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Abstract: We assess the predictability limits of the large-scale cloud patterns 6
in the boreal summer intraseasonal variability (BSISO), which are measured by 7
the infrared brightness temperature, a proxy for convective activity. A recent 8
developed nonlinear data analysis technique, nonlinear Laplacian spectrum 9
analysis (NLSA), is applied to the brightness temperature data, defining two 10
spatial modes with high intermittency associated with the BSISO time series. 11
Then a recent developed data-driven physics-constrained low-order modeling 12
strategy is applied to these time series. The result is a four dimensional system 13
with two observed BSISO variables and two hidden variables involving correlated 14
multiplicative noise through the nonlinear energy-conserving interaction. With 15
the optimal parameters calibrated by information theory, the non-Gaussian 16
fat tailed probability distribution functions (PDFs), the autocorrelations and 17
the power spectrum of the model signals almost perfectly match those of the 18
observed data. An ensemble prediction scheme incorporating an effective on- 19
line data assimilation algorithm for determining the initial ensemble of the 20
hidden variables shows the useful prediction skill in the non-El Niño years is at 21
least 30 days and even reaches 55 days in those years with regular oscillations 22
and the skillful prediction lasts for 18 days in the strong El Niño year (year 23
1998). Furthermore, the ensemble spread succeeds in indicating the forecast 24
uncertainty. Although the reduced linear model with time-periodic stable- 25
unstable damping is able to capture the non-Gaussian fat tailed PDFs, it is 26
less skillful in forecasting the BSISO in the years with irregular oscillations. 27
The failure of the ensemble spread to include the truth also indicates failure in 28
quantification of the uncertainty. In addition, without the energy-conserving 29
nonlinear interactions, the linear model is sensitive with parameter variations. 30
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Finally, the twin experiment with nonlinear stochastic model has comparable1
skill as the observed data, suggesting the nonlinear stochastic model has2
significant skill for determining the predictability limits of the large-scale cloud3
patterns of the BSISO.4
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1 Introduction13

The boreal summer intraseasonal oscillation (BSISO) is one of the prominent14
modes of tropical intraseasonal variability. As a slow moving planetary scale15
envelope of convection propagating northward [1, 2], the BSISO distinguishes16
itself from the Madden-Julian oscillation (MJO), which prevails during boreal17
winter and propagates eastward. The BSISO is known to affect summer18
monsoon onset and active/break phases [3, 4, 5], and the seasonal means19
of summer monsoons [6, 7]. It also has fundamental impacts on the tropical20
precipitation, the frequency of tropical cyclones and extra-tropical climate21
variations [8, 9]. The studies of the prediction of the BSISO are mostly through22
operational dynamical models [1, 10, 11, 12, 13, 14, 15, 16] with only a few23
works focusing on low-order statistical models [17, 18, 19, 20]. One reason for24
the lack of utilizing low-order models for prediction is that different from the25
MJO (e.g., real-time multivariate MJO (RMM) index [21]) low-dimensional26
real-time monitoring and forecast verification metrics for the BSISO were not27
available until the recent time (since 2013) [22, 23]. The BSISO index in [23] is28
based on an extended empirical orthogonal function (EEOF) analysis on daily29
unfiltered rainfall anomalies. The derivation of the BSISO index in [22] mimics30
that for the RMM index and is based on the multivariate EOF analysis of31
daily anomalies of the zonal wind at 850 hPa and outgoing long-wave radiation32
(OLR), a proxy for convective activity. While the use these indices improves33
the quantification of skill of extended range forecasts of the BSISO, these linear34
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data analysis methods have limitations in capturing the highly nonlinear and 1
intermittent characters of the BSISO [24]. 2

Here we assess the predictability limits of the BSISO of the large-scale 3
cloud patterns, which are measured by the infrared brightness temperature, 4
a proxy for convective activity, alone. This is achieved in two steps. In the first 5
step, a recent developed advanced nonlinear data analysis technique, nonlinear 6
Laplacian spectrum analysis (NLSA), is applied to the brightness temperature 7
data to define two spatial patterns associated with the BSISO. A key advantage 8
of NLSA is that it requires no preprocessing such as bandpass filtering or seasonal 9
partitioning of the input data, enabling simultaneous recovery of the dominant 10
BSISO modes [25, 26, 27, 28, 29]. NLSA provides two time series representing 11
the BSISO. These two BSISO time series are highly intermittent with non- 12
Gaussian fat tailed probability distribution function (PDF), which differs from 13
those derived by straightforward linear methods [22, 23]. The second step is to 14
apply a recent systematic strategy for data-driven physics-constrained low-order 15
stochastic modeling of time series to the two BSISO time series [30, 31]. The 16
result is a four-dimensional nonlinear stochastic model with two observed state 17
variables representing the two BSISO indices and two hidden variables. This 18
low-order model involves correlated multiplicative noise through the energy- 19
conserving nonlinear interaction between the observed and hidden variables as 20
well as the additive noise. Note that this nonlinear low-order stochastic model 21
has been shown to have significant skill for determining the predictability limits 22
of the large-scale cloud patterns of the boreal winter MJO [32]. In addition, 23
incorporating a new information-theoretic strategy in the training phase, a 24
slight simplified version of (1) has been adopted to significantly improve the 25
predictability of the real-time multivariate MJO indices [33]. 26

The remainder of the paper is organized as follows. Section 2 describes the 27
source of the brightness temperature dataset and the application of NLSA to 28
the brightness temperature data to form the two BSISO time series. Section 29
3 involves the nonlinear low-order stochastic model as well as the information- 30
theoretic calibration strategy and data assimilation algorithm for determining 31
the initial ensemble of the hidden variables in the ensemble prediction scheme. 32
This is followed by the prediction results, shown in Section 4. To understand 33
the role of the nonlinearity in the low-order model, the linear model as well as 34
its forecasting skill is studied in Section 5. Section 6 includes the perfect model 35
twin experiment in checking the model error and the predictability limits. The 36
paper is concluded in Section 7. 37
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2 The Boreal Summer Intraseasonal Oscillation1

Through NLSA2

Here tropical convection is analyzed in satellite observations of infrared brightness3
temperature (Tb) from the Cloud Archive User Service (CLAUS) Version 4.74
[34], which is sampled every 3 hours from 1 July 1983 to 30 June 2006 with a5
spatial resolution of 0.5o. Brightness temperature is a measure of the earth’s6
infrared emission in terms of the temperature of a hypothesized blackbody7
emitting the same amount of radiation at the same wavelength (∼ 10-11 µm in8
CLAUS). It is a highly correlated variable with the total terrestrial longwave9
emission. In the tropics, positive (negative) Tb anomalies are associated with10
reduced (increased) cloudiness, hence suppressed (enhanced) deep convection.11

The NLSA algorithm is applied to the full CLAUS dataset restricted to the12
tropical belt 15◦N–15◦S, with a lagged embedding window of 60 days. A variety13
of extended spatial cloud patterns emerge from the analysis, including annual,14
interannual, intraseasonal and diurnal modes, but the focus here is on the two15
spatial cloud patterns with time series depicted in Figure 1. It is clear that16
these time series are active from May to September of each year corresponding17
to boreal summer. Hereafter, we utilize the terminology, BSISO indices, for the18
two time series in Figure 1. The details of the NLSA method is available in19
[25, 26, 27, 28, 29]. Applying NLSA to the CLAUS dataset to obtain the BSISO20
indices are well documented in [24], where the spatial patterns associated with21
the BSISO indices in different phases are shown in Figure 9b in [24] and the22
spatiotemporal evolution of BSISO is shown in Movie 1h there. The figure and23
movie indicate the character of BSISO that a cluster of positive Tb develops in24
the central Indian Ocean and then moves northward towards the Bay of Bengal25
and India and branches off towards the western Pacific and the Monsoon Trough,26
bypassing the Maritime Continent from the north. Then following the dry phase27
of BSISO, a cluster of anomalously high convection develops in the central Indian28
Ocean, and propagates towards India and the western Pacific, completing the29
BSISO cycle. In addition, Figure 11 and Movie 2 in [24] compares the BSISO30
indices derived from NLSA with those from the EOF-singular spectrum analysis31
which is a linear data analysis method. The reconstructed BSISO and MJO32
patterns from the EOF method have coarser structures than their NLSA-based33
counterparts and appear to mix BSISO and MJO propagation. The highly34
non-Gaussian fat-tailed distributions in the BSISO indices from NLSA, which35
corresponding to intermittency and strong seasonality, also contrast with the36
nearly Gaussian distributions in the EOF related indices. We point out that37
the BSISO indices studied in this work is slightly cleaner than those in [24] by38
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reconstructing the eigenfunctions associated with NLSA through the shift map 1
[35] while the corresponding spatiotemporal patterns have almost no changes. 2
See Appendix A for details. 3
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Fig. 1. (Left) BSISO indices from NLSA ranging from 3 September 1983 to 30 June 2006.
The time series from September 1983 to December 1997 is utilized as training period to
get the statistics and that from January 1998 to December 2005 represents the predicting
period which will be predicted by the nonlinear low-order stochastic model (1). (Right)
The associated time-averaged probability distribution function (PDF) of each index and
the its Gaussian fit. Here the time-averaged PDF means we take all the points in each
one-dimensional time series and compute the PDF based on these points. The small panel
inside each subplot shows the PDF in the logarithm scale.

Note that the derivation of the BSISO indices from NLSA shown in Figure 4
1 is based on the dataset within the band 15◦N–15◦S. Yet, the BSISO activities 5
typically propagate northward beyond 15◦N [1]. Actually, Movie (1h) in [24] 6
also shows that the cluster of convection moves outside the north boundary. To 7
check the cluster propagation behavior in a farther northward region, we have 8
looked at the projected spatiotemporal patterns in the extended band 30◦N– 9
15◦S with the given BSISO indices in Figure 1. The northward propagation of 10
the cluster extending up to 20◦N-30◦N in the spatiotemporal patterns provides 11
the evidence that the time series in Figure 1 are suitable BSISO indices. The 12
extension of the NLSA and of this work to a wider band, e.g., 30◦N–15◦S, for a 13
better coverage of the Northward propagating signals is more involved and it is 14
thus left for future investigations. 15
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3 The Nonlinear Physics-Constrained1

Low-Order Stochastic Model2

Denote by u1 and u2 the two components, BSISO 1 and BSISO 2, described in
Figure 1. The PDFs for u1 and u2 are highly non-Gaussian with fat tails
indicative of the temporal intermittency in the large-scale cloud patterns
associated with the BSISO. To describe the variability of the time series u1
and u2, we propose the following family of low-order stochastic models:

du1
dt

= (−du u1 + γ (v + vf (t))u1 − (a+ ωu)u2) + σu Ẇu1 , (1a)

du2
dt

= (−du u2 + γ (v + vf (t))u2 + (a+ ωu)u1) + σu Ẇu2 , (1b)

dv

dt
= (−dv v − γ (u2

1 + u2
2)) + σv Ẇv, (1c)

dωu
dt

= (−dωωu) + σω Ẇω, (1d)

where3
vf (t) = f0 + ft sin(ωf t+ φ). (2)

Besides the two observed BSISO variables u1 and u2, the other two variables4
v and ωu are hidden and unobserved, representing the stochastic damping and5
stochastic phase, respectively. In (1), Ẇu1 , Ẇu2 , Ẇv and Ẇω are independent6
white noise. The constant coefficients du, dv, and dω represent damping for7
each stochastic process and have physical dimension t−1; a (also of dimension8
t−1) is the background state of the phases of u1 and u2; σu, σv, and σω are9
noise amplitudes with dimension t−1/2; the non-dimensional constant γ is the10
coefficient of the nonlinear interaction. The time periodic damping vf (t) in11
the equations in (1a) and (1b) is utilized to crudely model the active phase12
of the BSISO and the quiescent winter season in the seasonal cycle. The13
constant coefficients ωf and φ in (2) are the frequency and phase of the damping,14
respectively. All of the model variables are real.15

The hidden variables v, ωu interact with the observed BSISO variables
u1, u2 through energy-conserving nonlinear interactions following the systematic
physics-constrained nonlinear regression strategies for time series developed
recently [30, 31]. The energy conserving nonlinear interactions between u1, u2
and v, ωu are seen in the following way. First, by dropping the linear and external
forcing terms in (1), the remaining equations involving only the nonlinear parts
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of (1) read,

du1
dt

= γ v u1 − ωu u2, (3a)

du2
dt

= γ v u2 + ωu u1, (3b)

dv

dt
= −γ (u2

1 + u2
2), (3c)

dωu
dt

= 0. (3d)

To form the evolution equation of the energy from nonlinear interactions Ẽ = 1
(u2

1 +u2
2 + v2 +ω2

u)/2, we multiply the four equations in (3) by u1, u2, v and ωu 2
respectively and then sum them up. The resulting equation yields 3

dẼ

dt
= 0. (4)

The vanishing of the right hand side in (4) is due to the opposite signs of the 4
nonlinear terms involving v multiplying u1 and u2 in (3a) and (3b) and those in 5
(3c) multiplying by v as well as the trivial cancelation of skew-symmetric terms 6
involving ωu in (3a) and (3b). 7

The nonlinear low-order stochastic models in (1) are fundamentally different 8
from those utilized earlier [36, 37] in predicting various kinds of climate 9
phenomena which allow for nonlinear interactions only between the observed 10
variables u1, u2 and only special linear interactions with layers of hidden 11
variables. The stochastic damping v and stochastic phase ωu as well as their 12
energy conserving nonlinear interaction with u1 and u2 also distinguish the 13
models in (1) from the classic damped harmonic oscillator with only constant 14
damping du and phase a. It is evident that a negative value of γ(v + vf ) serves 15
to strengthen the total damping of the oscillator. On the other hand, when 16
γ(v + vf ) becomes positive and overwhelms du, an exponential growth of u1 17
and u2 will occur, which corresponds to the intermittent instability. 18

The nonlinear low-order stochastic model (1) has been shown to have 19
significant skill for determining the predictability limits of the large-scale cloud 20
patterns of the boreal winter MJO [32]. In addition, incorporating a new 21
information-theoretic strategy in the training phase, a simplified version of 22
(1) without the time-period damping vf (t) has been adopted to improve the 23
predictability of the real-time multivariate MJO indices [33]. Note that these 24
models are a special case of the models described in [30, 31]. 25



8 Nan Chen and Andrew J Majda

3.1 Calibration of the nonlinear low-order stochastic models1

As shown in Figure 1, the full time series are divided into the training (Year2
1983-1997) and prediction (Year 1998-2005) periods.3

The parameters of the stochastic model in (1)–(2) are calibrated by4
systematically minimizing the information distance of the highly non-Gaussian5
PDFs of the stochastic model compared with that of the actual data [38, 39] and6
taking into consideration of the autocorrelations of the two BSISO variables7
u1, u2. Details are presented in Appendix B which also demonstrates the8
robustness of these optimal parameters to their variation. Table 1 records the9
optimal parameter values while Figure 2 displays the skill of the stochastic10
model with these parameters in recovering the statistics of the two BSISO11
indices. Panels (a) and (b) show that the stochastic model (1) succeeds in12
capturing the autocorrelations almost perfectly for a three-month duration and13
even the wiggles that appears with lags around one year. Panel (c) shows14
that the stochastic model captures the fat tailed highly non-Gaussian PDFs of15
the two BSISO indices due to intermittency. Panel (d) shows that the power16
spectrums of the two BSISO indices from the data and those from the stochastic17
model match very well.

du dv dω σu σv σω γ a f0 ft ωf φ

Nonlinear model (1) 0.9 0.9 0.5 0.3 0.8 1.0 0.3 −4.25 1.0 4.0 2π/12 −3.4

Linear model (5) 0.9 0.35 0.3 −4.25 0.0 4.5 2π/12 −3.4

Table 1. Parameters for the nonlinear low-order stochastic model (1) and linear stochastic
model (5). The parameters du, a, γ, f0, ft, ωf , dv and dω have units m−1; σu, σv and σω

have units m−1/2; φ is dimensionless. Here m stands for month.

18

3.2 Prediction algorithm and data assimilation for the19

hidden variables20

The ensemble prediction algorithm is adopted to study the predictability of the21
nonlinear low-order stochastic model (1), which involves running the forecast22
model (1) forward in time given the initial values. The initial data of the two23
state variables U = (u1, u2) are obtained directly from the observations, i.e.,24
BSISO 1 and BSISO 2 indices, and all the ensembles have the same initial values25
of U = (u1, u2). The more important and challenging issue is to determine26
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Fig. 2. Statistics of the nonlinear low-order stochastic model (1) with the optimal
parameters in Table 1. (a) Long-term autocorrelation function R11(τ) and cross-correlation
function R21(τ) from 0 to 24 months. (b) Short-term autocorrelation functions R11(τ),
R22(τ) and cross-correlation functions R21(τ), R12(τ) from 0 to 3 months. (c) Equilibrium
PDFs of the signal u1, u2 from stochastic model compared with that of the BSISO indices.
(d) Spectrum of u1, u2 compared with that of the BSISO indices.

the initial ensemble of the two hidden variables Γ = (v, ωu). To this end, an 1
active data assimilation algorithm is incorporated into the ensemble forecasting 2
scheme. 3

The estimates of the hidden parameters Γ = (v, ωu) during the training 4
period and initialization of these parameters during the prediction phase 5
exploit the special structure of the nonlinear low-order stochastic model 6
(1). The equations in (1) are a conditional Gaussian system with respect 7
to the observations U = (u1, u2), meaning that once u1 and u2 are given 8
the time evolution of the distributions of Γ = (v, ωu) is Gaussian. Such 9
special feature of (1) allows the closed analytic equations for the conditional 10
Gaussian distributions of the hidden parameters Γ = (v, ωu) obtained from the 11
posterior estimations in the Bayesian framework [40]. Appendix C contains 12
the details and explicit equations. We utilize this fact to construct an initial 13
ensemble for forecasting at each time in the training and prediction phases for 14
t ∈ [t0, t1, . . . , ts] in the following way. 15
1. Starting from a “burn in” time t− earlier than t0 with arbitrary initial 16

conditions for Γ, solve the associated analytic formula (12) until time t0 17
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to obtain the conditional Gaussian distribution p0(Γ|u(t0)). The initial1
ensemble of the hidden variables Γ = (v, ωu) for prediction starting from t02
is drawn from this distribution.3

2. The initial ensemble for prediction starting from the next time t1 is drawn4
from p1(Γ|u(t1)), where p1(Γ|u(t1)) is solved by running the analytic5
formula (12) forward from time t0 to t1 with the initial value p0(Γ|u(t0)).6

3. Following the same procedure, the initial distributions of the hidden7
variables Γ = (v, ωu) for prediction starting from each time ti are obtained8
“on the fly” by running the analytic formula (12) forward from time ti−1 to9
ti with the initial value pi−1(Γ|u(ti−1)) when the new observations up to10
u(ti) are available.11

This is an effective and practical on-line data assimilation algorithm for the12
stochastic models in (1). Note that this algorithm is an improved version of the13
one in [32] for predicting the cloud patterns of the boreal winter MJO, in which14
the initial ensemble at the current time is the combination of all the ensembles15
corresponding to the analogous observations from the historic data and thus the16
algorithm there is more expensive. In the prediction below with (1), we use N17
ensemble members with N = 50.18

4 Prediction Results19

With the optimal parameters shown in Table 1 and the effective data assimilation20
algorithm for the ensemble initialization described in Section 3.2, we now study21
the prediction skill of the nonlinear low-order stochastic model (1) in the22
prediction period from year 1998 to year 2005. The BSISO 1 and BSISO 223
indices from year 1998 to 2005 are shown in panel (a) and (b) of Figure 3. The24
BSISO activities in year 1998 and 1999 are weaker compared with those from25
year 2000 to 2005. Note that year 1998 accompanies strong El Niño events.26

Panel (c) and (d) in Figure 3 illustrate the root-mean-squared (RMS) error27
and bivariate correlation in prediction as a function of lead time in different28
years. The threshold level for skillful prediction is indicated by the horizontal29
dotted line in both panels. It is clear that the skillful prediction lasts for more30
than 30 days from year 1999 to 2005. Particularly, the prediction skill in year31
2001 and 2002 with relatively regular intraseasonal oscillations reaches about 5532
days. However, the useful prediction skill in year 1998, 18 days, is significantly33
lower than those in other years. Yet, it is still much improved compared with34
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the result from persistence prediction, which is at most 8 days for all the years 1
as shown in the sub-panels in panel (c) and (d). 2

To understand the disparity in the prediction skill in different years, the 3
predictions of BSISO 2 index regarding the ensemble mean at lead times of 15 4
and 25 days and 35 and 45 days are shown in Figure 4 and 5, respectively. The 5
15-day predictions in all years and 25-day predictions in year 1999 to 2005 are 6
all very skillful (Corr > 0.6), capturing not only the patterns and amplitudes of 7
the intraseasonal oscillations but some small-scale fluctuations as well. The 8
prediction skill decreases as the lead time increases as expected. Yet, the 9
predictions in year 2001 and 2002 at a lead time of 35 days are still quite accurate 10
(Corr > 0.7) and even the 45-day predictions illustrate the similar patterns 11
(Corr > 0.6) as the truth. The unskillful 25-day prediction (Corr = 0.32803) 12
in year 1998 ascribes to the anomalous feature in BSISO 2 index, that is, the 13
mean state of the index is significantly above zero (See also Figure 1 for a clearer 14
visual). Yet, the mean state of the nonlinear oscillator (1), in consistency with 15
the indices in other years, is around zero. This indicates an intrinsic model 16
error in describing the BSISO events in year 1998 and in turn results in a low 17
prediction skill. Actually, strong El Niño events occur at the same the period 18
as the anomaly in BSISO 2 index. As shown in [41], many examples reveal that 19
strong El Niño events are coincident with severely weakened BSISO events. The 20
decrease in the amplitude of BSISO signal implies the increase of the noise to 21
signal ratio, which prevents the skillful prediction and is consistent with the 22
findings in [16]. The prediction skill of BSISO 1 is almost the same as that of 23
BSISO 2, except that BSISO 2 involves a clear demonstration for the intrinsic 24
model error for predicting the strong El Niñ year 1998. In addition, as indicated 25
in [33], at the strong El Niño phases another intraseasonal oscillation – MJO – 26
also shows the irregular behaviors and are hard to predict. 27

Figure 6 shows the predictions including the ensemble members starting 28
from three different dates. The date, April 1, is a time at the transition between 29
the quiescent phase and the active phase of the BSISO; June 1 is a starting date 30
in the active mature phase while September 1 is a starting date in the decaying 31
phase of BSISO activity. Although the ensemble mean forecasts starting from 32
the April 1 have no long-term skill, which is consistent with the results in Figure 33
5, the ensemble spread automatically indicates such lack of skill. The envelope 34
of the ensemble predictions includes the truth for all the years and is a good 35
indicator of the active and quiescent phases of the BSISO. The ensemble mean 36
predictions for the June 1 starting date are skillful in short and medium ranges 37
and the ensemble spreads are the successful uncertainty indicator at long lead 38
times for all the years. The forecasts starting from September 1 have both an 39
accurate mean and a small ensemble spread for very long lead times. Note that 40
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April 1, June 1 and September 1 are the three typical starting days that reflect1
different prediction behaviors. In general, starting from the quiescent phases,2
the ensemble spread accurately tells the active and quiescent phases of BSISO3
although the ensemble mean has no long-term prediction skill for the active4
phase. On the other hand, starting from the active phases, the short and medium5
range forecasting skill is obtained by the ensemble mean and the uncertainty at6
the long lead time is well indicated by the ensemble spread. Therefore, these7
results implies that the important target of predicting the onset and demise time8
of BSISO is well predicted by the ensemble spread.9
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Fig. 3. (Panel (a) and (b)) BSISO indices in the prediction period. (Panel (c) and (d)) Skill
scores with RMS error and bivariate correlation for ensemble mean prediction as a function
of lead days in different years. The sub-panels inside panel (c) and (d) show the persistence
prediction skill up to 15 lead days. The black dotted horizontal line in panel (c) shows the
standard deviation of the BSISO indices, i.e., the climatological forecast skill, and that in
panel (d) indicates Corr = 0.5, the typical threshold for skillful prediction.
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Fig. 6. (First and second rows) Prediction of BSISO 2 starting from April 1 for different
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is the ensemble mean with 50 members, which are shown by the thin solid green curves.
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5 The Role of the Nonlinearity in the 1

Low-Order Models 2

To understand the role of the nonlinearity in the nonlinear low-order stochastic
model (1), we study the prediction skill of the reduced linear version of (1) by
removing the stochastic damping v and stochastic phase ωu,

du1
dt

= (−du u1 + γ vf (t)u1 − a u2) + σu Ẇu1 , (5a)

du2
dt

= (−du u2 + γ vf (t)u2 + a u1) + σu Ẇu2 . (5b)

Albeit linear, the model in (5) is still able to generate intermittent instability due 3
to the time-periodic damping vf (t) = f0 +ft sin(ωf t+φ) because the coefficient 4
−du+γvf (t) switches between negative (stable) and positive (unstable) intervals 5
during a time period. Therefore, as shown in panel (c) of Figure 7, the time- 6
averaged PDF associated with the linear model (5) succeeds in capturing the 7
non-Gaussian fat tailed PDF of the observed data given the optimal parameters 8
in Table 1. However, obvious discrepancies in the autocorrelation functions 9
and the power spectrums are observed in panel (a), (b) and (d) of Figure 7. 10
Although the oscillations in the autocorrelation functions of the linear model 11
are of the same frequency as that of the observed data, the decaying rate of the 12
autocorrelation functions of the linear model is linear and much slower than the 13
nonlinear decay rate of those associated with the BSISO indices, indicating a 14
barrier in describing the nature of the BSISO indices by the linear model. In 15
addition, the power spectrums of the linear model with only the additive noise 16
are more concentrated compared with that of the observed data, implies the 17
insufficient with only additive noise. Therefore, nonlinearity and multiplicative 18
noise are necessary in order to match the statistics of the BSISO indices. 19

Column (c) in Figure 8 shows the skill scores for ensemble mean prediction 20
utilizing the linear model (5) with the optimal parameters. The linear model has 21
a comparably high prediction skill as the nonlinear low-order stochastic model 22
(1) in the short and medium range up to 20-25 days (column (a) in Figure 23
8). Above this range, the linear model becomes less skillful than the nonlinear 24
model in years 1998, 2003, 2004 and 2005. On the other hand, the linear model 25
shows the same skill with respect to the RMS error as the nonlinear model and 26
even slightly more skillful prediction with respect to the bivariate correlation at 27
lead times of 50-60 days in year 2001 and 2002 with regular oscillations. This 28
possibly comes from the linear nature of the intraseasonal oscillation in these 29
two years. 30



16 Nan Chen and Andrew J Majda

To further understand the difference in prediction utilizing the linear and1
nonlinear models with optimal parameters, the predictions in year 2005 are2
shown in column (a) and (c) of Figure 9. The forecasts at lead times of 25 and3
35 days are shown in row I and II. The prediction at a lead time of 25 days4
in June and July utilizing the nonlinear model has almost the same pattern as5
the truth while that utilizing the linear model is slightly shifted forward in time6
and therefore results in a lower correlation. The superiority of the nonlinear7
model in this medium range forecasting is due to the phase correction from8
the stochastic part ωu shown in the fourth row of Figure 13 in Appendix C.9
Similarly, the predicted amplitude around June 1 at lead times of both 25 and10
35 days utilizing the nonlinear model being more close to that utilizing the11
linear model attributes to the initial correction of the overall damping by the12
stochastic part v, as is shown in the third row of Figure 13. The prediction13
including the ensemble members starting from June 1, the beginning of the14
active mature phase, is shown in row IV. Except slightly shifted forward in15
time in the prediction utilizing the linear model, the two models have the16
comparable good ensemble mean prediction skill up to 20 days. However, the17
medium- and long-range forecast up to 5 months utilizing the linear models18
shows not only a large bias in the ensemble mean forecasting but a small19
ensemble spread as well, which fails to include the truth and thus indicates20
a false uncertainty quantification in prediction. The misleading forecast of the21
linear model is associated with the long memory (slow decaying autocorrelation)22
and the single frequency dominated nature (concentrated power spectrum) of23
the system. Actually, the opposite patterns in the truth and prediction of the24
linear model during the period from the middle of July to the end of October25
are good indicators of the nonlinear nature of the oscillations in year 2005.26

Another important thing to check is the model sensitivity. The model error27
dependence on the parameters is shown in Figure 12 in Appendix B. Clearly,28
the nonlinear low-order stochastic model (1) is more robust with respect to29
the parameter variations around the optimal values compared with the linear30
stochastic model (5). Note that when γvf (t) > du, a slight increase in γvf (t)31
leads to an exponential increase in u1 and u2 in the linear model (5) and therefore32
the linear model is sensitive to the parameter variations. On the other hand,33
the energy-conserving nonlinear interaction plays a significant role in increasing34
the robustness in the nonlinear low-order stochastic model (1). Large values in35
u1 and u2 in the nonlinear low-order stochastic model (1) strongly reduce the36
stochastic damping v due to the nonlinear feedback −γ(u2

1 + u2
2) in (1c), which37

then prevents the unbounded exponential increase in u1 and u2 and guarantees38
the robustness of the model.39
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To check the sensitivity of the prediction skill with respect to the parameter 1
variations. We pick up the following random suboptimal parameters in each 2
ensemble for both the nonlinear and linear models, 3

σu = σ∗
u + U(0, 0.2), du = d∗

u + U(−0.4, 0),
σv = σ∗

v + U(−0.2, 0.2), dv = d∗
v + U(−0.2, 0.2),

σω = σ∗
ω + U(−0.2, 0.2), dω = d∗

ω + U(−0.2, 0.2),
ft = f∗

t + U(0, 1), γ = γ∗ + U(0, 0.3),

(6)

where the variables with asterisk are the optimal parameters and U(a, b) is the 4
uniform distribution within the interval [a, b]. The forecasting skill scores are 5
shown in column (b) and (d) of Figure 8. As expected, due to the energy- 6
conserving nonlinear interactions, the nonlinear low-order stochastic model (1) 7
with the random suboptimal parameters has the comparable prediction skill 8
as that with the optimal parameters. On the other hand, the RMS error 9
in prediction utilizing the linear model (5) with the suboptimal parameters 10
increases dramatically as a function of lead time, contrasting the skillful 11
prediction with the optimal parameters. The overestimation in amplitude 12
utilizing the linear model (5) with the random suboptimal parameters at lead 13
times of 25 and 35 days shown in Figure 9 is a good evidence. In addition, with 14
the random suboptimal parameters, the ensemble spread for predicting starting 15
from April 1 overestimates the uncertainty at long ranges and that starting 16
from June 1 fails to include the truth, which together with the huge bias in the 17
ensemble mean estimation indicates the useless prediction. 18

As a remark, the nonlinear model (1) without the nonlinear feedback term 19
−γ(u2

1 + u2
2) is the stochastic parameterized extended Kalman filter (SPEKF) 20

model [42, 43], which is able to capture the intermittent nature of the BSISO 21
indices and is skillful as a short-term forecast model. Yet, without the energy- 22
conserving nonlinear interactions, the SPEKF model is not robust for long-range 23
predictions and has sensitive dependence on parameters. 24

In summary, the linear model (5) with time-periodic damping vf (t) is able 25
to capture the non-Gaussian fat tailed PDF of the truth and has comparably 26
high prediction skill as the nonlinear low-order stochastic model (1) in the years 27
with regular oscillations given the optimal parameters. The failure of the linear 28
model in capturing the autocorrelation functions and power spectrums leads to 29
a significant bias in medium- and long-range prediction with respect to ensemble 30
mean in the years with nonlinear oscillations and the ensemble spread fails 31
to include the truth in those years. Without the energy-conserving nonlinear 32
interaction, the linear model is also sensitive to the parameter variations around 33
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the optimal values. The error in prediction increases dramatically utilizing the1
linear model with the random suboptimal parameters.2

Note that the bivariate correlation in prediction utilizing the linear model3
with the random suboptimal parameters remains almost the same as that4
with the optimal parameters due to the fact that the linear oscillator model5
is nevertheless able to capture the averaged oscillation frequency. Actually,6
this is a representative example to demonstrate that the bivariate correlation7
should not be overemphasized in measuring the prediction skill. In [33, 44],8
an information-theoretic framework is proposed to evaluate the forecast skill,9
which contains the information surrogates of the RMS error and the bivariate10
correlation as well as the information deficiency in comparing the amplitudes11
of the prediction and the truth. As shown in [33], two different predictions12
can have nearly the same bivariate correlation with the truth but have quite13
different information deficiency. Note that although only the RMS error and14
bivariate correlation are utilized here in measuring the prediction skill of the15
BSISO indices, the short- and medium-range ensemble mean prediction and16
the long-term ensemble spread of the nonlinear low-order stochastic model (1)17
have nearly the same amplitude as the truth, implying the small information18
deficiency in prediction.19
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Fig. 7. Statistics of the linear stochastic model (5) with the optimal parameters in Table
1. (a) Long-term autocorrelation function R11(τ) from 0 to 24 months. (b) Short-term
autocorrelation function R11(τ) and cross-correlation function R12(τ) from 0 to 3 months.
(c) Equilibrium PDFs of the signal u1 from stochastic model compared with that of the
BSISO 1 index. (d) Spectrum of u1 compared with that of the BSISO 1 index.
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6 Twin Experiment 1

To explore the model error and the predictability limits of the nonlinear low- 2
order stochastic model (1) in predicting the BSISO indices, we include the results 3
from the perfect model twin experiment. In the twin experiment, the truth signal 4
is generated from the nonlinear low-order stochastic model (1) and therefore the 5
data assimilation algorithm in Section 3.2 is based on a perfect filter. The length 6
of the two signals representing u1 and u2 in the twin experiment is the same as 7
the two BSISO indices in Figure 1 and as in predicting the BSISO indices we 8
predict the signals in the last eight years of these two time series. See panel (a) 9
and (b) in Figure 10. 10

The prediction skill scores as a function of lead time are shown in panel 11
(c) and (d) in Figure 10 and the ensemble mean predictions at lead times of 25 12
and 35 days are shown in Figure 11. Actually, the internal prediction skill in 13
this twin experiment indicates the predictability limit of the model. Comparing 14
panel (c) and (d) in Figure 10 and panel (c) and (d) in Figure 3, it is clear 15
that the BSISO prediction skill is comparable to this internal prediction skill, 16
suggesting that the nonlinear low-order stochastic model (1) has a significant 17
skill for determining the predicability limits of the large scale cloud patterns of 18
the BSISO. 19
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Fig. 10. Twin experiment. (Panel (a) and (b)) The two components of the signal generated
from the nonlinear low-order stochastic model (1), where the eight year period from 1998
2006 is utilized as the prediction period. (Panel (c) and (d)) Skill scores with RMS error
and bivariate correlation for prediction as a function of lead days in different years.
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Fig. 11. Twin experiment. Prediction of the twin experiment signal 2 (panel (b) in Figure
10) generated from the nonlinear low-order stochastic model (1) regarding the ensemble
mean at lead times of 25 and 35 days in different years. The blue curve shows the truth
in panel (b) of Figure 10 and the red curve shows the ensemble average of the predicted
signal. The number of ensemble utilized for prediction is 50.
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7 Conclusions and Discussions1

A recent developed nonlinear data analysis technique NLSA has been applied2
to the CLAUS data to define two spatial patterns associated with the BSISO3
without detrending or spatial-temporal filtering. This provides two BSISO4
indices with strong intermittency and non-Gaussian fat-tailed PDF (Figure5
1). Then a recent systematic strategy for data driven physics-constrained low-6
order stochastic modeling is applied to the BSISO indices. The result is a four7
dimensional nonlinear stochastic model (1) with two state variables denoting8
the observed BSISO indices and two hidden variables representing stochastic9
damping and stochastic phase. The model contains correlated multiplicative10
noise through the energy-conserving nonlinear interactions between the observed11
and hidden variables as well as the additive noise.12

The parameters in the nonlinear low-order stochastic model (1) are calibrated13
in minimizing the model error of the time-averaged PDF compared with that14
of the truth in the information framework. The model with the optimal15
parameters succeeds in recovery the highly intermittent non-Gaussian PDF; the16
autocorrelations and the power spectrums of the model signals almost perfectly17
match those of the observed BSISO indices (Figure 2). The special structure18
of model (1) allows an effective data assimilation algorithm for determining the19
initial ensemble of the hidden variables in the ensemble forecasting scheme. This20
on-line prediction algorithm shows that the ensemble mean forecasting skill of21
the BSISO in the non-El Niño year is at least 30 days and even reaches 55 days22
in the years with regular intraseasonal oscillation. In the strong El Niño year23
(year 1998) the useful prediction is around 18 days due to both the increase of24
noise to signal ratio and the intrinsic model error (Figure 3–5). Furthermore,25
the ensemble spread is a good indicator of the forecasting uncertainty at long26
range (Figure 6).27

The twin experiment (Figure 10 and 11) shows the skill of forecasts in the28
perfect modeling setting is comparable with that of predicting the BSISO indices,29
implying that the nonlinear low-order stochastic model (1) has a significant skill30
for determining the predicability limits of the large scale cloud patterns of the31
BSISO.32

To check the role of the nonlinearity in the low-order models, the prediction33
skill of the linear model (5) is studied. With time-periodic damping vf (t), the34
linear model is able to capture the non-Gaussian fat tailed PDF of the truth35
and has comparably high prediction skill as the nonlinear low-order stochastic36
model (1) in the years with regular oscillations given the optimal parameters.37
The failure of the linear model in capturing the autocorrelation functions and38
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power spectrums (Figure 7) leads to a significant bias in medium- and long-range 1
prediction with respect to ensemble mean in the years with nonlinear oscillations 2
and the ensemble spread fails to include the truth in those years (Figure 8 and 3
9). In addition, the linear model is sensitive to the parameter variations around 4
the optimal values (Figure 12). The error in prediction increases dramatically 5
utilizing the linear model with random suboptimal parameters (Figure 8 and 9). 6
On the other hand, the SPEKF model, which is a nonlinear model but has no 7
energy-conserving nonlinear interaction, is also quite sensitive with respect to 8
the parameter variations for long-range forecasting. 9

Although in this paper, we focus only on the skill of predicting the two 10
BSISO time series, it is straightforward to translate to the prediction of the 11
location and evolution of BSISO convection itself. Recall that the original 12
spatiotemporal patterns of the MJO cloud clusters are illustrated in the video 13
in [24]. The predicted spatial patterns are a rank-2 reconstruction constructed 14
from the predicted temporal patterns (u1 and u2) multiplied by the dataset 15
projected onto the original temporal patterns. Because u1 and u2 evolve in 16
near-quadrature (as do the original temporal patterns), we do not expect major 17
qualitative differences between the structure of the predicted cloud clusters in 18
the reconstruction and the original clusters when the time series can be predicted 19
reasonably well. 20

Most of the current studies of BSISO prediction is up to 30 days. In [45], a 21
regression scheme is designed to study the forecasts of central India precipitation. 22
The prediction skill lasts for 30 days with respect to the pattern correlation. 23
Yet, their prediction underestimates the amplitudes and fails to predict some 24
monsoon onsets. Similar results are found in [46] that the skill utilizing the 25
coupled ocean-atmosphere forecast models for monsoon prediction is up to 30 26
days as well. Thus, our nonlinear low-order stochastic model combined with 27
NLSA data analysis tool are potentially able to extend the prediction limit of 28
BSISO and boreal summer monsoon. 29

Note that what we have predicted utilizing the nonlinear low-order stochastic 30
model (1) is the anomalies of the BSISO. Actually, when we apply NLSA to the 31
CLAUS data, besides the BSISO modes, we also obtain those large-scale modes 32
such as the annual and seasonal modes, which reflect the background of rainfall. 33
These modes are quite regular and easy to predict. Therefore, to recover the 34
total rainfall, we simply need to combine the predicted BSISO anomaly with 35
the background. 36

We have also looked at the prediction skill utilizing the nonlinear low-order 37
stochastic model (1) in predicting the boreal winter MJO derived from NLSA 38
with shift map and with the improved prediction scheme incorporating the 39
effective data assimilation algorithm in Section 3.2. The boreal winter MJO time 40
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series also have non-Gaussian fat tailed time-averaged PDF and the oscillation1
frequency is slightly lower than that of the BSISO. Yet, unlike BSISO with2
moderate or strong amplitudes in almost all the years, the amplitudes of the3
boreal winter MJO range from weak to strong in different years. The forecasting4
skill for the BSISO and the boreal winter MJO is comparable in the moderate5
and strong years while the small signal to noise ratio in the weak MJO years,6
including year 1998, deteriorates the prediction skill. The results are similar to7
those reported in [32]8

We point out that the information-theoretic calibration procedure utilized9
in this work is widely adopted as training strategy for improving the predictive10
skill in many different issues. Imperfect predictions via Multi Model Ensemble11
forecasts are improved with the information-theoretic framework [47]. The12
prediction skill of imperfect large-dimensional turbulent models are enhanced13
through statistical response and information theory [48]. The forecasting14
skill of the RMM index is also greatly enhanced by combining three different15
information measures compared with adopting only path-wise measures [33, 44].16

We also note that the conditional Gaussian models as in (11) and the17
effective data assimilation algorithm in Section 3.2 are innovative tools for18
studying the hidden processes from the observations in the turbulent flows. One19
example is the understanding of the practical information barrier in recovering20
the fluid flows with noisy Lagrangian tracers [49, 50], which contains the21
application of the information theory as well.22
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8 Appendix 1

8.1 A. Reconstruction of the eigenfunctions from the shift 2

map in NLSA 3

Following Section 2 in [24], the Laplace-Beltrami operator L is given by formula 4
(3) there. In formula (4) there, the eigenfunction φi with i ∈ {0, 1, 2, . . .} is 5
solved via 6

Lφi = λiφi, (7)

where λi is the associated eigenvalue. Now we utilize the shift map Sτ [35],
where Sτf(x(ti)) = f(x(ti+τ )), to formulate a new operator A,

Aij = 〈φi, Sτφj〉.

Then we solve the following eigenvalue problem 7

Avi = λ̃ivi, (8)

where the eigenvectors vi are utilized as the time series of different modes. 8
Similar to the formula (5) in [24] but replacing φi by vi that the spatiotemporal 9
patterns are recovered through the operation 10

X̃i = XDviv
T
i , (9)

where X is the lagged embedding of the raw data and D is the weight matrix. 11
To derive the BSISO indices in Figure 1, τ is set to be 1. 12

8.2 B. Calibration of the nonlinear and linear low-order 13

stochastic models and sensitivity analysis 14

The optimal parameters in the nonlinear low-order stochastic model (1) and the 15
linear model (5) are calibrated by systematically minimizing the information 16
distance, i.e., the model error, of the time-averaged PDF of the model πM 17
compared with that of the BSISO index π [38, 39, 51, 52, 53], 18

P(π, πM ) =
∫
π log

( π

πM

)
. (10)

The model error dependence on the variation of different parameters is shown 19
in Figure 12, which indicates that the nonlinear low-order stochastic model (1) 20
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is robust with respect to the parameters around their optimal values. The huge1
model error with the underestimation of σu, ft and γ and the overestimation of2
du is due to the failure of capturing the intermittency. Note that the model error3
has only a weak dependence on the background phase a since the contribution4
of the oscillation in the signal has been averaged out in the time-averaged PDF.5
However, the parameter a is crucial in describing the frequency of intraseasonal6
oscillation, and it is calibrated by matching the autocorrelation functions7
associated with the model and the truth. The other parameters dv, σv, dω and8
σω in describing the stochastic processes affect not only on the model error but9
more on the autocorrelations and power spectrums as well. A large discrepancy10
appears in the statistics if these parameters are outside the optimal range. The11
parameter f0 is not an independent parameter given du and γ and therefore we12
fix its value. The frequency ωf in the time-periodic damping vf (t) is prescribed13
to be 2π/12 such that one time unit of the model corresponds to one month in14
reality. The phase φ in vf (t) is tuned to make the strong intermittency occur15
in the boreal summer in accordance with the BSISO indices. Note that none16
of the parameters is redundant in the nonlinear stochastic model (1). In fact,17
without the hidden variables v and ωu, even if the time-period damping vf (t) is18
able to crudely describe the active phase of BSISO in the reduced linear model,19
a distinguished disparity is observed in the model statistics compared with the20
truth, indicating the intrinsic barrier [39, 52]. In addition, as seen in Figure 12,21
the linear model (5) is more sensitive with respect to the parameter variations22
around the optimal values.23

8.3 C. Mathematical details of effective data assimilation24

and prediction algorithm25

Recall the nonlinear low-order stochastic model (1). Denote by U = (u1, u2)T

and Γ = (v, ωu)T . The abstract form of the low-order stochastic model (1) is
given as follows:

dUt = [A0(t,U) + A1(t,U)Γt]dt+ ΣU (t,U)dWU (t), (11a)
dΓt = [a0(t,U) + a1(t,U)Γt]dt+ ΣΓ(t,U)dWΓ(t), (11b)
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Fig. 12. Sensitivity analysis of the parameters in the nonlinear low-order stochastic
model(1) (solid blue curves) and the linear stochastic model (5) (dashed red curves).

where

A0 =
(
−du u1 + γ vf (t)u1 − a u2
−du u2 + γ vf (t)u2 + a u1

)
, A1 =

(
γ u1 −u2
γ u2 u1

)
,

a0 =
(
−γ (u2

1 + u2
2)

0

)
, a1 =

(
−dv

−dω

)
,

ΣU =
(
σu

σu

)
, ΣΓ =

(
σv

σω

)
.

The model (11) is a conditional Gaussian system conditioned on the observations 1
U, meaning that once the observations U are given the dynamics of Γ in (11) 2
becomes a Gaussian system. The special structure of system (11) allows 3
the closed analytic formulae for the evolution of the conditional Gaussian 4
distributions of the hidden parameters v and ωu [40] obtained in the Bayesian 5
framework: 6

dµt =[a0(t,U) + a1(t,U)µt]dt+ (RtA∗
1(t,U))(ΣUΣ∗

U )−1(t,U)×
[dUt − (A0(t,U) + A1(t,U)µt)dt],

dRt = {a1(t,U)Rt +Rta∗
1(t,U) + (ΣΓΣ∗

Γ)(t,U)
−(RtA∗

1(t,U))(ΣUΣ∗
U )−1(t,U)(RtA∗

1(t,U))∗} dt,
(12)
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where µt and Rt are the posterior mean and posterior covariance of the1
conditional distributions, respectively. The asterisk represents the complex2
conjugate.3

As a remark, the formulae (12) are optimal if and only if the signal is4
generated from system (11). Since our observed signal, i.e., the BSISO indices,5
are not from the nonlinear low-order stochastic model (11), the evolutions of the6
conditional Gaussian distributions (12) are suboptimal.7

In Figure 13 we show the posterior mean and variance of stochastic damping8
v and stochastic phase ωu in (1) as a function of time compared with the9
observations of the BSISO indices from January 1994 to December 2005.10
Note that the corrections of the stochastic variables v and ωu from the data11
assimilation algorithm are significant and important in the intermittent phase.12
In addition, the posterior covariance at the intermittent phase is smaller than13
that at the quiescent phase, indicating the small uncertainty in the recovered14
stochastic variables.15
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Fig. 13. Recovery of posterior mean and variance of stochastic damping v and stochastic
phase ωu in (1) as a function of time compared with the observations of the BSISO indices
from January 1994 to December 2005. The cross-covariance of v and ωu is negligible of
order O(10−18) and is not shown here.
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