓB + ΓG. (4.1)

Take out the (KB,Kg)th sub-matrix, which is the evolution for St:

dSt = [−2Γ + iΩε]Stdt− σ−2
x [RtPtRt]KB ,Kgdt.

Here we use [A]KB ,Kg to denote the (KB,Kg)th sub-matrix of a matrix A. In order to
apply Lemma 3.7 (ii) on St, it suffices to consider each column of St, i.e. with index
k ∈ Kg,

[Ṡt]KB ,k = [−2Γ + iΩε][St]KB ,k − σ−2
x [RtPtRt]KB ,k.

The time differential for the drift term is

dRtPtRt = (ṘtPtRt +RtPtṘt)dt+RtdPtRt.
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Using that Pt and Rt are both ε-uniformly a.s. bounded, Ṙt ,i.e. (2.15), as a continuous
function of them is also ε-uniformly a.s. bounded. On the other hand as Pt depends
smoothly on Xt, so by applying the Itô formula, for each fixed k ∈ Kg there are some
proper bt and Σt such that

d[RtPtRt]KB ,k = btdt+ ΣtdW
x
t ,

where |bt| ≤ b(|UB
t | + |U

g
t | + 1), ‖Σt‖ ≤ b with ε-uniform b. As UB

t and Ug
t satisfy the

conditions of Lemma 3.6, they are ε-uniformly bounded in L2q
C . Hence [Ṡt]KB ,k qualifies

for the application of Lemma 3.7 (ii). Therefore, St is of order ε in L2q
C .

Next, we will study the evolution of RB
t , the (KB,KB) sub-block of (4.1), which can

be written out explicitly:

dRB
t = [−2ΓBRB

t + ΣB − σ−2
x RB

t PB
t R

B
t − σ−2

x (StQ
∗
tR

B
t +RB

t Q
∗
tS
∗
t + StP

B
t S
∗
t )]dt

= [−2ΓBRB
t + ΣB − σ−2

x RB
t PB

t R
B
t − σ−2

x Lt]dt

with Lt being the sum in the bracket of the first line. Notice that {Rt≤T}, {Pt≤T} are
both ε-uniformly a.s. bounded, {Lt≤T} is of order ε in L2q

C since {St≤T} is. Hence RB
t can

be seen as a solution of (2.20) with a perturbation Lt≤T , as PB
t = PB∗

X (Xt)P
B
X(Xt). For

this purpose, we apply the result of [30], where it is shown that if δ ≤ (4ν2pS)−1 then
∆Rt = RB

t −Rr
t is bounded by

‖∆Rt‖ ≤
2νpδ

1 +
√

1− 4ν2pSδ
a.s. ∀t ≤ T,

with the constants given by

ν = max
t≤T

{∫ t

0

‖Φ(s, t)‖ds
}
, p = sup

t≤T
‖Rr

t‖, S = sup
t≤T
‖PB

t ‖, δ = σ−2
x sup

t≤T
‖Lt‖.

(4.2)
Here Φ is the fundamental matrix generated by −ΓB−σ−1

x PsR
r
s, which is also ε-uniformly

a.s. bounded. Notice that ν, p, S are all ε-uniformly bounded, hence if we write the a.s.
upper bound of ‖RB

s ‖, ‖Rr
s‖ as A, then by the Markov inequality

E sup
t≤T
‖∆Rt‖2q = E sup

t≤T
‖∆Rt‖2q1{δ≥(4ν2pS)−1} + E sup

t≤T
‖∆Rt‖2q1{δ<(4ν2pS)−1}

≤ 2AP(δ ≥ (4ν2pS)−1) + 4qν2qp2qEδ2q

≤ 22q+1Aν4qp2qS2qEδ2q + 4qν2qp2qEδ2q. (4.3)

Since Eδ2q = σ−4q
x ‖Lt≤T‖

2q

L2q
C

, it is of order ε2q. Hence {∆Rt≤T} is also of order ε in L2q
C .

Part (ii) Recall that dXt = PX(Xt)Utdt + σxdW
x
t , we can expand the posterior mean

dynamics (2.19) and (2.14)’s GB part, and rewrite them in the following fashion:

dmr
t = (−2ΓBmr

t + FB
t )dt+ σ−2

x Rr
tP

B∗
X (Xt)[dXt −PB

X(Xt)m
r
tdt]

= (−2ΓB − σ−2
x Rr

tP
B
t )mr

tdt+ [FB
t + σ−2

x Rr
tP

B∗
X (Xt)PX(Xt)Ut]dt+ σ−1

x Rr
tP

B∗
X (Xt)dW

x
t

= Artm
r
tdt+ Cr

t dt+Dr
tdW

x
t . (4.4)
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And the GB component of the full filter follows:

dmB
t = (−2ΓBmB

t + FB
t )dt+ σ−2

x (RB
t PB∗

X (Xt) + StP
g∗
X (Xt))dXt − σ−2

x (RB
t PB

t + StQ
∗
t )m

B
t dt

− σ−2
x (RB

t Qt + StP
g
t )m

g
tdt

= (−2ΓB − σ−2
x (RB

t PB
t + StQ

∗
t ))m

B
t dt− σ−2

x (RB
t Qt + StP

g
t )m

g
tdt

+ (FB
t + σ−2

x (RB
t PB∗

X (Xt) + StP
g∗
X (Xt))PX(Xt)Ut)dt+ σ−1

x RB
t PB∗

X (Xt)dW
x
t

= ABt m
B
t dt+BB

t m
g
tdt+ CB

t dt+DB
t dW x

t (4.5)

The HB
t and Hr

t , H = A,B,C,D, are defined by their previous lines in an obvious way.
It is important to notice that {HB

t≤T} and {Hr
t≤T} are ε-uniformly a.s. bounded for

H = A,B,D and in L2q for H = C. If we denote ∆Ht = HB
t −Hr

t , then

∆At = −σ−2
x [(∆Rt)P

B
t + StQ

∗
t ], ∆Dt = σ−1

x (∆Rt)P
B∗
X (Xt),

are both of order ε in L2q
C by part (i). Likewise

∆Ct = [(∆Rt)P
B∗
X (Xt) + StP

g∗
X (Xt)]PX(Xt)Ut

is of order ε in Lq by part (i).
Let ΨB(s, t),Ψr(s, t) be the fundamental matrice generated by ABt and Art respectively.

Evidently they are both ε-uniformly a.s. bounded. Next we show that sups≤t≤T ‖∆Ψ(s, t)‖
is of order ε in L2q. To do this, consider two processes

xBt = ΨB(s, t)xs, xrt = Ψr(s, t)xs, |xs| = 1;

and their difference yt = xBt − xrt = ∆Ψ(s, t)xs. They are all ε-uniformly bounded
processes. Moreover, the differential form of yt is dyt = ABt ytdt+ (ABt −Art )xrtdt. We can
establish the following bound using Grönwall’s inequality,

|yt| ≤
∫ t

s

‖ΨB(u, t)‖‖ABu − Aru‖|xru|du a.s.

As ΨB(u, s) and xru are both ε-uniformly a.s. bounded, and {∆At≤T} is of oder ε in L2q
C ,

one can establish an ε-uniform a.s. bound for |yt| with different choice of s ≤ t ≤ T .
Since ‖∆Ψ(s, t)‖ = sup|xs|≤1 |ys|, sups≤t≤T ‖∆Ψ(s, t)‖ is of order ε in L2q.

Now go back to mB
t and mr

t , they can be written out as:

mB
t = ΨB(0, t)mB

0 +

∫ t

0

ΨB(s, t)BB
s m

g
sds+

∫ t

0

ΨB(s, t)[CB
s ds+DB

s dW x
s ],

mr
t = Ψr(0, t)mr

0 +

∫ t

0

Ψr(s, t)[Cr
sds+Dr

sdW
x
s ].

The difference between the two is:

∆Ψ(0, t)mB
0 +

∫ t

0

ΨB(s, t)BB
s m

g
sds+

∫ t

0

∆(Ψ(s, t)Cs)ds+

∫ t

0

∆(Ψ(s, t)Ds)dW
x
s . (4.6)

From the previous derivation, the first term above, ∆Ψ(0, t)mB
0 is of order ε in L2q

C . The
third term, ∫ t

0

∆(Ψ(s, t)Cs)ds =

∫ t

0

(∆Ψ(s, t))CB
s ds+

∫ t

0

Ψr(s, t)(∆Cs)ds,
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as a process, is of order ε in LqC . Likewise, the fourth term in (4.6) is∫ t

0

∆(Ψ(s, t)Ds)dW
x
s =

∫ t

0

(∆Ψ(s, t))DB
s dW x

s +

∫ t

0

Ψr(s, t)(∆Ds)dW
x
s

as a process, is of order ε in LqC .

So it remains to show the second term in (4.6),
∫ t

0
ΨB(s, t)BB

s m
g
sds, is of order ε in

LqC . It suffices to check the conditions of Lemma 3.7, part (i). First, using the gravity
part of (2.14), which alternates superscripts g and B in (4.5), we rewrite dmg

t in the
following fashion:

dmg
t = [Agt + iΩε]m

g
tdt+Bg

tm
B
t dt+ Cg

t dt+Dg
t dW

x
t

where Agt , D
g
t are ε-uniformly bounded a.s and Bg

tm
B
t , C

g
t are ε-uniformly bounded in L2q

C .
This qualifies mg

t as a fast rotational process. Next, recall that

BB
t = −σ−2

x (RB
t Qt + StP

g
t );

applying the Itô’s formula, one can verify that for each row of BB
t , i.e. each column of

BB∗
t , there are processes bt,Σt such that:

d[BB∗
t ]Kg ,k = btdt+ ΣtdW

x∗
t , k ∈ Kg

with |bt| ≤ b(|Ut| + 1), |Σt| ≤ b a.s. for some ε-uniform b. So each row of BB
t , and

hence also BB
t , qualify as the cεt integrating process in Lemma 3.7, part (i). Therefore,

Mt :=
∫ t

0
BB
s m

g
sds is of order ε in LqC . Apply the integration by part formula:∫ t

0

ΨB(s, t)BB
s m

g
sds = Mt −

∫ t

0

ΨB(s, t)ABs Msds.

Notice that ΨB(s, t) and ABs are ε-uniformly a.s. bounded,
∫ t

0
ΨB(s, t)BB

s m
g
sds as a

process is of order ε in LqC .

Remark 4.1. If one carefully follow the σx’s appearance in various perturbations, one
finds it comes as a coefficient of form σ−2

x . In a sense, this indicates that small σx leads to
larger deviation between different filters, which will be shown in numerical experiments by
Figure 5.6 in Section 5. Likewise, the number of L also increases the difference through
the term Pt on average.

4.2 Limiting tracer trajectory

Before we proceed to the proof of Theorem 3.4, we must study the trajectory of tracers
in full flow, ~Xl(t), and in GB flow, ~XB

l (t), as they are the input for the full filter and GB
filter respectively. Interestingly, they are close to each other for small Rossby number,
because the contribution of gravity waves to the tracers’ dislocation comes in an integral
fashion. Thus, for small ε, the difference of the two trajectories is of order ε for a bounded
time interval. More precisely, we have the following:

Proposition 4.2. Fix any fixed T > 0, q > 1, consider a noisy Lagrangian tracer ~Xl(t)

driven by the full flow ~vt and a noisy Lagrangian tracer ~XB
l (t) driven by the GB part

~vBt . Assume the stochastic noises W x
l (s) in (1.3) and (1.4) that drive both tracers are

identical. Then the difference of two tracers’ location yt := ~Xl(s) − ~XB
l (t), t ≤ T is of

order ε in LqC under P~vB for a.s. realization of ~vBt≥0.
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Proof. With any velocity field ~ut≤T , denote

|~u|1,∞ := sup
t≤T,~x

|~u(~x, t)| ∨ |∂~x~u(~x, t)|.

First note that according to (1.3) yt is the solution to the following:

ẏt = ~vB(yt + ~XB
l (t), t)− ~vB( ~XB

l (t), t) + ~vg( ~Xl(t), t), y0 = 0.

Therefore |ẏt| ≤ 2|~vB|1,∞ + |~vg|1,∞. As ~vg(~x) = PX(~x)Ug
s and Ug

s is ε-uniformly bounded
in L2q

C by Lemma 3.6, so yt≤T and |ẏt≤T | are both ε-uniformly bounded in L2q
C under P~vB

for a.s. realization of ~vBt≥0. Using the bound |~vB(yt+ ~XB
l (t), t)−~vB( ~XB

l (t), t)| ≤ |~vB|1,∞|yt|
and the formula of ẏt, one has

|yt| ≤
∣∣∣∣ ∫ t

0

~vg( ~Xl(s), s)ds

∣∣∣∣+

∣∣∣∣ ∫ t

0

(~vB(ys + ~XB
l (s), s)− ~vB( ~XB

l (s), s))ds

∣∣∣∣
≤
∣∣∣∣ ∫ t

0

~vg( ~Xl(s), s)ds

∣∣∣∣+

∫ t

0

|~vB|1,∞|ys|ds

Using the integral form of Grönwall’s inequality, one can conclude that:

|yt| ≤
∣∣∣∣ ∫ t

0

~vg( ~Xl(r), r)dr

∣∣∣∣+

∫ t

0

∣∣∣∣ ∫ s

0

~vg( ~Xl(r), r)dr

∣∣∣∣|~vB|1,∞ exp(|~vB|1,∞(t− s))ds

≤
[
1 + exp(|~vB|1,∞t)

]
sup
t≤T

∣∣∣∣ ∫ t

0

~vg( ~Xl(r), r)dr

∣∣∣∣. (4.7)

Since |~vB|1,∞ is a deterministic constant under P~vB , it suffices to show
∫ t

0
~vg( ~Xl(r), r)dr

is of order ε in LqC to prove this proposition. Next notice that∫ t

0

~vg( ~Xl(s), s)ds =
∑
k∈Kg

~rk

∫ t

0

exp(i~k · ~Xl(s))v̂k(s)ds.

For each gravity mode k ∈ Kg, v̂k is a fast rotational process based on its dynamics (2.9);

on the other hand by Itô’s formula, exp(i~k · ~Xl(s)) has its differential as:

d exp(i~k · ~Xl(s)) = exp(i~k · ~Xl(s))[i~k ·~v( ~Xl(s), s)−|~k|2σ2
x]ds+i exp(i~k · ~Xl(s))~k ·σxdW x

l (s).

Using Lemma 3.6, it is elementary to check that each terms above is ε-uniformly bounded
in Lq under P~vB . According to Lemma 3.6 (i),

∫ t
0

exp(i~k · ~Xl(s))v̂k(s)ds hence also∫ t
0
~vg( ~Xl(s), s)ds are of order ε in LqC under P~vB .

Remark 4.3. Judging from (4.7), one sees the reason why P~vB instead of P must be
applied here, because the expectation of (4.7) might not be finite. This also implies that
in practice this proposition is hard to be validated in numerics for large T .

Remark 4.4. Since ~XB
l (s) are driven by incompressible flows, by Theorem 3.1 of [8] the

invariant distribution for their projection over the periodic domain T2 = (−π, π]2 is the

uniform distribution. By Proposition 4.2, we know the distribution of ~Xl(s) is close to
the uniform distribution for ε� 1 if they are distributed uniformly initially. This will be
found numerically in Section 5 by comparing the configurations of tracers in Figure 5.2
for different ε.
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4.3 GB Filter as an approximation of the full filter

Proposition 4.2 indicates that trajectories observed by the GB filter and the full filter are
close to each other for order one times and small ε. Armed with this result, the proof of
Theorem 3.4 is rather similar to the one of Theorem 3.3.

Proof of Theorem 3.4. By Theorem 3.3, it suffices to show that Rr
s − RG

s ,m
r
s −mG

s are
processes of order ε in L2q

C or LqC in P~vB for a.s. realization of ~vBt≥0. In other words, we
are comparing the GB filter and the reduced filter instead. For this purpose, we will fix
a realization of ~vBt≥0 and discuss everything under P~vB , of which the appearance will be
omitted.
Part (i) First of all, we compare the evolution of RG

t and Rr
t , (2.18) and (2.20), they

share the same initial value and:

Ṙr
t = −ΓBRr

t −Rr
tΓ

B+ΣB−σ−2
x Rr

tP
B
t R

r
t , ṘG

t = −ΓBRG
t −RG

t ΓB+ΣB−σ−2
x RG

t PG
t R

G
t .

where PB
t = PB∗

X (Xt)P
B
X(Xt) and PG

t = PB∗
X (XB

t )PB
X(XB

t ). Notice that PB∗
X (Xt) is a

C1 function of its variable and by Proposition 4.2, |Xs −XG
s | is of order ε in L2q

C , hence
is also the process (PG

s − PB
s ). Applying the sensitivity analysis of the Riccati equation

[30], we have:

‖Rr
s −RG

s ‖ ≤
2νpδ

1 +
√

1− 4ν2pSδ
P~vB -a.s. ∀t ≤ T,

with the same definition for ν, p, S as in (4.2) but δ = σ−2
x sups≤T ‖PG

s −PB
s ‖. Then as in

(4.3), using δ being of order ε in L2q, we can conclude ‖Rr
s −RG

s ‖ is of order
√
ε in L2q

C .
Part (ii) Recall (4.4), which can be written into following fashion:

dmr
t = (−ΓB − σ−2

x Rr
tP

B
t )mr

tdt+ [FB
t + σ−2

x Rr
tP

B∗
X (Xt)P

B
X(Xt)Ut]dt+ σ−1

x Rr
tP

B∗
X (Xt)dW

x
t

= (−ΓB − σ−2
x Rr

tP
B
t )mr

tdt+ [FB
t + σ−2

x Rr
tP

B
t UB

t ]dt+ σ2
xR

r
tQtU

g
tdt+ σ−1

x Rr
tP

B∗
X (Xt)dW

x
t

= Artm
r
tdt+Br

tU
g
tdt+ Cr

t dt+Dr
tdW

x
t .

For the GB filter, the evolution of mG
t will be

dmG
t = (−ΓBmG

t + FB
t )dt+ σ−2

x RG
t PB∗

X (XB
t )dXB

t − σ−2
x RB

t PG
t m

G
t dt

= (−ΓB − σ−2
x RG

t PG
t )mG

t dt+ (FB
t + σ−2

x RG
t PG

t UB
t )dt+ σ−1

x RG
t PB∗

X (XB
t )dW x

t

= AGt m
G
t dt+ CG

t dt+DG
t dW x

t .

It is important to notice that {HG
t≤T} and {Hr

t≤T} are ε-uniformly a.s. bounded for
H = A,B,D and in L2q for H = C. If we denote ∆Hs = HG

s −Hr
s , then

∆As = −σ−2
x [(∆Rs)P

G
s +Rr

s(P
G
s −PB

s )],

∆Ds = σ−1
x [(∆Rs)P

B∗
X (Xs) +Rr

s(P
B∗
X (XG

s )−PB∗
X (Xs))],

are both of order ε in L2q
C by part (i). Likewise ∆Cs = −(∆As)U

B
t is of order ε in Lq by

part (i). Moreover Ug
t is the solution to the following:

dUg
t = (−Γg + iΩε)U

g
tdt+ F g

t dt+ Σg
udW

g
u (t),

and the differential of each column of Br∗
t can be written as

d[Br∗
t ]Kg ,k = σ2

xd[Q∗tR
r∗
t ]Kg ,k = btdt+ ΣtdW

x
t

with |bt| ≤ b(|Ug
t |+ |UB

t |+ 1), ‖Σt‖ ≤ b for an ε-uniform b, (this b could depend on ~vBt≥0).
From here, the proof follows exactly the same as the one of Theorem 3.3 after the line of
(4.4); the only difference is mg

t is replaced by Ug
t , P replaced by P~vB .
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5 Numerical experiments for filtering performance

The exact analytic expressions for the filter statistics for the two optimal filters and the
reduced filter enable us to perform numerical experiments without further approximation.
Our goals here are to assess filter performance both for small ε as well as moderate ε.
Here are the details of our setups.

Recall the random rotating shallow water flow (2.1) and the evolution of the corre-
sponding random amplitudes (2.2) described in Section 2. We set dB = dg = 0.05 in (2.2)
such that the decorrelation time for both the GB and gravity modes is around 20. The pa-
rameter δ in (2.3) is set to be 1, implying that the values of Rossby and Froude number are
the same. We consider the finite time interval T ∈ [0, 40] and assume Fourier wavenum-

bers ~k = (k1, k2) in [−2, 2]2. Therefore, the total number of modes is |K| = 75 with
|KB| = 25 GB modes and |Kg| = 50 gravity modes. The GB modes of large scale (0, 0),
(±1, 0) and (0,±1) wavenumbers are deterministic while other GB modes and all gravity
modes are stochastic. One reason to regard the leading GB modes to be deterministic
is because people usually have some knowledge about the large scale motion in practice.
Uniform energy spectrum is utilized for the stochastic modes in different wavenumbers
with Ek = σ2

~k,0
/(2dB) = 3/10 in each GB mode and Ek = σ2

~k,±/(2dg) = 1/10 in each

gravity mode, respectively.
The deterministic forcing f~k,0 and f~k,± in (2.2) have the following form

f~k,0 = a~k,0 cos(φt) + b~k,0, for ~k = ~0,

f~k,0 = a~k,0 exp(iφt) + b~k,0, for ~k 6= ~0,

and
f~k,± = a~k,± exp(iφt) + b~k,±, for all ~k.

Here, we pick up b~k,0 =
√

3/20 for mode ~k = (0, 0), b~k,0 =
√

3/20(1 + i) for modes (1, 0)

and (0, 1) and b~k,0 =
√

3/20(1− i) for modes (−1, 0) and (0,−1). The mean forcing b~k,0
and b~k,± for the stochastic modes are all set to be zero. Besides, we set a~k,0 =

√
3/10 and

a~k,± = 1/10 for all ~k and therefore the amplitude of deterministic forcing is slightly larger
than that of the stochastic forcing. Finally, we take φ = 2π/10 such that the temporal
period of the forcing is 10.

For the initialization of filters, the states of the GB mode in the largest scale (0, 0)
and all the stochastic modes are set to be consistent with the value at their statistical
equilibrium. The initial values of the other four deterministic GB modes (±1, 0) and
(0,±1), are all set to be zero, which is different from their equilibrium mean. The initial
uncertainty of the stochastic modes is given by the equilibrium covariance of the dynamics
(2.2) with 3/10 and 1/10 for each GB and gravity mode, respectively, while that of each
deterministic GB mode is set to be 3/10, which is the same as the equilibrium energy in
all other stochastic GB modes. This initialization evidently satisfies Assumption 3.2.

The tracers used in the full filter (2.14)–(2.15) and the reduced filter (2.19)–(2.20) are

identically the same, i.e., ~Xl(s) in (2.12). As shown in (2.12), the velocity of these tracers
is the sum of the full velocity plus some noise. On the other hand, the tracers used in
the GB filter (2.17)–(2.18) are ~XB

l (s) in (2.13), which is based only on the GB part of
the full flow and therefore are different from those in (2.12). For the sake of comparing
the filtering skill, we impose the same observation noise process W x

l in both (2.12) and
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(2.13). Furthermore, the initial locations of the tracers used in both the full filter and GB
filter are the same and are distributed uniformly in the periodic domain T2 = [−π, π]2.

Two dynamical regimes will be considered. The first one is a fast rotation regime
with small Rossby number ε = 0.1, which mimics motion in the midlatitude atmosphere
or ocean [12]. Another dynamical regime involves moderate rotation with ε = 1. Note
that the GB part of the flow is kept the same in both regimes and the only difference lies
in the gravity part of the flow. We focus on the following issues:

• Recovery skill of the GB part of the flow using the full filter, and comparison with
the idealized GB filter.

• The conditions that enable the imperfect filter, i.e. the reduced filter, to have high
skill in filtering GB part of the flow.

• Uncertainty reduction in both GB and gravity parts of the flow using full filter.

The main results from numerics are summarized as follows with ε being the key parameter:

Comparison between the full and the GB filter

• Starting from the same location, the tracer trajectories of the two filters are close
to each other in an order O(1) time for ε = 0.1 as shown in Proposition 4.2 for
ε� 1. The two trajectories depart quickly in the ε = 1 regime.

• The long-term averaged statistics in recovering the GB part of the flow using the
full filter overlaps with that using GB filter in ε = 0.1 regime and is only slightly
worse than the latter in ε = 1 regime. Filtering skill increases with the increase of
L and decrease of σx.

• An information barrier [8] is observed with the increase of L using both filters in
both regimes.

• The long-term distribution of the tracers’ location using the full filter is nearly
uniform in ε = 0.1 regime but highly non-uniform in the ε = 1 regime while that
using the GB filter is always uniform due to the incompressibility.

Comparison between the full and the reduced filter

• The reduced filter is slightly worse than the full filter in filtering the GB part of
the flow in the ε = 0.1 regime with moderate σx and L in agreement with Theorem
3.3; however, the reduced filter becomes quite inaccurate in ε = 1 regime.

• Different from the full filter, a smaller σx increases the error using the reduced filter
in both regimes as anticipated by our theoretical comment, Remark 4.1.

• The initial error in the deterministic GB modes vanishes very quickly using the full
filter in both regimes with a moderately large L. Using the reduced filter, the initial
error goes down to some level quickly but a long time is required afterward for the
error to reduce in the ε = 1 regime even with a large number of tracers L.
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5.1 Comparison of filtering skill

To begin, we show the tracer trajectories of the full and GB filter within an order O(1)
time from t = 0 to t = 3 in Figure 5.1. Although the trajectories illustrated in this figure
are from a simulation with 10 tracers, only one tracer trajectory of each filter is shown
for the conciseness. Starting from the same location, the two trajectories almost overlap
with each other when ε = 0.1 with both small and large observation noise σx as shown in
top panels. On the other hand, when ε increases to 1, the two trajectories diverge very
quickly, which is shown in the bottom panels. This is consistent with Proposition 4.2.
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Figure 5.1: Comparison of one tracer trajectory of the full filter (solid) and one of the
GB filter (dashed) starting from the same location from t = 0 to t = 3 with different ε
and σx. Both tracers are taken from the simulation with L = 10 but only one of the ten
tracers is shown for each filter for conciseness. The background velocity field is the one
at time t = 3. The initial location of both the tracers is the same and is denoted by a
cyan solid circle.

In the following, we compare the filtering skill in recovering the GB part of the flow
using the three filters. Since the recovered GB flows are incompressible, we plot their
steamlines in Figure 5.2 at time t = 15 with L = 20 and σx = 0.2. Notably, in the ε = 0.1
regime, the recovered streamlines using the three filters are all close to the truth with
slight differences around the two vortices in the center. However, for the ε = 1 regime,
the recovered streamlines using the reduced filter have a large difference compared with
the truth in both the vortices in the center and the flow in the right top and bottom
parts of the panel while the full and GB filters retain high filtering skill.

Other than visual figures, the phenomena mentioned above can also be measured
through statistical quantities. The root-mean-L2-error made by the recovered flow at a
fixed time t is given by:

root-mean-L2-error =

√
1

|T2|

∫
T2

∣∣∣~v∗(~x, t)− ~vf (~x, t)∣∣∣2d~x,
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Figure 5.2: Recovered streamlines regarding only the GB part of the flow at t = 15 with
observation noise σx = 0.2 and the number of tracers L = 20. Here the Rossby number
ε = 0.1 for the top panels and ε = 1 for the bottom ones. The first column shows the
streamlines of the truth and the other three columns show the recovered streamlines using
full filter, GB filter and reduced filter, respectively. The circles represent the location of
the tracers at current time.

where ~v∗ and ~vf are the true and filtered two-dimensional velocity field and T2 = [−π, π]2

with |T2| denoting its area. Figure 5.3 illustrates the root-mean-L2-error of the recovered
streamlines of GB flow comparing with the truth for all the three filters as a function
of L at three different times. The middle column shows the filtering skill at t = 15,
corresponding to Figure 5.2. Notably, for ε = 0.1 the reduced filter has a precision
slightly worse than the perfect filter but within a satisfactory range; for ε = 1 the gap
between the reduced filter and the full filter increases enormously. Similar phenomenon
exists for t = 30, longer than decorrelation time τcorr = 20, indicating this is a persisting
behavior. By comparing with the t = 1 column, it is inferred that this gap between the
reduced and full filter likely grows with time and eventually reaches an equilibrium level
[23] . On the other hand, the filtering skill using the full filter in ε = 0.1 regime is almost
exactly the same as that using GB filter and is only slightly worse than the latter in
ε = 1 regime. All these observations are consistent with Theorems 3.3 and 3.4, which
state that the error gap between the filters decreases with ε.

To study the underlying reason for the behavior discussed above, it is necessary to look
at the posterior mean estimation of the Fourier coefficients for the GB part using different
filters. Since the energy is assigned in an equipartition way, all the modes have similar
behavior. In the following, wavenumber (2, 2) is picked to illustrate phenomena that are
generally true for other wavenumbers. The posterior mean estimation of wavenumber
(2, 2) is shown in Figure 5.4. The recovered Fourier coefficients using both full filter and
GB filter are close to the truth as long as L is not too small. Regarding the estimation
using reduced filter, in ε = 0.1 regime most of the gravity waves are smoothed out
with the increase of L. The recovered GB mode approaches the truth with only small
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oscillation using more than L = 20 tracers; see the enlarged graph inside the top right
panel. However, the situation deteriorates severely with an order one Rossby number. A
significant amplitude of oscillation around the true value is observed using the reduced
filter even with L = 200 tracers, which leads to the large error.

The next step is to investigate the dependence of the reduced filter in two key observa-
tion parameters: L and σx. Recall that one standard measurement of filtering skill is the
root-mean-squared (RMS) error between the true signal Ut and the maximum likelihood
filter estimate ~mt,

RMSE =

√
1
T

∫ T

0

|~ms −Us|2ds. (5.1)

Below, Us and ~ms are the truth and posterior mean estimation of the Fourier coefficient
of wavenumber (2, 2) and T = 40. The left column of Figure 5.5 shows the RMS error
in the posterior mean estimation for GB mode. For the optimal filters, full filter and GB
filter, the RMS errors decay with L and the decay rate becomes slower when L becomes
large. The reduced filter is slightly inferior to its counterparts in the small ε regime but
much worse in order one ε regime. These observations are consistent with those in Figure
5.2 and 5.3.

The dependence of the RMS error on the observation noise σx is shown in Figure 5.6.
Here, one particularly interesting phenomenon arises: while the optimal filters, full and
GB filter, perform better with smaller σx, the error made by the reduced filter grows.
This intriguing plot can be explained as follow: A small observation noise enforces the
posterior state to put more trust towards the observation. Yet, the observation of the
reduced filter contains both GB and gravity parts of the flow while the dynamics involves
only the GB part. Therefore, the reduced filter regards the superposition of GB and
gravity parts as the filtered GB part and results in a large error, especially with larger ε.

In the previous figures, the performance of the full filter is similar to the GB filter. Yet
if we align Figures 5.3-5.6, the following two patterns hold among all filtering criterion,
which are in accordance with Theorem 3.4:

• When ε = 0.1, the statistics of both the full and the GB filter almost collapse with
each other;

• When ε = 1, there is an observable difference between the two filters. The GB filter
recovers the GB flow better, as its observations are not corrupted by the gravity
waves.

It is worth mentioning that, according to our previous results in [8] for incompressible
flow, we have explicit characterizations of the GB filter’s behavior for large L. Based on
the finding from the previous figures, these characterizations work perfectly for the full
filter when ε is small, and provide good reference when ε is of order one.

To understand how the gravity waves interfere with the full filter, the true and recov-
ered full velocity field at t = 15 with different number of tracers L are shown in Figure
5.7. The dots on top of the recovered velocity field indicate the current locations of the
tracers. In both regimes, two tracers are already sufficient to capture the rough profile of
the velocity field. Yet, evident errors are observed from the recovered velocity field which
diminishes with the increase of L. From this figure, it is also obvious that the distribution
of the tracers is nearly uniform in the small Rossby number regime while being highly
non-uniform in ε = 1 regime. Using Theorem 3.1 of [8] and the Fokker Plank equation
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for each tracer given ~vs≥0, we know the uniform distribution is the invariant distribution
for the tracers if and only if the underlying flow is incompressible. Together with Propo-
sition 4.2, our result indicates that fast rotation leads to a nearly uniform distribution
of the tracers, due to the fast averaging effects of the gravity waves on the trajectories.
Following the proof of [8], the configuration of the tracers actually plays a decisive role
in the filters’ behavior. Hence it is very likely that the similarity of the full filter with
the GB filter is caused by the approximately uniform distribution of tracers in the fast
rotating regime. On the other hand, as shown in Figures 5.2 and 5.7, for ε = 1 the effect
of compressibility on the Lagrangian trajectories is substantial leading to pronounced
clustering of these trajectories.
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Figure 5.3: Root-mean-L2-error in the recovered GB part of the velocity field comparing
with the truth as a function of the number of tracers L. The observation noise σx = 0.2 is
fixed. Top and bottom panels are for the case with ε = 0.1 and ε = 1, respectively. Left
column shows the skill using full filter (circle), GB filter (rectangle) and reduced filter
(triangle) at time t = 1 and the middle and right columns show that at time t = 15 and
30, respectively, where the decorrelation time of the system is τcorr = 20.

Finally, we study filtering with initial uncertainty of the large scale deterministic GB
modes (±1, 0) and (0,±1). Note that the GB mode (0, 0) cannot be filtered because the
first two components of the associated eigenvector (2.5) are zero, meaning that there’s no
observablility of the mode [21]. Recall that the initial values for these four deterministic
GB modes (±1, 0) and (0,±1) are set to be zero, which are different from the values at
the equilibrium. In addition, an initial uncertainty, which equals the equilibrium energy
of the other GB modes, is assigned for each of these modes.

Figure 5.8 shows the evolution of posterior mean of GB mode (1, 0) as a function of
time with different number of tracers L. It is no surprise that increasing L accelerates
the convergence of the posterior mean estimation to the equilibrium value. With L = 2,
the posterior mean estimation of the full filter still has a large gap compared with the
equilibrium value while that gap is almost negligible using more than 10 tracers. This
again explains the improvement of the recovered velocity field with L in Figure 5.7.
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Figure 5.4: Comparison of the posterior mean estimation for the GB mode of wavenumber
(2, 2) as a function of time with different filters. Here, the observation noise is σx = 0.2.
The dotted green curve shows the true realization. The blue solid curve, red dashed curve
and thin black solid curve show the posterior mean estimation of full filter, GB filter and
reduced filter, respectively.

Also, the mean estimation with filtering converges more quickly than the unfiltered one.
However, when ε is of order one, it takes a long time for the posterior mean of the
reduced filter to converge even with L = 50. This is because with a large number of
tracers the posterior mean estimation approaches the observation very quickly and the
posterior covariance goes down to zero very quickly. However, because the gravity modes
are involved in the observation, the posterior mean estimation of this process contains
some error. Yet, due to the quick reduction of the covariance, the filter estimation trusts
the dynamics more afterwards and thus a long time is required for convergence because
of the dynamics’ weak damping.

Our other numerical experiments, which are not shown here, indicate that a small
observation noise helps accelerate the convergence of the filter estimation when the initial
value is far from the equilibrium. Yet, similar pathological phenomena are observed for
the reduced filter in ε = 1 regime; although the small observation noise pulls its estimation
to a near equilibrium state very quickly, it takes a long time for the posterior mean to
converge afterwards. Another conclusion is that starting from a non-equilibrium state a
large initial uncertainty actually helps both the full and GB filters converge, because a
large initial uncertainty implies the filter trusts the observations more quickly.
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Figure 5.5: RMS error across time t ∈ [0, 40] in the posterior mean comparing with
the true signal as a function of the number of tracers L for wavenumber (2, 2). The
observation noise σx = 0.2 is fixed. Top and bottom panels show the case with ε = 0.1
and ε = 1, respectively. Left panels show the skill in the GB mode for full filter (circle),
GB filter (rectangle) and reduced filter (triangle) and the right panels show that in the
gravity mode for the full filter. The blue dotted lines show one standard deviation of the
equilibrium distribution without filtering.
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Figure 5.6: RMS error across time t ∈ [0, 40] in the posterior mean comparing with the
true signal as a function of the observation noise σx for wavenumber (2, 2). The number
of tracers L = 10 is fixed. Top and bottom panels are for the case with ε = 0.1 and
ε = 1, respectively. Left panels show the skill in the GB mode for full filter (circle),
GB filter (rectangle) and reduced filter (triangle) and the right panels show that in the
gravity mode for the full filter. The blue dotted lines show one standard deviation of the
equilibrium distribution without filter.
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Figure 5.7: Full velocity field recovered from full filter with observation noise σx = 0.2 at
time t = 15. Here the Rossby number ε = 0.1 for the top panels and ε = 1 for the bottom
ones. The first column shows the true velocity field and the other three columns show
the recovered velocity field with 2, 10 and 50 tracers, respectively. The circles represent
the location of the tracers at current time.
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Figure 5.8: Posterior mean of the deterministic mode (1, 0) with different number of
tracers L and Rossby number ε as a function of time. The observation noise σx = 0.2 is
fixed. The initial value of prior mean is zero, which is not the equilibrium state, and an
initial uncertainty is imposed.
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5.2 Uncertainty reduction in rotating compressible flows

Another important quantity that characterizes the performance of filters is the uncer-
tainty reduction, computed by (2.21):

P(p, q) =
[

1
2
(~mp − ~mq)

TR−1
q (~mp − ~mq)

]
+ 1

2

[
tr(RpR

−1
q )−N − ln det(RpR

−1
q )
]
,

where the terms in the first and second bracket are the signal and dispersion part, respec-
tively. Figures 5.9 and 5.10 show the averaged uncertainty reduction across time in all
stochastic GB modes and all gravity modes as a function of L. Rigorously speaking, the
application of (2.21) to the reduced filter is at most formal since this filter is non-optimal
[23]; we plot it to have better understanding of the reduced filter. By applying Corollary
3.4 of [8] to the uncertainty in GB modes from GB filter, it is known when L→∞:

• The signal part converges to a limit value computed by replacing the posterior mean
by the truth in the signal part of (2.21);

• The dispersion part grows as a logarithmic function of L, forming an information
barrier in practice.

In Figure 5.9, the plots of the full filter overlap with those of the GB filter in the ε = 0.1
regime in both signal and dispersion parts; for ε = 1, the full filter reduces about 30% less
uncertainty in the dispersion part while matching the performance of the GB filter in the
signal part. This indicates the uncertainty reduction criterion given by [8] works very well
for fast or slow rotational compressible random flows. The anomalously high uncertainty
reduction of the reduced filter in the signal part for ε = 1 actually indicates its erroneous
performance: the oscillating error it makes in posterior mean contributes greatly in the
computation of the signal part. Figure 5.10 indicates the uncertainty reduction made by
the full filter in the gravity modes is similar to the GB modes, and more uncertainty is
reduced in the small ε regime than order one ε regime.

Likewise, the dependence of the uncertainty reduction on the observation noise σx is
shown in Figure 5.11. The averaged uncertainty reduction in the dispersion part has an
obvious decay in both GB and gravity modes due to the increase of the observation noise.
Again, the behavior of GB filter gives a perfect reference for the full filter when ε = 0.1
and gives a satisfactory reference for ε = 1. It is worth mentioning that the reduced filter
produces anomalously high uncertainty reduction in the signal part for small σx (not
shown here). Recalling Figure 5.6, we know in the small σx scenario the reduced filter
relies too much on the observations, which perturbs its estimation of the GB modes.
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Figure 5.9: Averaged uncertainty reduction across time T ∈ [0, 40] in all the GB modes
as a function of the number of tracers L for full filter (circle), GB filter (rectangle) and
reduced filter (triangle). The observation noise σx = 0.2 is fixed. Top and bottom panels
are for the case with ε = 0.1 and ε = 1, respectively. Left panel shows the uncertainty
reduction in signal, where the blue dotted line indicates the limit value of uncertainty
reduction for the full filter as L → ∞. Right panel shows the uncertainty reduction in
the dispersion part, where the blue dotted curve indicates the growth rate of ln(L).
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Figure 5.10: Averaged uncertainty reduction across time T ∈ [0, 40] in all the gravity
modes as a function of the number of tracers L using full filter. Same illustrations as
those in Figure 5.9.
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6 Conclusions and Discussion

In this paper, the impact of the gravity waves over the filtering skill of L noisy La-
grangian tracers is investigated from two angles. The recovery of a random flow with
both geostrophically balanced (GB) part and gravity waves is theoretically represented
by a full filter derived from conditional Gaussian theory [9]. The full filter is then com-
pared with a reference GB filter, which is clean without gravity waves and by [8] we have
clear knowledge. The second angle comes from the practical need of imperfect filters, as
most often the GB flows are the only part of concern and have resolved dynamics, while
the tracers are transported by the gravity waves as well. This aim is achieved by applying
the GB filter’s formulas to tracers transported by both parts of the flow field, forming
the reduced filter. The key finding of the current work is that the three filters produce
results close to each other as long as the Rossby number ε� 1.

As all three filters possess concrete analytical formulas derived from conditional Gaus-
sian theory, asymptotic analysis for ε→ 0 can be applied to their difference. By exploiting
the fast-wave averaging phenomenon of gravity waves, the key finding is proved with full
mathematical rigor. The followup numerical simulations not only validate this result but
also reveal that noisy Lagrangian tracers in fast rotational flows are distributed close to
uniform and small observation error σx may force the reduced filter to rely too much on
imperfect observations contaminated by the unresolved gravity waves. Consequently, the
findings of this work imply that when ε� 1, the filtering of a rapidly rotating compress-
ible flow has similar behavior as of its GB counterpart, and the geostrophic approximation
is a good simplification strategy for imperfect filters.

Apart from these major conclusions, the following remarks are either implied by or
related to our findings:

1. From a practical point of view, as the reduced filter has much simpler structure,
heuristically its running speed is about 1/9 of the full filter. Application of it is
encouraged when only the GB part of the flow is of concern and ε is small. Moreover,
the potential error induced is likely to have a obvious oscillating pattern, cf. Figure
5.4, and this is readily motivated.

2. According to the discussion in Section 5, the similarity between the full filter and
the GB filter for ε = 1 may be caused by the distribution of the tracers being
close to uniform. Actually, combining Proposition 4.2 and Theorem 3.1 of [8], we

conjecture that the total variation distance between the distribution of ~Xl(s) and
the uniform distribution is bounded by εM for a proper M as s → ∞. This may
shed light on understanding the long time Lagrangian filters’ behavior in the fast
rotating regime.

3. In contrast, it is also interesting to ask what would happen when the tracers are
concentrated in a certain part of the region due to compressibility as illustrated for
ε = 1 in Figures 5.2 and 5.7. Intuitively, more information should be recovered for
the concentrated region. Using numerics with different initializations, [6, 7] sheds
some light over this issue. Yet these results regarding local information have yet
to be generalized into theory. Maybe the conditional Gaussian framework can be
used to better understand these issues.

4. Since the GB part of the fast rotating filtering regime is close to that of a geostrophic
system, by Theorem 3.3 (i) of [8], the posterior covariance is very likely to be close
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to a deterministic matrix for large L. This implies an approximation for the reduced
filter may be a candidate for even more efficiency: simply keep the deterministic
matrix in Theorem 3.3 (i) of [8] as the posterior covariance and update only the
posterior mean. This will save a lot of computational power for the high dimensional
version of this problem. Such simplification strategy is generally known as 3DVAR.

5. Finally, we mention that all of the work presented here involves a prototype slow-
fast system while the noisy Lagrangian tracers provide nonlinear observations which
mix the slow and fast components [21]. Such multi-scale systems occur throughout
science and engineering, and our results here are useful as prototype examples from
that perspective.
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