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a b s t r a c t

Stochastic superparameterization, a stochastic parameterization framework based on a multiscale for-
malism, is developed for mesoscale eddy parameterization in coarse-resolution ocean modeling. The
framework of stochastic superparameterization is reviewed and several configurations are implemented
and tested in a quasigeostrophic channel model – an idealized representation of the Antarctic Circumpo-
lar Current. Five versions of the Gent–McWilliams (GM) parameterization are also implemented and
tested for comparison. Skill is measured using the time-mean and temporal variability separately, and
in combination using the relative entropy in the single-point statistics. Among all the models, those with
the more accurate mean state have the less accurate variability, and vice versa. Stochastic superparam-
eterization results in improved climate fidelity in comparison with GM parameterizations as measured
by the relative entropy. In particular, configurations of stochastic superparameterization that include sto-
chastic Reynolds stress terms in the coarse model equations, corresponding to kinetic energy backscatter,
perform better than models that only include isopycnal height smoothing.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mesoscale eddies play a dominant role in stirring and mixing
active and passive tracers in the oceans. These eddies have typical
horizontal scales between 80 and 200 km (Chelton et al., 2011),
and are often not fully resolved in global coupled model simula-
tions. The most widely used parameterizations of the effects of
ocean mesoscale eddies are based on the GM parameterization
(Gent and McWilliams, 1990; Gent et al., 1995); indeed, most of
the IPCC AR4 climate models used ocean mesoscale parameteriza-
tions based on the GM parameterization (Kuhlbrodt et al., 2012).
As the resolution of ocean models increases these eddies are begin-
ning to be partially resolved in global coupled models; neverthe-
less, the need to run ensemble simulations for prediction and
data assimilation, the need to run models with complex ocean–
ice–land–atmosphere interactions with large numbers of organic
and inorganic tracers, and the fact that partially-resolved eddies
are not always superior to parameterized ones (Hallberg, 2013)
implies that mesoscale eddy parameterization will remain relevant
for some time to come.

Most ocean mesoscale parameterizations are developed with
the goal of capturing the average feedback from the unresolved
scales, and as such, model eddy fluxes of tracers and momentum
as deterministic functions of the large scales. This approach is
reasonable, and is justified e.g. by multiple-scales asymptotic
arguments (Pedlosky, 1984; Grooms et al., 2011), when the
subgridscale dynamics evolve on space and time scales much
smaller than the resolved large scales. But when the coarse grid
scale begins to encroach upon the mesoscale eddy range, the
feedbacks from the subgridscale should no longer be expected to
be purely deterministic. Instead, they include significant variability
about the average value, and this variability can in principle have a
pronounced effect on the resolved large-scale dynamics.

Stochastic parameterizations have been developed to include
subgridscale variability in, for example, engineering-scale models
(Leith, 1990; Mason and Thomson, 1992; Schumann, 1995;
Marstorp et al., 2007), atmospheric models (Buizza et al., 1999;
Berner et al., 2009; Lin and Neelin, 2000, 2003; Khouider et al.,
2003; Frenkel et al., 2013; Khouider et al., 2010; Deng et al.,
Submitted for publication; Frederiksen and Davies, 1997), and
ocean models (Berloff, 2005; Kitsios et al., 2013, 2014; Jansen
and Held, 2014; Mana et al., 2014; Brankart, 2013; Grooms and
Majda, 2013; Grooms and Majda, 2014). One typical impact of sto-
chastic parameterizations is to increase the internal variability of a
model. This leads to increased spread of prediction ensembles
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(Buizza et al., 1999), the need for which has been recently noted by
Karspeck et al. (2013) in a 1� ocean model: models with too little
internal variability lead to tightly clustered prediction ensembles
that can cause assimilation systems to be over-confident in the
model at the expense of the observations. Improved internal vari-
ability can also lead to improved long-term prediction skill. The
skill of a model’s long-term prediction under climate change
(meaning here any change of forcing) has recently been linked to
the model’s ‘climate fidelity’, which is the accuracy of the model’s
unperturbed climatological statistics – including both mean and
variability (Shukla et al., 2006; DelSole and Shukla, 2010; Majda
and Gershgorin, 2010, 2011a,b).

Stochastic superparameterization is a framework for developing
stochastic subgridscale parameterizations that has recently been
developed in an idealized quasigeostrophic setting for eddy-permit-
ting resolution (Grooms and Majda, 2013, 2014). The link to super-
parameterization (‘SP’; Randall et al., 2003, 2013; Grabowski,
2004) is discussed byMajda andGrooms, 2014. This article develops
stochastic SP for non-eddy-permitting coarsemodels in an idealized
setting. More details on stochastic SP are given in Section 3.2. For
comparison with stochastic superparameterization we implement
several variations on the GM parameterization (Gent and
McWilliams, 1990). In the two-layer quasigeostrophic model con-
text the GMparameterization amounts to layer interface smoothing
with coefficientj, andwe test five different schemes for settingj as
a function of the resolved large-scale flow.

The idealized setting used here is a two-layer, wind-forced
quasigeostrophic channel model with complex topography: an ide-
alized model of the Antarctic Circumpolar Current (ACC). Although
they lack a variety of important physical features, few-layer quas-
igeostrophic models have been successfully used to study qualita-
tive features of the Southern Ocean (e.g. Nadeau and Straub, 2009,
2012; Nadeau et al., 2013; Hutchinson et al., 2010; Hogg et al.,
2008; Meredith and Hogg, 2006; Meredith et al., 2012). Mesoscale
eddies have a significant impact on the large-scale dynamics in
idealized wind-driven channels and in more realistic models of
the ACC, e.g. by limiting the increase of transport in response to
increased wind forcing. This effect is known as eddy saturation
(Meredith et al., 2012; Munday et al., 2013), and was predicted
by Straub (1993). Although eddies are instrumental in flattening
the isopycnals, and thereby reducing the transport through ther-
mal-wind balance, either large-scale topography or interaction
with subpolar gyre dynamics is also necessary to saturate the
transport (Tansley and Marshall, 2001; Hallberg and
Gnanadesikan, 2001; Nadeau and Straub, 2009, 2012; Nadeau
et al., 2013). Our idealized ACC includes complex topography for
the purposes of limiting the net transport, and increasing the com-
plexity of the structure of the isopycnal surface.

The fact that mesoscale eddies have a pronounced effect on the
dynamics of wind-driven channels makes it a useful setting to test
parameterizations. We focus in particular on the ability of param-
eterized coarse models to accurately represent both the time-mean
and the variability of the single isopycnal surface (the layer inter-
face) in our two-layer model. We measure the accuracy in the
mean and variability separately, and also in combination using
the area-averaged relative entropy, as in DelSole and Shukla
(2010). The relative entropy is an information-theoretic measure
of how well one statistical distribution approximates another
(Kleeman, 2002; Majda et al., 2002). It is used here to measure
how well the climatological distributions of the parameterized
coarse models approximate the true climatology from the high res-
olution reference simulation. The mathematical definition of rela-
tive entropy and further discussion are provided in 4.2.

The article is organized as follows. Section 2 presents the con-
figuration and results of the eddy-resolving reference simulation.
Section 3 reviews five GM parameterizations appropriate to this

setting, and introduces stochastic SP. Section 4 presents and dis-
cusses the results of simulations using the parameterized coarse
models. Conclusions are offered in Section 5. Two appendices
discuss boundary conditions and barotropic transport in the
quasigeostrophic channel.

2. Model configuration and eddy-resolving reference
simulation

2.1. Physical parameters and model numerics

Our idealized model of the ACC consists of two-equal-layer QG
dynamics in a zonally reentrant channel with topography, forced
by steady zonal wind stress. The dynamics are governed by the
quasigeostrophic potential vorticity (PV) in each layer, which
evolves according to the following equations

@tq1 þ J½w1; q1 þ by� ¼ � 2
q0H

@ysðyÞ � m4r6w1 ð1Þ

@tq2 þ J½w2; q2 þ by� ¼ �2f 0
H

J½w2;hb� � rr2w2 � m4r6w2: ð2Þ

The PV in each layer is qi (i ¼ 1 is upper and i ¼ 2 is lower), the
streamfunction is wi, the total depth is H, and the local Coriolis fre-
quency is f 0; m4 is the biharmonic viscosity coefficient, r is the
Ekman drag coefficient, and b is the meridional gradient of plane-
tary vorticity. The velocity is ui ¼ ð�@ywi; @xwiÞ and the wind stress
profile is sðyÞ ¼ s0 sin2ðpy=LyÞ. The boundary conditions are stress-
free @2

nwi ¼ @4
nwi ¼ 0. The values of the physical parameters can be

found in Table 1.
The local height of the ocean floor (above its mean depth of

4 km) is hb. It is important to include topography because zonal
channels develop unrealistically large transport in response to
moderate wind forcing unless either strong bottom friction or
topography is included (see Treguier and McWilliams, 1990 and
Appendix B). The topography is constructed similarly to Nadeau
et al. (2013) using the 5-Minute Gridded Global Relief Data
Collection (ETOPO5) dataset. The ETOPO5 data set is used to supply
complex topography without resorting to randomly-generated
topography; the model is not intended to accurately represent real
Southern Ocean dynamics. The model topography is a smoothed,
truncated version of the ETOPO5 data derived from a latitude band
surrounding Drake Passage. The maximum amplitude of the topog-
raphy is 1 km, and Gaussian buffers with height equal to the max-
imum topographic height and with half-width 250 km are added at
the northern and southern boundaries. This is necessary to prevent
the formation of viscous boundary layers where the topographic
advection term u2@xhb is balanced by viscosity. Such boundary

Table 1
Model parameters.

Parameter Symbol Value

Rossby deformation radius Ld 12.25 km
Horizontal resolution Dx ¼ Dy 6.51 km
Channel length Lx 20,000 km
Channel width Ly 2500 km
Total depth H 4 km
Wind stress amplitude s0 0.2 N/m2

Coriolis parameter f 0 �10�4 s�1

Beta parameter b 1:5� 10�11 m�1s�1

Gravitational acceleration g 9:81 m=s2

Reduced gravity g0 0.0015 m=s2

Reference density q0 1027 kg=m3

Bottom friction coefficient r 2� 10�7 s�1

Biharmonic dissipation coefficient m4 109 m4/s
Harmonic dissipation coefficient m2 100 m2/s
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layers were first described by Treguier (1989), and are only
problematic in the coarse-resolution models which are unable to
resolve the boundary layers, resulting in numerical instability.
The model topography is shown in Fig. 1(a); the model’s idealized
version of Drake Passage appears in the rightmost quarter of the
figure.

The streamfunction wi is defined by the solution to the elliptic
potential vorticity inversion problem

q1 ¼ r2w1 þ
2f 20
g0H

ðw2 � w1Þ �
2f 20
gH

w1 ð3Þ

q2 ¼ r2w2 þ
2f 20
g0H

ðw1 � w2Þ ð4Þ

where g is the gravitational acceleration, and g0 is the reduced grav-
ity. Boundary conditions are required to uniquely specify the solu-
tion wi; they are presented in Appendix A.

The model equations are simulated at high resolution on an
equispaced grid of 3072� 385 points, which gives a grid spacing
of Dx ¼ Dy ¼ 6:51 km, approximately half the baroclinic deforma-
tion radius Ld ¼ 12:25 km. Note that the baroclinic deformation
radius for this model is approximately

Ld �
ffiffiffiffiffiffiffiffi
g0H

p
2jf 0j

: ð5Þ

The barotropic deformation radius
ffiffiffiffiffiffi
gH

p
=f 0 is finite, but at 1981 km

it is too large to have a significant impact on the dynamics.
The second-order spatial discretization is described by Nadeau

and Straub (2009); the jacobian advection terms are discretized
using the method of Arakawa (1966). The eddy-resolving model
uses third-order Adams–Bashforth time integration with a step
size of 15 min, and uses a multigrid method to solve the potential
vorticity inversion.

2.2. Eddy-resolving results

The eddy-resolving simulation is run from rest to a statistically
steady state, as measured by the equilibration of the total energy
and area-averaged zonal baroclinic shear. The simulation takes
approximately 150 years to equilibrate, and statistics are
computed based on daily observations over a 10 year period. The
total (barotropic) volume transport equilibrates to 200 ± 9 Sv
(1 Sv = 106 m3/s), where 9 Sv is the standard deviation of the tem-
poral fluctuations. The mean zonal baroclinic shear, defined as the

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1. Results from the eddy-resolving reference simulation. Axes are labeled in units of kilometers. Panels show: (a) topography hb (meters), (b) mean interface height g
(meters), (c) mean shear amplitude ju1 � u2j (m/s), (d) growth rate of local baroclinic instability (days�1), (e) eddy kinetic energy (m2/s2; color saturates at 0:08), and (f)
standard deviation of coarse-grained interface height r (meters; color saturates at 250).
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area-averaged difference between the zonal velocity in the upper
and lower layers, equilibrates to 0:70� 0:003 cm/s.

The height of the layer interface is H=2þ g where
g ¼ ðf 0=g0Þðw2 � w1Þ; note that the area average of g is zero because
of the boundary conditions on PV inversion (Appendix A). The time
average of g is shown in Fig. 1(b). It exhibits large variations up to
�1 km, and has an RMS height of 473 m. The local mean shear
(ju1 � u2j / jrgj) shown in Fig. 1(c) reaches a maximum of approx-
imately 20 cm/s, which implies that the slope of the layer interface
remains mild despite the relatively large amplitude of g. The net
baroclinic shear of 0.7 cm/s is somewhat small compared to the
baroclinicity of the real ACC (see e.g. Firing et al., 2011). It could
be increased by increasing the amplitude of the topography or by
increasing the Ekman drag coefficient r, but the former would take
the model even further from the regime of applicability of the
quasigeostrophic approximation and the latter could result in
unrealistic frictionally-dominated dynamics. The parameter
choices here attempt to make the model as realistic as possible
within the constraints of a two-layer QG channel.

Fig. 1(d) shows the growth rate of local baroclinic instability
computed using the time-mean shear and PV gradient. Regions of
strong growth rate largely coincide with regions of strong shear.
Fig. 1(e) shows the eddy kinetic energy (EKE) based on a time aver-
age, i.e.

EKE ¼ 1
2

X
i

juij2t � jut
i j2 ð6Þ

where the overbar ð�Þt denotes a time average (the superscript t is
used to distinguish the time average from the division onto large
scales in Section 3.2). Regions of high EKE do not coincide with
regions of strong shear and strong baroclinic instability; rather,
regions of strong EKE tend to lie downstream of such regions. Sig-
nificant movement of eddy energy has also been found by
Grooms et al. (2013) in a QG basin model. This suggests that param-
eterizations that infer an eddy velocity scale from the local shear
will be in error, and that it may be advantageous to develop param-
eterizations that account for large-scale movement of eddy energy
(Eden and Greatbatch, 2008; Marshall and Adcroft, 2010; Grooms
et al., 2012; Grooms and Majda, 2014). None of the parameteriza-
tions tested here incorporate such effects.

Fig. 1(f) shows the variability of the large-scale part of the inter-
face height deviation g. Specifically, g is coarse-grained by cell-
averaging from the eddy-resolving 3072� 385 grid to the coarse-
model 384� 49 grid, and Fig. 1(f) shows the standard deviation
of the time series of the coarse-grained g at each point on the
384� 49 coarse-model grid. The temporal variability of the
large-scale part of g is quite large, with standard deviations in
excess of 200 m. This underscores the strong temporal variability
of the large-scale part of g, which is particularly difficult for coarse
models to reproduce. It also suggests that the time-mean EKE
shown in Fig. 1(f) is not entirely due to subgrid scales.

3. Deterministic and stochastic parameterizations

3.1. Gent–McWilliams parameterizations

Mesoscale eddies and their important effects are not resolved
by coarse models, and need to be parameterized. There are many
approaches to parameterizing mesoscale eddies; we consider five
variations on the popular GM parameterization (Gent and
McWilliams, 1990), since the GM parameterization forms the basis
of mesoscale eddy parameterizations in most IPCC-class climate
models (Kuhlbrodt et al., 2012).

In the context of two-layer QG dynamics, the GM parameteriza-
tion becomes extremely simple: subgridscale eddies smooth the

large-scale layer interface height. The interface height is
H=2þ ðf 0=g0Þðw2 � w1Þ, and the large-scale QG dynamics are mod-
eled by

@tq1 þ J½w1; q1 þ by� ¼ 2f 20
g0H

r � jrðw2 � w1Þð Þ � 1
q0H1

@ysxðyÞ

þ m2r4w1 ð7Þ

@tq2 þ J½w2; q2 þ by� ¼ 2f 20
g0H

r � jrðw1 � w2Þð Þ � f 0
H2

J½w2; hb�

� rr2w2 þ m2r4w2 ð8Þ
Note that the coarse model equations use a Laplacian vorticity dif-
fusion instead of biharmonic, consistent with standard practice in
coarse-resolution ocean modeling.

There are many ways to specify the quasi-Stokes diffusivity
coefficient j: we test five parameterizations of j, based on
schemes from the literature. The first is the simplest, namely

0: j is a tunable constant; independent of space and time:

Since j has dimensions of length squared over time, one might
make a mixing-length approximation by setting j / VL for some
velocity scale V. The simplest scheme of this form is

1: j ¼ aLdDU

where Ld ¼ 12:25 km is the deformation radius, DU ¼ ju1 � u2j is
the magnitude of the velocity jump across the interface, and a is a
tunable constant. This scheme is loosely similar to a parameteriza-
tion proposed by Stone (1972).

Scheme 1 generates a j that is linear in DU, and one can
construct schemes that are quadratic and cubic in DU. For the
quadratic scheme we set

2: j ¼ a
ðDUÞ2

r

In our setting with constant r this scheme is essentially just a qua-
dratic in DU, but the dependence on r and quadratic dependence on
DU are similar to the parameterization of Cessi (2008).

Held and Larichev (1996) proposed a parameterization for j
based on the phenomenology of doubly-periodic simulations of
two-layer quasigeostrophic turbulence on a b-plane. Their method
uses a length scale L / ðbTÞ�1 with T ¼ Ld=DU. The result is

3: j ¼ a
ðDUÞ3
b2L3d

As suggested by Held and Larichev (1996), and as implemented in
the coarse-resolution MOM3.0 ocean model (Pacanowski and
Griffies, 2000), we replace b by an ‘effective’ value that incorporates
the effect of topography

beff ¼ bŷ þ f 0
H
rhb

����
���� ð9Þ

Visbeck et al. (1997), inspired partly by Green (1970), proposed
a scheme for j based on the dimensional form j / L2=T where the
time scale T is given by

ffiffiffiffiffi
Ri

p
=jf 0j. In the two-layer context we

approximate the Richardson number Ri ¼ N2=j@zuj2 using the the
two-layer approximation to the buoyancy frequency N � ffiffiffiffiffiffiffiffiffiffiffiffiffi

2g0=H
p

and using j@zuj � 2DU=H, which leads to

1
T
¼ jf 0jffiffiffiffiffi

Ri
p ¼ DU

ffiffiffiffiffiffiffiffi
2f 20
g0H

s
: ð10Þ

They proposed setting the length scale L to be the ‘width of the
baroclinic zone’ Lz, defined as follows: In locations where 1=T is less
than 10% of its maximum on the domain, Lz is set equal to the grid
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scale, otherwise it equals the distance to the nearest point where
1=T is less than 10% of its maximum on the domain. We therefore
consider the scheme

4: j ¼ a
L2z
T

where T is defined by (10). When computing T for this scheme, we
set values larger than 1 day equal to 1 day, and when computing Lz
values larger than 10 coarse grid points are truncated; this is qual-
itatively consistent with implementations in ocean general circula-
tion models (e.g. MOM3.0: Pacanowski and Griffies, 2000). When
computing distances Lz we use the standard Euclidean distance
rather than the more complicated algorithm in MOM3.0.

These five schemes constitute a representative sample of exist-
ing parameterizations of the diffusivity j; we refer to them as
GM0–GM4. The first four are essentially monomials in the baro-
clinic shear DU, and the numbering scheme is chosen to reflect
the exponent so that e.g. GM0 corresponds to j / ðDUÞ0 and
GM2 corresponds to j / ðDUÞ2. The GM3 scheme is based on the
Held and Larichev (1996) scheme, and is the only scheme to incor-
porate the effect of topography, albeit in an ad hoc manner. The
GM4 scheme is essentially the parameterization of Visbeck et al.
(1997) applied in the two-layer QG setting. For all schemes we
implement cutoffs so that values of j less than 50 m2/s are set to
50 m2/s, and values greater than 2000 m2/s are set to 2000 m2/s;
this is qualitatively consistent with typical implementations in
ocean general circulation models.

3.2. Stochastic superparameterization

Stochastic superparameterization (SP) has been formulated for
two-layer QG dynamics and tested in eddy-permitting scenarios
by Grooms and Majda (2013, 2014). This section reviews the for-
mulation of stochastic SP and discusses its properties.

3.2.1. Coarse grid model
The coarse model equations in stochastic SP take the form

@tq1 þ J½w1; q1 þ by� ¼ �r � u0
1q

0
1

� �� 2
q0H

@ysðyÞ þ m2r4w1 ð11Þ

@tq2 þ J½w2; q2 þ by� ¼ �r � u0
2q

0
2

� �� 2f 0
H

J½w2; hb� � rr2w2

þ m2r4w2 ð12Þ

where the eddy PV flux divergence is further decomposed as

r � u0
iq

0
i

� � ¼ ð�1Þi 2f
2
0

g0H
r � u0

iðw0
1 � w0

2Þ
� �

þ ð@2
x � @2

yÞu0
iv 0

i

þ @xy ðv 0
iÞ2 � ðu0

iÞ2
� �

ð13Þ

The overbar ð�Þ here denotes a formal projection onto large scales,
and the prime 0 denotes small-scale eddy variables. This is an exact
re-writing of the standard eddy PV flux divergence that is obtained
from a Reynolds decomposition, separating it into the flux of that

part of PV corresponding to the interface height (e.g. u0
1ðw0

2 � w0
1Þ)

and the curl of the divergence of the Reynolds stress (Marshall
et al., 2012; Grooms and Majda, 2013; Grooms and Majda, 2014).
The former component is conceptually related to heat flux, and will
be referred to as such hereafter despite the loose physical connec-
tion. The GM parameterizations of the previous section can be writ-
ten in this form by setting the Reynolds stress terms to zero

(u0
iv 0

i ¼ 0; ðu0
iÞ2 ¼ ðv 0

iÞ2) and making the heat flux downgradient

u0
1ðw0

2 � w0
1Þ ¼ �jrðw2 � w1Þ. The importance of the Reynolds

stresses in addition to the heat flux was emphasized in the asymp-
totic analysis of Grooms et al. (2012).

3.2.2. Stochastic subgridscale model
Stochastic SP obtains the components of the eddy PV flux diver-

gence from local models of the eddy dynamics. Specifically, the
unresolved eddies at each location on the coarse-grid domain are
modeled by QG dynamics on local, pseudo-physical subdomains
embedded into the coarse grid; the dynamics on each subdomain
is independent of the dynamics on all the other subdomains. This
multiscale strategy (SP) has been used to parameterize ocean
mixed-layer convection by Campin et al. (2011) and a variety of
atmospheric phenomena (reviewed by Majda and Grooms, 2014).
The SP approach is also related to the finding by Pavan and Held
(1996) that the PV flux diagnosed from idealized channel simula-
tions can sometimes be well approximated by the PV flux gener-
ated by doubly-periodic QG simulations.

A major difference between stochastic SP and conventional SP is
that stochastic SP does not make use of simulations of nonlinear
eddy dynamics on local, horizontally periodic subdomains. Instead,
the unresolved eddies at each point of the physical domain are
modeled as homogeneous random functions on infinite subdo-
mains, obeying quasi-linear, stochastic QG equations where damp-
ing and Gaussian additive forcing replace the nonlinear advection
terms. The eddy equations are of the form

@tq0
1 ¼ F 0

1 � Cq0
1 � u1 � rq0

1 � u0
1 � rðq1 þ byÞ � m4r6w0

1 ð14Þ

@tq0
2 ¼ F 0

2 � Cq0
2 � u2 � rq0

2 � u0
2 � r q2 þ byþ 2f 0

H
hb

� 	

� rr2w0
2 � m4r6w0

2: ð15Þ
Eddy variables are denoted by 0 to distinguish them from coarse-
model variables. The terms that replace the eddy-eddy nonlinear
advection are F 0

i, a spatially-correlated Gaussian white noise, and
C, a positive-definite pseudodifferential operator. Similar stochastic
models of quasigeostrophic turbulence are discussed by DelSole
(2004) and Srinivasan and Young (2012), though not in a multiscale
setting. The PV inversion (Eqs. (3) and (4)) is the same as for the
coarse-grid equations, except that the barotropic deformation
radius is approximated as infinite in the eddy equations for conve-
nience (infinite barotropic deformation radius corresponds to the
limit g ! 1).

Although the equations are written using the same coordinates
(t; x, and y) as the coarse-grid equations, each coarse-grid location
actually has its own eddy microcosm where the eddies evolve on
distinct space and time coordinates (Majda and Grooms, 2014).
The components of the eddy PV flux are defined as space and time
averages over the eddy subdomains, and because the eddies within
a single subdomain are homogeneous the spatial average is equiv-
alent to the statistical average. From the perspective of the eddy
dynamics the coarse-grid variables are constant. The eddy equa-
tions are then linear in the eddy variables and have constant coef-
ficients, so their solution can be written down in closed form using
Fourier analysis (for details see Grooms and Majda, 2013, 2014). A
key assumption here is that the topography hb has no small-scale
component. Topographic variation on the small scales would
require additional modeling beyond the scope of the present inves-
tigation. We have chosen to use a smoothed large-scale topogra-
phy, as described in Section 2.1, in order to be consistent with
this assumption.

The multiscale formulation is most appropriate for situations
where there is a scale separation between the coarse-grid and sub-
grid scale dynamics. In such situations, multiple-scales asymptot-
ics can be used to motivate multiscale equations coupling the
large- and small-scale dynamics (e.g. Majda, 2007a,b; Grooms
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et al., 2011; Grooms et al., 2012; Malecha et al., 2014; Dolaptchiev
and Klein, 2013). But the scale separation between resolved and
unresolved scales is often small, especially in turbulent systems
with a wide range of active scales, and stochastic SP incorporates
several features to minimize the severity of the scale separation
imposed by the multiscale SP approach. These are discussed fur-
ther below; for example, the range of active scales on the eddy
domains begins seamlessly at the coarse grid scale, and the eddy
dynamics are only allowed to evolve for a short time while the
coarse-grid variables are held fixed.

Stochastic SP algorithm. As an algorithm, stochastic SP pro-
ceeds as follows.

1. At the beginning of each coarse-model time step, the coarse-
model velocity ui and PV gradient rðqi þ by + topography) are
computed at each coarse grid point for use in the eddy Eqs.
(14) and (15).

2. The eddies at each coarse grid point evolve according to Eqs.
(14) and (15) with the large-scale velocity and PV gradient held
constant.

3. The feedback to the coarse-model equations, Eq. (13), is com-
puted from the time- and area-mean of the eddies on each
subdomain.

4. The coarse-model variables are advanced, the eddies are re-set
to their initial condition, and the process repeats.

To implement this algorithm one needs an initial condition for
the eddies, a model for F 0

i and C, and a timescale over which the
eddies respond to the fixed local large-scale conditions. The eddy
initial condition and the stochastic model of the eddy nonlinearity
(F 0

i and C) are discussed below in this section. The length of time
over which the eddies are averaged is essentially a tunable con-
stant; the effect of this parameter is described in Section 3.2.3
and a specific choice is motivated in Section 4.1.

Initial condition. Rather than track the state of the eddies from
one coarse-grid time step to the next, the eddies are re-initialized
to a zero-mean Gaussian distribution at the beginning of each
coarse-grid time step. The initial condition for the eddies is speci-
fied by its statistical properties, which are as follows.

1. The eddies have horizontal variation in a single, randomly-cho-
sen direction h (measured north from east).

2. The eddy energy spectrum is proportional to k�5=3 for k < L�1
d

and to k�3 for k P L�1
d .

3. The barotropic energy is 6 times larger than the baroclinic
energy at each wavenumber.

4. The upper layer has twice as much kinetic energy as the lower
layer.

5. There is no heat flux (e.g. u0
1ðw0

2 � w0
1Þ ¼ 0).

These properties are the same as used by Grooms and Majda (2013,
2014), with exceptions noted below. They completely specify the
second-order statistics (hence the complete Gaussian statistics)
of the eddy initial condition.

The first property makes the components of the eddy PV flux
stochastic, rather than being deterministic functions of the mean
as in the GM parameterizations of Section 3.1. It is similar to the
common practice in conventional SP of using two-dimensional
small-scale domains (see, e.g. Campin et al., 2011; Majda and
Grooms, 2014), the main difference here being that the orientation
of the domains is random. The motivation for this choice of random
directions is that the eddies that might be observed in a local patch
of ocean have temporally-varying directions of anisotropy due to
the random sampling of a few vortices and filaments; we attempt
to account for this small-scale randomness by choosing a field of
random angles h. This field has a uniform distribution and no

spatial or temporal correlation; the addition of correlation might
improve the performance but is beyond the scope of the current
investigation.

The second property, the shape of the energy spectrum, is famil-
iar from the theory of quasigeostrophic turbulence (Charney,
1971). The nondimensional proportionality constant (related to
the implied local subgridscale energy) is denoted A, and is left as
a tunable constant, similar to a in the GM parameterizations of
Section 3.1. The eddies have zero energy at scales smaller than
the Nyquist wavenumber of the eddy-resolving reference simula-
tion p=Dx, and at scales larger than the coarse-grid Nyquist wave-
number, which in our coarse-model simulations is 8p=Dx (see
Section 4.1); the range of subgridscales thus picks up seamlessly
at the coarse grid scale. The third property deviates somewhat
from previous work, where baroclinic energy was set equal to
barotropic energy (Grooms and Majda, 2014), but is more in accord
with periodic simulations of QG turbulence (Larichev and Held,
1995). Increasing the proportion of barotropic energy increases
the amplitude of the Reynolds stress terms relative to the ampli-
tude of the eddy heat flux terms. The fourth property is in reason-
able accord with previous well-resolved simulations of QG
dynamics (Grooms and Majda, 2014), and the fifth implies that
the eddies will not generate a net heat flux in the absence of a
large-scale gradient. The ratio of barotropic and baroclinic eddy
energy and the ratio of upper and lower layer eddy kinetic energy
(third and fourth properties) should presumably vary over the
physical domain in response to topography, large-scale shear, etc.
but modeling this variation is beyond the scope of the present
investigation. No attempt has been made to tune the eddy initial
condition in comparison with the high-resolution reference simu-
lation, the goal being to demonstrate that good results can be
achieved using simple, reasonable choices.

Stochastic model of eddy nonlinearity. The structure of the
damping operator C is set so that it damps a wavenumber k using
a timescale determined by dimensional considerations from the
eddy energy spectrum. The Fourier symbol for Cq0

i is ckq̂0
i, and we

set ck ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3EðkÞ=A

q
and where EðkÞ is the one-dimensional

energy spectrum described in property 2 above and c0 is a

nondimensional tunable constant. For example, for k P L�1
d the

damping rate is ck ¼ c0 because EðkÞ ¼ Ak�3. The damping rate ck
is related to the decorrelation time scale for a Fourier mode; in
the absence of large-scale and viscous effects the decorrelation
time is 1=ck. The damping operator C is thus specified up to a
tunable constant c0; the effect of this parameter is described in
Section 3.2.3, and a specific choice is motivated in Section 4.1.

We choose to set the forcing terms F 0
i, which are spatially corre-

lated and white in time, so that the eddy initial condition described
above is the statistical equilibrium solution of the eddy equations
in the absence of large-scale and viscous effects. I.e. the eddy initial
condition is the equilibrium statistical solution of the following
equations

@tq0
1 ¼ F 0

1 � Cq0
1 ð16Þ

@tq0
2 ¼ F 0

2 � Cq0
2 ð17Þ

The forcing terms are thus set implicitly by the properties of the
damping C and of the initial condition discussed above.

In summary, the eddies evolve under quasi-linear (large-scale
variables are considered constants) stochastic QG dynamics on
local subdomains embedded in the computational coarse grid. At
the beginning of each coarse-grid time step the eddies are re-ini-
tialized, and a direction for the eddies is randomly chosen. There
are three tunable parameters: the eddy amplitude A, the eddy
damping rate c0, and the length of time over which the eddies
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are allowed to evolve while the coarse-grid variables are held fixed,
denoted ��1. The effects of these parameters and some qualitative
properties of stochastic SP are discussed in the next subsection.

3.2.3. Some qualitative properties of stochastic SP
Consider the response of the stochastic eddy model to the

imposition of a zonal baroclinic shear, ignoring the effects of
topography and b, and let the eddies be functions only of the hor-
izontal coordinate n ¼ x cosðhÞ þ y sinðhÞ. The eddy equations take
the form

@tq0
1 ¼ F 0

1 � Cq0
1 � U cosðhÞ@nq0

1 �
4U cosðhÞf 20

g0H
@nw

0
1 � m4@6

nw
0
1 ð18Þ

@tq0
2 ¼ F 0

2 � Cq0
2 þ U cosðhÞ@nq0

2 þ
4U cosðhÞf 20

g0H
@nw

0
2 � r@2

nw
0
2 � m@6

nw
0
2

ð19Þ
The equations are linear with an additional damping and forcing,
and as usual for linear dynamics there will be some critical value
of U cosðhÞ dependent on the damping. For U cosðhÞ larger than
the critical value the solutions will grow exponentially without sat-
uration; for smaller values the solutions will decay to some nonzero
equilibrium due to the additional forcing term. In neither case is the
long-term behavior physically meaningful because it is unrealistic
to keep the large-scale shear fixed for an infinite amount of time.
The range of stable shear is largely controlled by the constant c0:
for large c0 the eddy dynamics will be linearly stable for a wide
range of shear.

The components of the eddy PV flux are computed from the
behavior of the eddy equations over a fixed amount of time of
length ��1. Since a spatial average is equivalent to an integral over
the wavenumbers, all wavenumbers contribute to the eddy PV flux.
However, for sufficiently long averaging times the most unstable
modes will dominate, which makes it similar to parameterizations
that compute the subgridscale flux based on the most unstable lin-
ear modes (e.g. Killworth, 1997; Eden, 2011, 2012), a major differ-
ence being that in stochastic SP all scales in a randomly-chosen
direction are allowed to contribute, not just the most unstable
mode.

Consider the behavior of the eddy heat fluxu0
1ðw0

2 � w0
1Þ. Since the

velocity is orthogonal to the gradient of the streamfunction, the
eddies can only flux orthogonal to h : u0

i ¼ �@yw
0
i ¼ � sinðhÞ@nw

0
i and

v 0
i ¼ @xw

0
i ¼ cosðhÞ@nw

0
i. Since h is sampled from a uniform distribu-

tion the eddy flux almost always has a component across the
large-scale gradient. This is a marked contrast with the GM param-
eterizations described above, which model the eddy flux as being
alwayspurelydowngradient:�jrðw2 � w1Þ. (Note that it is possible
to construct anisotropic GM parameterizations that flux across the
mean gradient; see Smith and Gent, 2004).

It is possible to diagnose an ‘effective’ j from stochastic SP by
considering the heat flux generated by the stochastic eddy model
in response to a local mean shear. Although, as noted above, sto-
chastic SP generates fluxes across the mean gradient, we define
the effective j for the case where h is parallel to the shear (orthog-
onal to the gradient rðw2 � w1Þ). In this case the stochastic SP
model generates no cross-gradient flux. The effective j is given by

jeff ¼ �v
0
1ðw0

2 � w0
1Þ

2U
ð20Þ

It is a nonlinear function of the local shear 2U, which equals DU in
the notation of the foregoing section. The eddy damping constant c0
(which controls the amplitude of C) sets the range of DU that are
linearly stable. For values of the shear that are linearly stable the
effective j is small; as the shear increases the eddies become unsta-
ble and the effective j rises sharply. The sharpness of the rise is

controlled by ��1, the length of time over which the eddies are
allowed to respond to the fixed shear: the rise is sharper for longer
averaging times.

These properties are evident in Fig. 2, which shows the effective
j generated by stochastic SP as a function of DU for two averaging
times: short, ��1 ¼ 14:2 days, and long, ��1 ¼ 70:9 days. The value
of c0 for the short averaging time is �=2, and for the long time is
6�=7. These particular choices are discussed further in the next
subsection. Fig. 2 also shows j for the first four GM parameteriza-
tions in Section 3.1 for comparison; the GM3 parameterization
uses b ¼ 1:5� 10�11 s�1 and no topography. For the short averag-
ing time, and over the range of shear shown, the effective j is
approximately linear, similar to the GM1 scheme. For the long
averaging time the effective j increases sharply with shear, similar
to the GM3 scheme. The onset of the sharp rise could be moved to
larger shear by increasing c0, leading to a wider range of linearly
stable shear. Note that stochastic SP does not produce negative j
in this setting, although stochastic SP can generate negative j in
the presence of b and topographic slopes. The cutoff shown in
the behavior of the long-average SP in Fig. 2 is similar to the upper
cutoff of 2000 m2/s imposed on the GM schemes: values of DU
greater than 5:41 cm/s are scaled back to 5:41 cm/s before being
used to calculate the eddy PV flux (discussed more below). Because
stochastic SP does not generate j directly it is not possible to con-
figure it to have a cutoff of exactly 2000 m2/s like the GM schemes.

Stochastic SP is set up so that it produces a heat flux only in
response to large-scale shear or PV gradients; in the absence of
these the eddies remain at their stable initial condition, which by
construction generates no heat flux. In contrast, stochastic SP gen-
erates nonzero Reynolds stresses regardless of the presence or
absence of large-scale shear; large-scale conditions only alter the
character of the Reynolds stress. The eddy initial condition is con-
structed such that the Reynolds stresses average to zero when
averaged over h; this is because an isotropic spectrum by definition

has ðu0Þ2 ¼ ðv 0Þ2 and u0v 0 ¼ 0. But for a single value of h the
Reynolds stress terms are quite large. For the eddy initial condition

the terms ðv 0
iÞ2 � ðu0

iÞ2 and u0
iv 0

i, which appear in the mean Eq. (13),
are proportional to cosð2hÞ and sinð2hÞ, respectively. These are

Fig. 2. Quasi-Stokes diffusivity j and effective diffusivity (20) as functions of the
baroclinic shear DU for GM1 (solid), GM2 (dashed), GM3 (dots), SP-short (circles),
and SP-long (x). Values of a for the GMmodels are the optimally tuned values listed
in Section 4.1; values of A for stochastic SP are the optimally tuned-values for SP-
short and SP-long listed in Section 4.1. Units of DU are m/s, and units of j are m2/s.
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non-Gaussian random fields with no spatial correlations, and their
second derivative appears in the coarse-grid Eq. (13). These deriv-
atives magnify the small scale features, so the effect of the Rey-
nolds stress terms in stochastic SP is qualitatively similar to
adding small-scale random forcing, and corresponds to kinetic
energy backscatter. Jansen and Held (2014) used an uncorrelated
(white) random forcing to simulate backscatter in an eddy-permit-
ting QGmodel; the 1D spectrum of such a forcing is proportional to
the wavenumber amplitude k. For comparison, the Reynolds stress
terms in the mean Eq. (13) have a 1D spectrum approximately pro-

portional to k5, which is more focused on scales near the coarse

grid scale. A proof of the k5 forcing spectrum is somewhat involved
and will appear elsewhere.

3.2.4. Configuration of stochastic SP
There are three remaining free parameters in the configuration

of the stochastic SP eddy model: the eddy amplitude A, the damp-
ing rate c0, and the averaging time ��1. The order of magnitude for
the damping rate and averaging time are set by comparison with
the growth rate of local baroclinic instability induced by the time-
and area-mean baroclinic shear for the channel (0.7 cm/s), which is
approximately 1=141 days�1. We consider two averaging times:
short, with ��1 ¼ 14:2 days, and long, with ��1 ¼ 70:9 days. Both
of these are short in comparison with 141 days, but they are long
in comparison with the local growth rate of baroclinic instability
in regions of larger shear. The damping rate c0 is set to
1=28:2 days�1 for the short-average configuration, and to
1=82:7 days�1 for the long-average configuration. The short-aver-
age configuration is more strongly damped, and corresponds to
having eddy dynamics less strongly influenced by the large scales,
whereas the long-average configuration is weakly damped, and
strongly influenced by the large scales. The short-average configu-
ration also has a shorter eddy decorrelation time, since the eddy
decorrelation time is approximately one over the damping rate
(the precise decorrelation time depends on the viscous, Ekman,
and large-scale effects).

Comparing only two combinations of c0 and � is clearly insuffi-
cient to determine the full sensitivity of the results to these param-
eters. These combinations mainly show (i) the differences between
configurations strongly and weakly influenced by the large scales
and, (ii) that reasonable results are obtained by setting the order
of magnitude of c0 and � in comparison with the time scale of baro-
clinic instability. The amplitude A is left as the primary tunable
control parameter.

For both the long- and short-average configurations we test four
different configurations of stochastic SP corresponding to different
configurations of the coarse-to-eddy coupling and the eddy-to-
coarse coupling. The minimal configuration does not include the
Reynolds stress feedback terms in the coarse-grid equations, and
does not include the contributions of b, topography, or coarse-grid
relative vorticity in the eddy Eqs. (14) and (15). This configuration
is denoted ‘NRS-f’ for ‘no Reynolds stress, f-plane’ since the eddy
dynamics are effectively on a flat-bottomed f-plane. The next con-
figuration includes the full coarse-grid PV gradient in the eddy
equations, but leaves the Reynolds stress terms out of the coarse-
grid equations; this configuration is denoted ‘NRS-b’. The remain-
ing two configurations are the same as the first two, with the addi-
tion of Reynolds stresses to the coarse-grid equations; they are
denoted ‘RS-f’ and ‘RS-b’.

The configuration RS-f is related to the asymptotic analysis of
Grooms et al. (2012) where the eddies generate significant Rey-
nolds stresses and do not feel b (in fact, this is among the most
accurate configurations; see results in the next section), and the
configuration NRS-b is related to the asymptotic analysis of
Grooms et al. (2011), where the Reynolds stresses do not affect

the large-scale flow and the eddies do feel b. Testing these four
configurations allows us to consider the impacts of the Reynolds
stress terms in the coarse-grid equations separately from the
impacts of the large-scale PV gradients on the eddy model.

In summary, we test eight configurations of stochastic SP. Four
configurations use a long eddy average, and four use a short eddy
average. Each set of four has two configurations where the Rey-
nolds stress terms are included in the mean equations (RS-f and
RS-b), and two where they are not included (NRS-f and NRS-b).
Each set of four also has two configurations where the eddies
respond only to the coarse-grid baroclinic shear (NRS-f and RS-f),
and two where the eddies respond to the shear and to the full
coarse-grid PV gradient (NRS-b and RS-b). We refer to these config-
urations as, e.g., SP-short-RS-f or SP-long-NRS-b.

As in Grooms and Majda (2013, 2014), the eddy terms are not
computed on the fly during the coarse-grid simulation. Instead,
they are computed over a grid of values of large-scale shear and
PV gradients, and then interpolated from these pre-computed val-
ues during the coarse-grid simulation. The range of shear and vor-
ticity gradients used to pre-compute the eddy terms is drawn from
the time-mean structure of the eddy-resolving simulation. This is
not fundamental to the approach, but results in increased compu-
tational efficiency in this two-layer setting.

The local mean baroclinic shear in the reference simulation
reaches a maximum amplitude of 20 cm/s, almost a factor of 30
larger than the mean shear. To avoid huge eddy growth in response
to these local regions of strong shear in the long-average configu-
ration the coarse-grid shear is scaled down to a maximum ampli-
tude of 5:41 cm/s before being used to evaluate the eddy terms.
This is similar to truncating the value of j in the deterministic
parameterizations, as discussed in Section 3.1. The threshold of
5:41 cm/s has been chosen to make the cutoff in the effective j rea-
sonably close to 2000 m2/s as shown in Fig. 2; getting an exact
match is difficult because changing the threshold requires re-tun-
ing A, which changes the value of the effective j.

Similarly, because of the complex nature of the topography, the
topographic PV gradient in some regions can be up to 20 times lar-
ger than b. The eddy dynamics are highly unphysical for values this
large, essentially because scale separation between the topography
and eddies breaks down. To reduce errors due to large local PV gra-
dients, the component of the coarse-grid PV gradient associated
with topography, b, and relative vorticity is scaled back to a max-
imum amplitude of 3� 10�11 (ms)�1 before being used to evaluate
the eddy terms; we also tested truncations up to 10�10 (ms)�1. The
effect of increasing the truncation level is qualitatively similar to
the effect of moving from the ‘f-plane’ configurations to the b-plane
configurations, as discussed in Section 4: the accuracy of the time-
mean deteriorates but the accuracy of the variability improves
slightly.

4. Coarse model results

4.1. Model configuration

The non-eddy-resolving, parameterized coarse models are run
on a grid 8 times coarser than the eddy-resolving model, i.e.
384� 49 points with a grid spacing of 52 km. Although this might
appear to be a nominally eddy-permitting grid scale, it is ‘coarse’
compared to the small deformation radius of 12.25 km, which is
appropriate to an ACC model. It is also similar to the longitudinal
resolution of a 1� model at 60� from the equator. The coarse grid
scale has also been chosen to be relatively small so that the com-
plex topography can be relatively well resolved.

For reasons of coding convenience, the numerical methods used
in the eddy-resolving and coarse-model simulations are slightly
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different: the coarse models use third-order Runge–Kutta with a
step size of 3 h, and the PV inversion is solved using a direct
method (Davis, 2004, UMFPACK;). The boundary conditions for
PV inversion are different but mathematically equivalent to those
used in the eddy-resolving model, as described in Appendix A. In
all other respects the numerics are identical. As noted above, the
coarse models use Laplacian instead of biharmonic vorticity diffu-
sion, and the coefficient is fixed for all models at the relatively low
value of 100 m2/s; larger values cause the barotropic transport to
grow and smaller values lead to grid-scale ringing around regions
of sharp topography.

All the parameterizations involve one primary tunable parame-
ter: j in GM0, a in GM1–4, and A in stochastic SP. In every case
these were tuned such that the time- and area-mean shear was
0:7 cm/s to a tolerance of �0:005 cm/s; optimal values of the
tunable parameters for each scheme are listed below. The coarse
models are then compared based on their representation of the
mean and temporal variability of the coarse-grained interface
height displacement g as discussed in the following subsection.

The optimal values of the tuned coefficients for the GM
parameterizations are as follows: j ¼ 155 m2/s for GM0, a ¼ 0:35
forGM1,a ¼ 0:02 forGM2,a ¼ 0:0028 forGM3, anda ¼ 0:00605 for
GM4. The optimal values of A for stochastic SP are as follows:
6:55� 10�6 for SP-short-NRS-f ; 5:8� 10�6 for SP-short-RS-f ;5:4�
10�6 for SP-short-NRS-b; 4:8� 10�6 for SP-short-RS-b;3:6� 10�7

for SP-long-NRS-f ;3:2� 10�7 for SP-long-RS-f ;3:7� 10�7 for
SP-long-NRS-b, and 3:35� 10�7 for SP-long-RS-b.

4.2. Measures of skill

The accuracy of the time-mean of g is evaluated using the RMS
error, defined as the square root of the area average of the squared
error in g. The pattern correlation is not a useful metric in this case
since all the models have time-mean g with very good pattern cor-
relation. The accuracy of the interface height variability is mea-
sured using the area average, the pattern correlation, and the
RMS errors. Specifically, let r2ðx; yÞ ¼ g2t � ðgtÞ2 denote the vari-
ance of the coarse-grained interface height displacement from
the eddy-resolving simulation, and let r2

M denote the variance of
the interface height displacement from a coarse model where ð�Þt
denotes the time average. The most basic measure of accuracy in
the variability is the root-mean-square value of r, i.e.

RMS r ¼ ðLxLyÞ�1
ZZ

r2dxdy
� 	1=2

: ð21Þ

The RMS value of r for the reference simulation is 58 m; for com-
parison the RMS value of gt is 473 m. The pattern correlation is
defined as

PC ¼
RR
r2r2

MdxdyRR
r4dxdy

RR
r4

Mdxdy
� �1=2 ð22Þ

where the integrals are carried out over the whole domain; it is a
nondimensional number between 0 and 1. The RMS error for vari-
ability is measured in terms of the error in the standard deviation
r rather than the variance r2, and thus has units of length.

It is important for a coarse model to accurately portray both the
time-mean and the variability of the large-scale part of the true
signal; this is known as ‘climate fidelity’. Climate fidelity is a pre-
requisite for accurate predictions of climate change, i.e. of the
response of the system to changes in forcing. This link was sug-
gested by Shukla et al. (2006), and has been put on a firm mathe-
matical footing by Majda and Gershgorin (2010, 2011a,b) where
other sufficient conditions for forecast skill are also explored. Cli-
mate fidelity can be measured using the relative entropy, also
known as the Kullback–Leibler divergence, between the statistics

of the true system and of the coarse model. The relative entropy
is defined as

Rel: Ent: ¼
Z

p ln
p
q

� 	
ð23Þ

where p is the true probability distribution and q is the distribution
associated with the coarse model. Relative entropy has also been
used in predictability studies, for example by Kleeman (2002). It
has the useful properties that it is always positive, and zero only
if p � q, and that it is invariant under general nonlinear changes
of variable (Majda et al., 2002).

It is difficult to compute the relative entropy between two high-
dimensional probability distributions, partly because those distri-
butions are often not well known. An alternative is to measure
the relative entropy between the least-biased Gaussian approxi-
mations to p and q, which are simply the Gaussian distributions
with the same mean and covariance as p and q (Majda and
Wang, 2006). In the current setting this would still be prohibitive,
since it would require estimating the full covariance matrix of g on
the coarse grid, which involves estimating the correlations of g at
different spatial locations. DelSole and Shukla (2010) used relative
entropy to compare general circulation models by comparing the
area-averaged relative entropy of the Gaussian approximations to
the single-point statistics. The relative entropy between the Gauss-
ian approximations of the true signal and the coarse model at a sin-
gle point is given by

Gaussian Rel: Ent: ¼ 1
2

ð�gt � �gt
MÞ2

r2
M

þ r2

r2
M

� 1� ln
r2

r2
M

� 	 !
ð24Þ

where �gt
M denotes the coarse-model’s time-mean g.

The Gaussian approximation of the relative entropy has two
components: the term involving the mean is called the signal and
the remaining termsare thedispersion. The signalmeasures theerror
in the mean, weighted by the coarse model’s variance; it can be
made small either bymaking the error in themean small, or bymak-
ing the model variability large. The dispersion term measures the
error in the coarse model variability; it is zero only if rM ¼ r, and
it goes to infinity in both the limitsrM ! 0 andrM ! 1. If themean
is considered fixed then the relative entropy is minimized for a
model with variance r2

M ¼ ðgt � gt
MÞ2 þ r2, which is larger than the

true variance. This is a result of the identification of temporal vari-
abilitywith uncertaintywhen using the relative entropy to compare
climatological statistics: an ‘optimal’ model should have an uncer-
tainty estimate that encompasses thebias in themean. This suggests
that the relative entropycan sometimesbe improvedby inflating the
model variability well beyond what is realistic. However, in our
results this is never the case since all of the models have too little
variability overall: for example, the model variance in the GM4
model, which has the smallest relative entropy of the GM models,
is larger than the true variance in only 7% of the domain.

The relative entropy, and in particular its Gaussian approxima-
tion, is a useful way to combine estimates of the accuracy of the
mean and of the variability into a single number. In the following
we compute the area-averaged Gaussian approximation to the rel-
ative entropy in the single-point statistics of g as a way to compare
the accuracy of different models.

The barotropic transport is not a useful measure of skill for the
coarse models. As detailed in Appendix B, the lower-layer transport
is set by the difference between domain-integrated wind stress
and topographic form stress. There is significant cancellation
between these two large numbers, making the lower-layer
transport extremely sensitive to the resolution of topographic form
stress in the coarse models. All of the coarse models, both stochas-
tic SP and GM, have barotropic transport between 240 and 245 Sv,
and lower-layer transport near 104 Sv. In Appendix B we show that
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the coarse models represent the form stress to within 98% accu-
racy, but the error is enough to change the net transport by nearly
25% due to the large cancellation with wind stress input.

This difficultymotivated theuseof equal layers:while itmightbe
more realistic to use a thicker lower layer, doing so magnifies the
errors in the coarse-model transport. Similarly, this difficulty partly
motivated the use of relatively fine (though still non-eddying)
resolution: the barotropic transport degrades even further at
coarser resolutions making the model dynamics less and less
accurate.

4.3. Deterministic parameterizations

The domain-averaged measures of skill for the deterministic
parameterizations are reported in Table 2. The first column shows
the RMS error in the time-mean interface height; there is a clear
trend of improved performance as j becomes a steeper function
of the local shear. For example, the GM0 scheme has j / ðDUÞ0
and has the largest RMS error for the time mean, whereas the
GM3 scheme has j / ðDUÞ3 and has the smallest RMS error for
the time mean.

The second through fifth columns show different measures of
skill for the coarse-model variability: the RMS of r and the RMS
errors in r, the pattern correlation of r2, and the area-averaged
dispersion component of the relative entropy, respectively. In con-
trast to the behavior of the mean, there is a clear trend of decreased
accuracy in representing the variability as j becomes a steeper
function of the local shear. In the GM4 scheme, based on Visbeck
et al. (1997), j is a nonlocal function of the large-scale shear, and
exhibits poor skill in the mean, but good skill in the variability: it
has the best dispersion component of relative entropy, and is sec-
ond only to GM0 for RMS errors in r and pattern correlation of r2.
There is thus a trade-off between accuracy in the mean and accu-
racy in the variability where the model with the best mean (GM3)
has the worst variability and the models with the best variability
(GM0 and GM4) have the worst mean.

The sixth column shows the area-averaged relative entropy,
which is essentially a weighted combination of the errors in the
mean and variance. In every case the relative entropy is dominated
by the signal, meaning that errors in the mean are worse than
errors in the variance. Furthermore, the relative entropy is
dominated by the contributions from a few locations; for example
the median relative entropy for the GM4 scheme is only 8% of its
mean.

Since the errors in the mean dominate those in the variability it
might be expected that the scheme with the best mean (GM3)
would have the best relative entropy. But the scheme with the best
relative entropy is actually the GM4 scheme, which has moderate
errors in both the mean and the variability; the GM3 scheme has
the second-best relative entropy. The GM4 scheme has by far the
best overall relative entropy of the GM schemes. Since it has a rel-
atively poor time-mean structure, this suggests that the locations
where the mean is in error have large temporal variability both
in the GM4 scheme and in the eddy-resolving simulation.

Fig. 3 shows the spatial structure of the error measures for the
GM4 scheme, which has the best overall relative entropy. The
mean bias gt � gt

M is shown in Fig. 3(a), the ratio r=rM is shown
in Fig. 3(b), and the relative entropy is shown in Fig. 3(c). There
is no clear correlation between mean bias and relative entropy;
instead, regions of high relative entropy are correlated with regions
where the model variability is too low. The model variance is
significantly smaller than the true variance over most of the
domain; in fact, the model variance is only larger than the true
variance over 7% of the domain. Comparison with Fig. 1 suggests
that there does not appear to be a simple explanation for the errors
in terms of the local topographic gradient or the local mean shear.

4.4. Stochastic superparameterization

Table 3 shows the domain-averaged measures of skill for the
stochastic SP simulations. The columns are the same as in Table 2.
As with the GM parameterizations the configuration where the
effective j increases sharply with shear (SP-long) has a better
time-mean layer interface structure than the configuration where
j increases less sharply (SP-short). The range of accuracy of the
mean, as measured by the RMS error, is similar to the range of
behavior of the GM models in the previous section with the best
GM model comparable to the best SP model and the worst GM
model comparable to the worst SP model.

The range of accuracy of the variability for the stochastic SP
schemes is also similar to the range of accuracy for the GM models
of the previous section, although the best SP models have better
variability than the best GM models. In particular, the SP-short
configurations that include Reynolds stress feedbacks to the coarse
grid equations have very accurate variability as measured by the
RMS errors in r (29 and 31 meters), pattern correlations of r2

(0.80 and 0.81), and relative entropy dispersion (4 for both). For
comparison, the best RMS error and pattern correlation for the
GM models is 33 meters and 0.80 (GM0), and the best relative
entropy dispersion is 18 (GM4).

As in the GM schemes, the total relative entropy for stochastic
SP is dominated by the signal – the squared error in the mean
weighted by the variance. The relative entropy is also dominated
by the contributions from a few localized regions: Fig. 4(c) shows
the spatial structure of the relative entropy for SP-short-RS-fwhich
is dominated by contributions from the top left (north side, just
downstream of Drake Passage), and bottom right (within Drake
Passage), and along the lower boundary (see Fig. 1(a) for the struc-
ture of the underlying topography). The median relative entropy
for SP-short-RS-f is 12 while its mean is 62 and Fig. 4(c) shows that
it rises as high as 1000, further indicating that the average relative
entropy reflects the contribution from just a few locations.
Although the relative entropy is dominated by the signal, the con-
figurations with the smallest RMS error in the mean (SP-long-RS)
do not have the best relative entropy. Instead, as with the GM
schemes, configurations with moderate mean accuracy and good
variability (SP-short-RS) have the best overall relative entropy.

For a given averaging time (SP-short or SP-long) the configura-
tions with Reynolds stresses perform better than those without.
For configurations with Reynolds stresses, the SP configurations
with short averaging time have better overall performance than
the SP configurations with the long averaging time because of
the improved variability. In contrast, for SP configurations without
Reynolds stresses the best results are obtained using the long aver-
aging time, primarily due to improvements in the structure of the
mean. The SP-⁄-b configurations, where the eddies feel the full
coarse-grid PV gradient including topography, b, and the relative
vorticity gradient, typically have better variability than the SP-⁄-f
configurations where the eddies only feel the mean shear. At short

Table 2
Domain-averaged measures of skill for the GM parameterizations. The RMS of r and
the RMS errors are measured in meters, the remaining columns are dimensionless.
The RMS of r for the reference simulation is 58 m.

RMSE of g RMS of r RMSE of r PC of r2 Dispersion Rel.
Ent.

GM0 131 44 33 0.80 28 995
GM1 105 33 37 0.77 63 1080
GM2 95 31 37 0.77 51 719
GM3 78 26 40 0.69 95 617
GM4 112 36 35 0.77 18 362
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averaging times the SP-⁄-b configurations have worse accuracy on
the mean, but there is no difference at long averaging times.

In summary, there is a trade-off between accuracy in the mean
and accuracy in the variability, as with the GM schemes. SP-long,
and SP-⁄-f have better accuracy in the mean than SP-short, and
SP-⁄-b, but the latter have better variability. The best overall
accuracy, as measured by the relative entropy, is achieved by
models with moderate accuracy in the mean and good accuracy
in the variability: SP-short-RS-f and SP-short-RS-b.

Fig. 4 shows the spatial structure of the error measures for the
SP-short-RS-f scheme, which has the best overall relative entropy.
Themean bias �gt � �gt

M is shown in Fig. 4(a), the ratio r=rM is shown
in Fig. 4(b), and the relative entropy is shown in Fig. 4(c). The results
are qualitatively similar to the results for the GM4 scheme in Fig. 3,
the primary difference being that the variability of the stochastic
method is increased, leading to decreased relative entropy. Never-
theless, the variability is still too small over most of the domain:
the model variability is too large on only 8% of the domain.

(a)

(b)

(c)

Fig. 3. Skill of the GM4 scheme: (a) time-mean bias in meters (color scale saturates at 300 m), (b) r=rM , and (c) relative entropy. Axes are labeled in units of kilometers.

Table 3
Domain-averaged measures of skill for stochastic SP. The RMS of r and the RMS errors are measured in meters, the remaining columns are dimensionless. The RMS of r for the
reference simulation is 58 m.

RMSE of g RMS of r RMSE of r PC of r2 Dispersion Rel. Ent.

SP-short NRS-f 116 33 37 0.78 64 1417
NRS-b 126 39 33 0.81 25 731
RS-f 104 39 31 0.80 4 62
RS-b 115 42 29 0.81 4 75

SP-long NRS-f 87 28 39 0.76 39 455
NRS-b 87 30 37 0.78 27 382
RS-f 82 32 36 0.74 19 225
RS-b 82 33 35 0.77 22 229

(a)

(b)

(c)

Fig. 4. Skill of the SP-short-RS-f scheme: (a) time-mean bias in meters (color scale saturates at 300 m), (b) r=rM , and (c) relative entropy. Axes are labeled in units of
kilometers.
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4.5. Discussion

There are several lessons to be learned from the results of the
coarse model simulations. Perhaps the most surprising result is
stochastic Reynolds stress feedbacks in the coarse model equa-
tions have a significant positive impact on both the mean and
variability of the layer interface height. Asymptotic analysis
(Pedlosky, 1984; Grooms et al., 2011) suggests that the primary
feedback mechanism from mesoscale eddies to large-scale
dynamics is through fluxes of heat and salinity (analogous to flux
of layer interface height in the current setup), not through Rey-
nolds stresses, and this is reflected in the widely-adopted GM
mesoscale parameterizations. More recently Grooms et al.
(2012) used asymptotic analysis to study the interactions at a
smaller range of scales, where the large scales are closer to the
mesoscale range. Their analysis indicates the importance of Rey-
nolds stresses, although the analysis was assumed to apply to
eddy-permitting situations unlike the current coarse-model con-
figuration. The current setup has a relatively small coarse grid
scale, and the impacts of the Reynolds stresses might be less
important or less beneficial at coarser resolutions, but their
importance is undeniable in our results: SP simulations with Rey-
nolds stresses have more accurate mean and variability than SP
simulations without, and the SP simulations with Reynolds stress
terms have better relative entropy than all the other SP and GM
simulations.

Another striking trend of our results is the trade-off between
accuracy in the time-mean and accuracy in the variability. Deter-
ministic GM schemes where the diffusivity j is a sharply increas-
ing function of the local baroclinic shear have more accurate
time-mean interface height than schemes where j is a shallow
or constant function of the shear, but the trend is reversed when
considering accuracy of the temporal variability. The same is true
of stochastic SP when considering the effectivej (see Section 3.2.3),
and similarly the SP-⁄-f schemes have better mean and worse var-
iability than the SP-⁄-b schemes.

The accuracy of the mean and of the variability can be com-
bined into a single measurement using the Gaussian approxima-
tion to the relative entropy, Eq. (24). The relative entropy is
partitioned into the signal, which is the squared bias weighted
by the model variance, and the dispersion, which measures errors
in the variance. In all models the net relative entropy is dominated
by the signal, which means that improvements can be had either
by improving the bias or by increasing the variability. As noted
above, there is a trade-off between improvements in the bias and
improvements in the variability (increases in variability are gener-
ally improvements, since all models have too little); thus, the mod-
els with the best relative entropy strike a balance between bias and
variability. Although the best SP schemes are not able to improve
the bias compared to the best GM schemes, the SP schemes are
able to strike the best balance between mean and variability as
measured by the relative entropy. This implies that stochastic SP
is improving the climate fidelity in comparison with the GM meth-
ods primarily by increasing the variability. Nevertheless, the vari-
ability of all models including stochastic SP is still too low.

While it is in principle possible to assess the accuracy of the
parameterizations by diagnosing the eddy terms from the high
resolution reference simulation for comparison, e.g. using a spatial
low-pass filter (Nadiga, 2008; Grooms et al., 2013) or the more
sophisticated approach of Berloff (2005), such an undertaking is
computationally demanding and is beyond the scope of the present
investigation. Since Figs. 3 and 4 do not suggest obvious relations
between the model errors and the local topography, local mean
shear, etc. we can only speculate on potential improvements to the
schemes.

As noted above, we have not fully explored the impact of the
eddy initial condition (see Section 3.2.2), the damping coefficient
c0, or the averaging time ��1 on the performance of the stochastic
SP scheme, and these could account for some of the remaining
imperfections. In addition to these aspects of stochastic SP, we note
two general areas for potential improvement to mesoscale param-
eterizations. First, all of the parameterizations considered here
generate the subgridscale terms in the mean equations as (possibly
random) functions of the local shear, topographic slope, etc., the
only exception being the GM4 scheme, based on Visbeck et al.
(1997). This latter scheme is non-local because the diffusivity j
is a function of the global structure of the baroclinic shear through
the ‘width of the baroclinic zone.’ We find evidence from our eddy-
resolving simulation that eddy kinetic energy (EKE), which is
important for the accurate modeling of subgridscale terms
(Bachman and Fox-Kemper, 2013; Marshall et al., 2012), is not well
predicted by the local baroclinic shear or by the growth rate of
local baroclinic instability, with regions of high EKE instead lying
downstream of regions of high baroclinicity. This is in accord with
the results of Grooms et al. (2013) who found direct evidence of
eddy energy nonlocality in quasigeostrophic model simulations.
Mesoscale parameterizations in general may benefit from incorpo-
ration of nonlocal effects, e.g. through prognostic eddy energy
equations (Eden and Greatbatch, 2008; Grooms and Majda, 2014;
Marshall and Adcroft, 2010).

Second, the only conventional GM parameterization consid-
ered here that incorporates the effects of topography is the
GM3 scheme, which follows an ad hoc suggestion of Held and
Larichev (1996). In contrast to most GM schemes, stochastic SP
incorporates topographic effects directly, though the effects of
small-scale topography have been avoided in the present investi-
gation by using a smoothed topography. Topography, and in par-
ticular large-amplitude topography, can have a profound
influence on eddy dynamics, and further research into its effects
on parameterizations seems warranted. It is widely held that
the quasigeostrophic approximation, an indispensable tool for
modeling mesoscale eddies, requires small-amplitude topography,
and this would seem to inhibit investigations of the impacts of
large-amplitude topography on mesoscale parameterizations.
Indeed, the topography-specific results of investigations that use
both quasigeostrophic dynamics and large-amplitude topography,
such as the present one, should be extrapolated with caution; the
‘Neptune effect’, (Holloway, 1992), for example, is a parameteri-
zation of the joint effects of eddies and topography that is moti-
vated in the quasigeostrophic framework of small-amplitude
topography. However, it is not true that quasigeostrophic dynam-
ics are incompatible with large-amplitude topography. This has
been demonstrated by Dewar and Leonov (2004), Leonov (2005)
and Leonov and Dewar (2008), and means that the quasigeos-
trophic framework may yet be applied to inform the effects of
large-amplitude topography on mesoscale eddies and their
parameterizations.

5. Conclusions

Stochastic superparameterization (SP) has been tested in an
idealized quasigeostrophic two-layer model of the Antarctic
Circumpolar Current (ACC) at coarse, non-eddy-permitting
resolution, and compared with five variants of the Gent and
McWilliams (1990) parameterization. The framework for stochas-
tic SP developed by Grooms and Majda (2013, 2014) has been used
with minimal modifications, though the framework was previously
applied in an eddy-permitting scenario. The primary differences
between stochastic SP and the GM parameterizations considered

12 I. Grooms et al. / Ocean Modelling 85 (2015) 1–15



here are that stochastic SP is stochastic rather than deterministic,
and that it parameterizes kinetic energy backscatter by momen-
tum fluxes in addition to thickness fluxes.

Stochastic parameterizations in general are particularly useful
in situationswhere the scale separation between resolved andunre-
solved dynamics is not large, because in such cases the feedbacks
from the unresolved scales are not deterministic functions of the
resolved flow. Stochastic parameterizations typically increase the
variability of the resolved flow, although they can also affect the
mean of the resolved flow because of nonlinearity. The primary
improvement from using stochastic SP instead of GM is increased
variability, although both the GM and stochastic SP models still
have too little variability; the accuracy of the time-mean in the best
stochastic SP model is comparable to the accuracy of the best GM
model.

It is important to tune coarse-resolution models to have appro-
priate mean and variability (Shukla et al., 2006; DelSole and
Shukla, 2010; Majda and Gershgorin, 2010; Majda and Gershgorin,
2011a; Majda and Gershgorin, 2011b). The agreement between
the distribution of a coarse-resolution model’s state and the distri-
bution of the large-scale part of the real system is called climate
fidelity and is measured by the relative entropy (Kullback–Leibler
divergence), Eq. (23). In our results there is a trade-off between real-
istic variability and realistic mean: the models with the most accu-
rate mean do not have the most accurate variability. Stochastic SP
results in much better climate fidelity than the GM schemes tested
here, primarily because of increased variability.

The increased climate fidelity of the stochastic SP models is lar-
gely due to the inclusion of stochastic Reynolds stress terms, which
model kinetic energy backscatter. While the GM parameterizations
considered here do not include eddy momentum fluxes, many
authors have advocated parameterizations based on potential vor-
ticity mixing, which does include eddy momentum fluxes (e.g.
Marshall, 1981; Treguier et al., 1997; Marshall et al., 2012; Eden,
2010; Ringler and Gent, 2011; Olbers et al., 2000). These parameter-
izations are deterministic and diffusive, and though they may
improve the large-scale mean it is not clear whether they might
improve the variability of the large-scale dynamics.

The idealized model used here is a long way from global
ocean models, and there is much to be done to prepare stochas-
tic SP for that setting. The effects of varying (and possibly con-
vectively unstable) stratification and of unbalanced dynamics
near the equator need to be addressed, and efficient implementa-
tions need to be designed. But the results here suggest an inter-
mediate step with reduced complexity. The minimal
configuration of stochastic SP, where the coarse-model equations
ignore the eddy Reynolds stresses and where the eddy equations
feel only the coarse-model baroclinic shear (but not, e.g. b), is
comparable to a stochastic GM method where the tracer flux
has a random direction and amplitude. This configuration of sto-
chastic SP has relatively high accuracy in both the time mean
and in the variability, and its properties might be mimicked by
a stochastic GM method that does not rely on the full complexity
of the stochastic SP framework. The authors are actively pursuing
such a strategy.
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Appendix A. Boundary conditions for QG PV inversion in a
channel

This section discusses the different boundary conditions on wi

for the QG PV inversion problem specified by Eqs. (3) and (4) used
in the coarse-grid and eddy-resolving simulations. In order for the
velocity normal to the boundaries to be zero, wi must be constant
on each boundary segment. Thus, to uniquely specify the solution
of the inversion problem, one must specify four constants Wi;j cor-
responding to the value of wi at the southern (j ¼ 1) and northern
(j ¼ 2) boundaries. If the external deformation radius were infinite
(2f 20=ðgHÞ ! 0) then one could add an arbitrary constant to wi with-
out changing qi and without changing the velocity field, but with a
finite external deformation radius this is no longer the case and all
four boundary conditions need to be specified.

The first set of boundary conditions corresponds to mass con-
servation, and can be derived from the relationship between wi

and the layer thicknessesZZ
X
wi ¼ 0 ðA:1Þ

The double integral is taken over the full horizontal domain,
denoted ðx; yÞ 2 X.

We write the QG equations in the following general form

@tq1 ¼ � 2
q0H

@ysþr � F1 ðA:2Þ

@tq1 ¼ � 2
q0H

@ysþr � F2 ðA:3Þ

where the terms r � F i include advection, b, topography, bottom
friction, subgridscale parameterizations, and viscosity.

Following McWilliams (1977) we consider ðx; yÞ 2 x#X to be a
rectangular region spanning the length of the channel bounded to
the south by the southern boundary of the domain @x1 ¼ @X1 and
to the north by a latitude line denoted @x2. McWilliams (1977)
provides many options for the additional boundary conditions,
includingI
@xj

@tnwi � F i � n̂ð Þ ¼ �di;1
2Lx
q0H

ð�1Þjsj ðA:4Þ

where di;1 is the Kronecker delta, sj denotes the value of s on @xj.
One value of j is chosen for each layer i. This choice can be moti-
vated by appeal to the next-order corrections to QG theory, and
can be shown to guarantee energy conservation for the inviscid
problem.

Under the assumption of mass conservation we may integrate
the QG equations over x to give

X
j

Ii;j ¼ di;1
2Lx
q0H

s1 � s2ð Þ ðA:5Þ

where

Ii;j ¼
I
@xj

@tnwi � F i � n̂ð Þ ðA:6Þ

and @n denotes the outward normal derivative. Note that this does
not constitute a new, independent set of boundary conditions since
it relies on mass conservation and the QG equations; however, it
does imply that if the boundary condition (A.4) is imposed using
j ¼ 1 then it must also be true for j ¼ 2 and vice versa. This proves
that the boundary conditions (A.4) are equivalent whether the inte-
grals are evaluated on either boundary, or along a line through the
channel. It is more convenient to impose them at the boundary
because the flux F across the boundary typically is simpler than
the flux across a line in the middle of the domain. The eddy-resolving
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simulation imposes the extra boundary conditions (A.4) along a line
three grid spaces (19:5 km) north of the southern boundary, whereas
the coarse-grid simulations impose (A.4) along the southern
boundary.

The eddy contribution to the flux F i is ð�1Þijrðw1 � w2Þ for the
GM parameterizations. To impose no eddy flux normal to the wall
one might impose either j ¼ 0 at the wall, or rðw2 � w1Þ at the
wall. Neither condition is desirable since setting j ¼ 0 at the wall
generates a discontinuity in the flux, and setting rðw2 � w1Þ ¼ 0
generates a strong constraint on the interior flow. Instead, we sim-
ply incorporate the GM component of F i into the boundary condi-
tions (A.4). The eddy fluxes normal to the boundary in the
stochastic SP method are treated similarly.

Appendix B. Zonal stress balance

This section analyzes the stress balance of the eddy-resolving
simulation. The time- and zonal-averaged QG equations, ignoring
the hyperviscous terms, are

@y~v1~q1
t;x ¼ � 2

q0H
@ys ðB:1Þ

@y~v2~q2
t;x ¼ �r@2

yw
t;x
2 � 2f 0

H
@yv2hb

t;x: ðB:2Þ

The overbar ð�Þt;x denotes the time- and zonal-mean and tildes ~�
denote deviations from the zonal and time mean. Integrate these
northwards from the southern boundary using impenetrability
and the fact that s ¼ 0 at the boundary to get

~v1~q1
t;x ¼ � 2

q0H
s ðB:3Þ

~v2~q2
t;x ¼ rut;x

2 � 2f 0
H
v2hb

t;x ðB:4Þ

Note that the time-averaged boundary conditions in Appendix A
imply that u2 ¼ 0 at the boundary (when ignoring hyperviscosity).
We add these together and average over latitude to arrive at the fol-
lowing balance of wind, Ekman, and topographic form stress for the
channel

rhu2i ¼ 2
q0H

hsi þ 2f 0
H

hv2hbi ðB:5Þ

where brackets denote the domain and time average. Cancellation
of the volume integrated meridional eddy PV flux is well-known
and can be derived using integration by parts. The lower-layer
transport is simply LyHhu2i, and it is clearly set by the difference
between wind stress and topographic form stress, scaled by the
Ekman drag coefficient. We note that this is not a general result,
but is specific to QG dynamics and linear drag. The lower layer
transport equals 1217� 1134 ¼ 83 Sv, where the positive term
comes from wind stress and the negative one from topographic
form stress.

The lower-layer transport in the coarse-grid models is set in the
same way, with the contribution from wind stress remaining
unchanged. The coarse-grid models all have lower-layer transport
of approximately 104 Sv, which implies that the coarse-grid topo-
graphic form stress makes a contribution of 1113 Sv to the lower-
layer instead of 1134. This amounts to less than 2% error in the
coarse-grid representation of topographic form stress, but results
in approximately 25% error in the lower-layer (and total) transport.
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