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ABSTRACT4

Arctic sea-ice reemergence is a phenomenon in which spring sea-ice anomalies are positively5

correlated with fall anomalies, despite a loss of correlation over the intervening summer6

months. This work employs a novel data analysis algorithm for high-dimensional multivariate7

datasets, coupled nonlinear Laplacian spectral analysis (NLSA), to investigate the regional8

and temporal aspects of this reemergence phenomenon. Coupled NLSA modes of variability9

of sea-ice concentration (SIC), sea-surface temperature (SST), and sea-level pressure (SLP)10

are studied in the Arctic sector of a comprehensive climate model and in observations.11

It is found that low-dimensional families of NLSA modes are able to efficiently reproduce12

the prominent lagged correlation features of the raw sea-ice data. In both the model and13

observations, these families provide an SST–sea-ice reemergence mechanism, in which melt14

season (spring) sea-ice anomalies are imprinted as SST anomalies and stored over the summer15

months, allowing for sea-ice anomalies of the same sign to reappear in the growth season16

(fall). The ice anomalies of each family exhibit clear phase relationships between the Barents-17

Kara Seas, the Labrador Sea, and the Bering Sea, three regions that comprise the majority18

of Arctic sea-ice variability. These regional phase relationships in sea ice have a natural19

explanation via the SLP patterns of each family, which closely resemble the Arctic Oscillation20

and the Arctic Dipole Anomaly. These SLP patterns, along with their associated geostrophic21

winds and surface air temperature advection, provide a large-scale teleconnection between22

different regions of sea-ice variability. Moreover, the SLP patterns suggest another plausible23

ice reemergence mechanism, via their winter-to-winter regime persistence.24
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1. Introduction25

Arctic sea ice is a sensitive component of the climate system, with dynamics and variabil-26

ity that are strongly coupled to the atmosphere and ocean. This sensitivity is evident in the27

recent precipitous decline in September sea-ice extent, of roughly 9% per decade since 197928

(Stroeve et al. 2007; Serreze et al. 2007). Trends in sea-ice extent are negative for all months29

of the year and all Arctic regions except for the Bering Sea (Cavalieri and Parkinson 2012).30

In addition to these strong trends, Arctic sea ice also exhibits large internal variability. Stud-31

ies using comprehensive climate models have estimated that 50-60% of recent Arctic sea-ice32

changes can be attributed to externally forced trends, with the remainder resulting from33

internal variability in the climate system (Kay et al. 2011; Stroeve et al. 2012). Therefore,34

the challenge of making accurate projections of future Arctic sea-ice conditions crucially35

hinges on: (1) quantifying the sea-ice response to changes in external forcing (i.e., green-36

house gas forcing) and (2) understanding the nature and magnitude of internal variability37

in the coupled ice-ocean-atmosphere system. This study will focus on the latter.38

The Arctic regions of interest in this study are shown in Fig. 1. The leading empiri-39

cal orthogonal function (EOF) of observational Arctic sea-ice concentration (SIC) exhibits40

strong out-of-phase anomalies between the Labrador and Greenland-Barents Seas and weaker41

out-of-phase anomalies between the Bering Sea and Sea of Okhotsk (Deser et al. 2000). Re-42

gression of sea level pressure (SLP) onto the corresponding principal component (PC) yields43

a spatial pattern which closely resembles the Arctic Oscillation (AO, Thompson and Wallace44

1998), the leading pattern of SLP variability north of 20◦N. Deser et al. (2000) observe a45

connection between the low-frequency (interannual to decadal) variability of the atmosphere46

and the low-frequency variability of sea-ice. In particular, they find that the AO and its47

associated geostrophic winds are physically consistent with the ice anomalies of the lead-48

ing SIC mode, suggesting that atmospheric circulation anomalies force sea-ice anomalies.49

These winds have thermodynamic and dynamic effects on sea ice via advection of surface50

air temperature and ice advection. Many other studies have analyzed sea-ice variability in51
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the context of the AO, finding that the AO affects sea ice on a wide range of time scales52

ranging from seasonal (Serreze et al. 2003) to decadal (Rigor et al. 2002; Rigor and Wallace53

2004; Zhang et al. 2004). These studies suggest that a “high-index” AO produces an Ekman54

divergence, leading to reductions in sea-ice thickness and concentration. This process has55

been proposed as a mechanism for the recent decline in Arctic sea ice.56

Others have questioned the efficacy of the AO as a predictor for sea-ice changes (Maslanik57

et al. 2007), suggesting that other patterns of large-scale atmospheric variability may play58

a more important role. In particular, an SLP pattern known as the Arctic Dipole Anomaly59

(DA) has drawn considerable recent attention (Wu et al. 2006; Wang et al. 2009; Tsuk-60

ernik et al. 2010; Overland and Wang 2005, 2010; Watanabe et al. 2006). The DA exhibits61

opposite-signed SLP anomalies between the Eastern and Western Arctic, which drive strong62

meridional winds. These winds act to enhance (reduce) sea-ice export from the Arctic basin63

through Fram Strait when the DA is in positive (negative) phase. Recent record lows in64

summer sea-ice extent generally correspond to years in which the DA index was positive65

(Wang et al. 2009). DA-like SLP patterns have also been associated with the large inter-66

nal variability observed in the sea-ice component of the Community Climate System Model67

Version 3 (CCSM3, Collins et al. 2006; Wettstein and Deser 2014). Other studies have sug-68

gested that the location and frequency of storms (Screen et al. 2011), and the phase of the69

Pacific-North-America (PNA) pattern (L’Heureux et al. 2008) also play an important role70

in setting the summer sea-ice minimum.71

The PCs corresponding to large-scale atmospheric patterns, such as the AO and DA, are72

quite noisy and contain significant spectral power at time scales ranging from monthly to73

decadal. A typical approach has been to initially low-pass filter the atmospheric component74

(by forming annual or winter means), as a way of smoothing out these PCs and emphasizing75

interannual to decadal variability. Besides the studies already cited, a large number of works76

have analyzed the impact of this low-frequency atmospheric variability on Arctic sea ice77

(Walsh et al. 1996; Proshutinsky and Johnson 1997; Mysak and Venegas 1998; Yi et al.78
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1999; Johnson et al. 1999; Deser et al. 2000; Polyakov and Johnson 2000; Moritz et al. 2002).79

These studies emphasize that sea-ice regimes are modulated by low-frequency atmospheric80

circulation regimes.81

The variability of Arctic sea ice is also strongly coupled to sea surface temperature82

(SST) variability (e.g., Francis and Hunter 2007). Blanchard-Wrigglesworth et al. (2011)83

proposed a mechanism for sea-ice–SST co-variability, in which sea-ice and SST anomalies84

trade off, allowing for unexpected “memory” effects in sea ice. These memory effects were85

termed “sea-ice reemergence”, inspired by the similar North Pacific and North Atlantic SST86

phenomena (Alexander et al. 1999; Timlin et al. 2002; de Cotlogon and Frankignoul 2003).87

Sea-ice reemergence is a lagged correlation phenomenon, in which spring sea-ice anomalies88

are positively correlated with fall sea-ice anomalies, despite a loss of correlation over the89

intervening summer months. There is also a similar, but weaker, reemergence between90

fall sea-ice anomalies and anomalies the following spring. The spring-fall mechanism of91

Blanchard-Wrigglesworth et al. (2011) suggests that spring sea-ice anomalies imprint SST92

anomalies of opposite sign, which persist over the summer months. During the fall, ice grows93

southward and interacts with these SST anomalies, reproducing ice anomalies of the same94

sign as the spring. This reemergence mechanism has been observed in the North Pacific sector95

in CCSM3 model output and observations (Bushuk et al. 2014). Deser et al. (2002) note a96

similar winter-to-winter persistence of sea-ice anomalies in the Labrador Sea, and propose97

an atmospheric mechanism in which sea-ice anomalies persist due to persistent large-scale98

atmospheric circulation regimes.99

Sea-ice reemergence may also have implications for sea-ice predictability. Day et al. (2014)100

found that sea-ice forecast skill was strongly dependent on initialization month, with certain101

months exhibiting a slower decay of forecast skill than others. The authors suggested that102

this initialization month dependence was attributable to sea-ice reemergence mechanisms.103

Day et al. (2014) also examined sea-ice reemergence in five global climate models (GCMs)104

and observations, finding robust reemergence signals, of varying strength, across all models105
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and a weaker reemergence signal in the observational record.106

In this study, we examine the coupled variability of Arctic SIC, SST, and SLP using107

nonlinear Laplacian spectral analysis (NLSA), a recently developed data analysis technique108

for high-dimensional nonlinear time series (Giannakis and Majda 2012a,b, 2013, 2014). The109

NLSA algorithm is a nonlinear manifold generalization of singular spectrum analysis (SSA,110

Broomhead and King 1986; Vautard and Ghil 1989; Ghil et al. 2002). SSA is also commonly111

referred to as extended empirical orthogonal function (EEOF) analysis. Here, we apply112

the multivariate version of the NLSA algorithm, coupled NLSA (Bushuk et al. 2014), which113

provides a scale-invariant analysis of multiple variables with different physical units. Coupled114

NLSA yields spatiotemporal modes, analogous to EEOFs, and temporal modes, analogous to115

PCs. These modes are constructed using a set of empirically derived Laplacian eigenfunctions116

on the nonlinear data manifold and, unlike linear approaches, do not maximize explained117

variance. Compared to linear techniques, NLSA (and other related nonlinear methods; Berry118

et al. 2013) provide superior time-scale separation and are able to effectively capture low-119

variance modes that may have important dynamical significance. These low-variance modes120

are known to be crucial in producing accurate representations of nonlinear dynamical systems121

(Aubry et al. 1993; Giannakis and Majda 2012b), and in the present context, are efficient in122

explaining reemergence phenomena (Bushuk et al. 2014).123

We use coupled NLSA modes to study the basin-wide and regional characteristics of124

Arctic sea-ice reemergence in a comprehensive climate model and observations. We com-125

pute modes using CCSM3 model output from a 900-year equilibrated control integration.126

Modes are also obtained for the 34-year observational record, using SIC and SST data from127

the Met Office Hadley Center Sea Ice and Sea Surface Temperature (HadISST) dataset and128

Era-Interim SLP reanalysis data. No preprocessing of the data is required, enabling simulta-129

neous extraction of interannual, annual, and semiannual patterns of variability. Using these130

modes, we identify low-dimensional families which efficiently describe sea-ice reemergence.131

These families capture a significant portion of the reemergence signal, and have the sur-132
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prising property of being relatively low-variance. The families also reveal time-dependent133

aspects of reemergence, which were not accessible in previous studies. The SST and SIC134

modes of each family exhibit an SST–sea-ice reemergence mechanism consistent with that135

of Blanchard-Wrigglesworth et al. (2011). Interannual components of large-scale SLP vari-136

ability, which emerge objectively from this analysis, are found to be related to coherent137

sea-ice reemergence events in geographically distinct regions, and suggest an SLP–sea-ice138

reemergence mechanism.139

This paper is organized as follows: In section 2, we summarize the coupled NLSA algo-140

rithm. In section 3, we describe the CCSM3, HadISST, and ERA-Interim datasets used in141

this study. In section 4, we study the SIC, SST, and SLP spatiotemporal modes obtained142

via coupled NLSA. In section 5, we examine the regional and temporal characteristics of143

sea-ice reemergence, and in section 6, we investigate oceanic and atmospheric reemergence144

mechanisms. We conclude in section 7. Movies, illustrating the spatiotemporal evolution of145

NLSA modes, are available as online supplementary material.146

2. Coupled NLSA methodology147

In this study, we apply the coupled NLSA approach, as developed in Bushuk et al. (2014),148

to Arctic SIC, SST, and SLP. This technique is an extension of the recently developed NLSA149

algorithm (Giannakis and Majda 2012b, 2013), and provides a scale-invariant approach for150

multivariate time series analysis. Unlike other multivariate data analysis approaches, coupled151

NLSA does not require initial normalization of the input fields to unit variance. Rather,152

the coupled NLSA algorithm implicitly selects the variance ratio between different physical153

fields, without requiring a choice of normalization by the user. Here, we briefly summarize154

the method and refer the reader to the more thorough description of Bushuk et al. (2014).155

Figure 2 is a schematic that summarizes the flow of data in the coupled NLSA algorithm.156

Let xSIC
t , xSST

t , and xSLP
t be time series for SIC, SST, and SLP, respectively, each sampled157
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uniformly at time step δt, with s time samples. The dimensions of xSIC
t , xSST

t , and xSLP
t158

are dSIC, dSST, and dSLP, respectively, which are the number of spatial gridpoints for each159

variable. First, we choose a time lag window Δt = qδt, and time-lag embed our data into the160

higher dimensional spaces RdSICq, RdSSTq, and R
dSLPq. Time-lagged embedding is performed161

via the delay-coordinate mappings162

xSIC
t �→ XSIC

t = (xSIC
t , xSIC

t−δt, ..., x
SIC
t−(q−1)δt),

xSST
t �→ XSST

t = (xSST
t , xSST

t−δt, ..., x
SST
t−(q−1)δt),

xSLP
t �→ XSLP

t = (xSLP
t , xSLP

t−δt, ..., x
SLP
t−(q−1)δt).

The coupled NLSA approach uses these time-lagged embedded data to construct a set of163

orthonormal basis functions on the nonlinear data manifold. These basis functions are164

eigenfunctions of a discrete Laplacian operator, and are computed using a kernel (similarity)165

function defined through the physical variables of interest, as determined by the user of the166

algorithm. The kernel and corresponding Laplacian eigenfunctions can be thought of as167

nonlinear analogs of the covariance matrix and corresponding PCs of SSA, respectively. In168

this work, the kernel function,K, is an exponentially decaying similarity function constructed169

using SIC, SST, and SLP, viz.170

Kij = exp

(
−‖XSIC

i −XSIC
j ‖2

ε‖ξSICi ‖‖ξSICj ‖ − ‖XSST
i −XSST

j ‖2
ε‖ξSSTi ‖‖ξSSTj ‖ − ‖XSLP

i −XSLP
j ‖2

ε‖ξSLPi ‖‖ξSLPj ‖

)
,

where i, j ∈ [q + 1, q + 2, · · · , s]. Here, ε is a scale parameter controlling the width of171

the Gaussian, and ξki = Xk
i − Xk

i−1 is the phase space velocity of the kth variable. Note172

that because of the division by ‖ξki ‖, the argument of the exponential is unit-independent,173

allowing for a natural comparison of the different variables in the system. Performing an174

appropriate normalization, we convert K to a Laplacian matrix, L, and solve the eigenvalue175

problem176

Lφi = λiφi.
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This yields a set of discrete Laplacian eigenfunctions {φ1, φ2, . . . , φs−q}, each of which is a177

temporal pattern of length s − q. By virtue of the delay-coordinate mapping of the data,178

these patterns are conditioned to reveal intrinsic dynamical time scales in the data, such179

as those associated with quasi-periodic orbits (Berry et al. 2013). In practice only l � s180

of these eigenfuctions are used and need to be computed. The eigenfunctions are used as181

a temporal filter for the data, analogous to Fourier modes, but intrinsic to the dynamical182

system generating the data.183

Let Φl be the matrix whose columns consist of the leading l eigenfunctions. Let Xk :184

R
s−q �→ R

qdk be the lag-embedded data matrix for the kth variable:185

Xk =

[
Xk

q+1 Xk
q+2 . . . Xk

s

]
.

Projecting Xk onto the leading l Laplacian eigenfunctions, we construct linear maps Ak
l :186

R
l �→ R

qdk , given by187

Ak
l = XkμΦl. (1)

Here �μ is the stationary distribution of the Markov chain corresponding to K, and μ is a188

diagonal matrix with �μ along the diagonal. Note that the variables used to construct the189

eigenfunctions do not necessarily need to coincide with the variables for which we compute190

the Ak
l operators. For example, we can use the SIC–SST–SLP eigenfunctions to filter any191

other variable of interest in our system.192

Singular value decomposition (SVD) of the operator for the kth variable, Ak
l , yields a set193

of spatiotemporal modes {uk
n} of dimension qdk, analogous to EEOFs, and a corresponding194

set of length l vectors, {V k
n }. These {V k

n } are the expansion coefficients in eigenfunction195

basis. Expanding using the first l eigenfunctions, we recover a set of temporal modes {vkn}196

of length s − q, where vkn = ΦlV
k
n . These modes, indexed by n, are ordered by decreasing197

singular value. Forming products uk
nσ

k
n(v

k
n)

T and projecting from lagged embedding space198

to physical space using the standard approach (Ghil et al. 2002), we obtain reconstructed199

fields ũk
n(t).200
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3. Dataset description201

a. CCSM3 model output202

This study analyzes model output from a 900-yr equilibrated control integration (model203

run b30.004) of CCSM3 (Collins et al. 2006). This data was downloaded from the Earth204

System Grid website. We use monthly averaged data for SIC, SST, and SLP, which come205

from the Community Sea Ice Model (CSIM, Holland et al. 2006), the Parallel Ocean Program206

(POP, Smith and Gent 2004), and the Community Atmosphere Model version 3 (CAM3,207

Collins et al. 2004), respectively. The model uses a T42 spectral truncation for the atmo-208

spheric grid (roughly 2.8◦×2.8◦), and the ocean and sea-ice variables are defined on the same209

grid, of 1◦ nominal resolution. This study focuses on a pan-Arctic domain, which we define210

as all gridpoints north of 45◦N. Note that the seasonal cycle has not been removed from this211

dataset. This is crucial for capturing intermittent patterns associated with reemergence. In212

particular, intermittent modes, described ahead in section 4, are not recoverable in datasets213

that have been deseasonalized (Giannakis and Majda 2013). As will be shown ahead in214

section 5, these modes are essential in low dimensional descriptions of sea-ice reemergence.215

The spatial dimensions (number of spatial gridpoints) of these datasets are dSIC = dSST =216

13,202 and dSLP = 2,048. Using a two-year embedding window with q = 24 (Giannakis and217

Majda 2012b; Bushuk et al. 2014), this yields lagged embedding dimensions (the product of218

the number of spatial gridpoints and the embedding window) of qdSIC = qdSST = 316,848219

and qdSLP = 49,152. These data are monthly averaged, and consist of s = 10,800 time220

samples for the 900-yr simulation period. The value Δt = 24 months was used as the time221

lag because this embedding window is longer than the seasonal cycle, which is a primary222

source of non-Markovianity in this dataset. A number of different embedding windows were223

tested, yielding qualitatively similar results for Δt ≥ 12 months, and qualitatively different224

results for Δt < 12 months.225
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b. HadISST observations226

We also analyze the HadISST dataset (Rayner et al. 2003), which consists of monthly227

averaged SIC and SST data on a 1◦ latitude-longitude grid. The spatial dimension of the228

Arctic domain is dSIC = dSST = 9,453. As with the CCSM3 data, we use an embedding229

window of Δt = 24 months, which yields lagged-embedding dimensions of qdSIC = qdSST =230

226,872. In this study we use the satellite era data from January 1979–August 2013. Note231

that all ice-covered gridpoints in the HadISST dataset were assigned an SST value of −1.8◦C,232

the freezing point of salt water at a salinity of 35 parts per thousand. Also, the trend in233

the dataset was removed by computing a long-term linear trend for each month of the year,234

and removing the respective linear trend from each month. The seasonal cycle has not been235

removed from this dataset.236

c. ERA-Interim reanalysis data237

Finally, we also study monthly-averaged SLP data from the European Centre for Medium-238

Range Weather Forecasts (ECMWF) Interim Reanalysis project (ERA-Interim, Dee et al.239

2011). These data are defined on a 0.75◦ latitude–longitude grid, of considerably higher240

resolution than the CCSM3 SLP data. The spatial dimension of the Arctic domain is dSLP =241

29, 280, corresponding to a lagged-embedding dimension of qdSLP = 702,720. These data have242

been detrended by subtracting the monthly trend from each month, but the seasonal cycle243

has not been subtracted.244

4. Coupled SIC-SST-SLP spatiotemporal modes of Arc-245

tic variability246

We utilize the coupled NLSA algorithm outlined in section 2 to study the spatiotemporal247

evolution of (i) SIC, SST, and SLP in CCSM3; and (ii) SIC and SST from HadISST, and SLP248
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from ERA-Interim. Hereafter, we refer to the joint HadISST and ERA-Interim datasets as249

observations. For both the model and observational data, we use a lagged-embedding window250

of Δt = 24 months.251

a. CCSM3 Modes252

We choose ε, the Gaussian locality parameter, as ε = 0.90. Using the spectral entropy253

criterion of Giannakis and Majda (2012a, 2013), we select a truncation level of l = 27254

eigenfunctions, and express the data matrices XSIC, XSST, and XSLP in this basis. SVD of255

the resulting operators (see eq. 1) yields a set of spatiotemporal patterns, {uSIC
n }, {uSST

n },256

{uSLP
n }, and a set of temporal patterns, {vSICn }, {vSSTn }, {vSLPn }, for each variable. The modes257

are ordered by decreasing singular value. In general, the temporal patterns for different258

variables need not be related. However, by virtue of the relatively low-dimensionality of the259

eigenfunction basis relative to the original temporal dimension (l = 27 � s = 10,800), and260

the fact that the eigenfunctions incorporate information from all three variables, we find261

strong correlations between the temporal patterns of different variables.262

1) Temporal Modes263

Figures 3, 4, and 5 show selected temporal patterns for SIC, SST, and SLP, respectively.264

For each variable, we observe three distinct types of temporal modes: periodic, low-frequency,265

and intermittent modes, indicated by P , L, and I in the figures.266

The periodic temporal modes closely resemble sinusoids, with frequencies given by in-267

teger multiples of 1 yr−1. These modes appear as doubly degenerate pairs, with a phase268

offset of π/2. The leading periodic modes, representing the annual and semiannual cycles,269

capture more variance than the low-frequency and intermittent modes of the system. Higher270

harmonic periodic modes are found later in the mode spectrum. The low-frequency modes271

are characterized by significant interannual variability, and have a typical decorrelation time272
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of approximately 3 years. These modes carry significant spectral power at frequencies below273

1 yr−1, and exhibit a sharp decline in spectral power at frequencies above this.274

The intermittent modes are characterized by periods of intense activity followed by pe-275

riods of quiescence. Each intermittent mode has a base frequency of oscillation, and a276

broadband peak in spectral power centered upon this frequency. These modes carry lower277

variance than their periodic and low-frequency counterparts, yet have potentially high dy-278

namical significance. For example, annual and semiannual intermittent modes are crucial279

components in low-dimensional descriptions of sea-ice reemergence phenomena (Bushuk et al.280

2014). Note that the leading low-frequency and intermittent modes are insensitive to trun-281

cation level, whereas increasing l will eventually disrupt the temporal character of some282

intermittent modes.283

Intermittent modes closely resemble a periodic signal modulated by a low-frequency enve-284

lope. We find that nearly all intermittent modes can be directly associated with a particular285

low-frequency mode, which provides this modulating envelope (Bushuk et al. 2014). To de-286

termine this association we compare the envelope function of the intermittent modes to the287

low-frequency modes. We find the envelope function via the Hilbert transform (von Storch288

and Zwiers 1999). Let I(t) be a given intermittent mode and let H(I)(t) be the Hilbert289

transform of I. Then the envelope function, e(t), is given by e(t) =
√
I(t)2 +H(I)(t)2.290

Next, we determine which low-frequency mode provides this modulating envelope by per-291

forming a correlation between e(t) and |L(t)|, where L(t) is a low-frequency mode. Fig. 6292

shows these correlation values for intermittent and low-frequency modes of each variable, for293

both the model and observations. Note that the low-frequency-intermittent mode associa-294

tion is quite clear for most variables, except for the observational SLP, whose intermittent295

envelopes generally correlate weakly with the low-frequency modes.296

As a comparison, we also performed SSA on the concatenated and unit-variance normal-297

ized SIC-SST-SLP dataset. Similar to the findings of Bushuk et al. (2014), SSA produces298

periodic modes, many low-frequency modes, and some modes that loosely resemble the in-299
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termittent modes of NLSA, with a spectral maximum at a certain base frequency. We find300

that the SSA modes do not share the same intermittent–low-frequency mode relationships301

as the NLSA modes. These relationships will be important for explaining reemergence, as302

they reflect the interaction of large-scale low-frequency modes of variability with the familiar303

annual and semiannual cycles in the climate system.304

2) SIC Spatiotemporal Patterns305

Figure 7 shows spatial patterns of selected modes at a snapshot in time. Movies 1 and 2,306

in the online supplementary material, show the spatiotemporal evolution of these modes and307

others. Below, we describe the prominent features of the spatiotemporal modes recovered308

for SIC, SST, and SLP.309

The annual periodic SIC modes, {P SIC
1 , P SIC

2 } (Fig. 7a), have spatially uniform anomalies310

throughout most of the Arctic, except at high-latitude gridpoints where there is year-round311

ice coverage, and in the marginal ice zones, where the anomalies are slightly weaker. These312

anomalies reach their maximum and minimum values in March and September, respectively.313

The higher-frequency periodic modes have increasingly finer spatial structure, and capture314

a decreasing portion of the variance.315

The low-frequency modes closely resemble the leading EOFs of Arctic SIC in the CCSM3316

model. LSIC
1 (Fig. 7d) exhibits anomalies in the Bering, Beaufort, and Labrador Seas, which317

are out-of-phase with the anomalies of the Barents, Kara, and Greenland Seas. Computing318

pattern correlations between the q spatial patterns of LSIC
1 and the different EOFs of de-319

seasonalized Arctic SIC, we find a maximum pattern correlation of 0.97 with EOF 1. LSIC
2320

(Fig. 7g) has strong anomalies in the Bering and Labrador Seas, which are out-of-phase321

with one another. It also has weaker anomalies in the Sea of Okhotsk, Barents and Kara322

seas which are in-phase with the Bering Sea anomalies. This mode has a maximum pattern323

correlation of 0.77 with EOF 3.324

Each intermittent mode has a natural association with a certain low-frequency mode,325
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which acts as a modulating envelope for the intermittent mode. There is also a clear spatial326

connection, as the intermittent modes are active in the same parts of the domain as their327

low-frequency counterpart. The annual and semiannual intermittent mode pairs, {ISIC1 , ISIC2 }328

and {ISIC7 , ISIC8 }, are associated with LSIC
1 (see Fig. 6). These modes pulse with annual329

and semiannual frequency, respectively, and exhibit finer spatial structure than LSIC
1 . In330

regions where LSIC
1 has monopole anomalies, these intermittent modes have dipole and tripole331

anomalies, respectively. The annual and semiannual intermittent modes, {ISIC3 , ISIC4 } and332

{ISIC9 , ISIC10 , ISIC11 }, are associated with LSIC
2 , and share similar spatial relationships.333

3) SST Spatiotemporal Patterns334

LSST
1 (Fig. 7e) has strong anomalies in the Bering Sea that extend southward into the335

Northeast Pacific, and anomalies of the opposite sign in the Barents and Kara Seas. There336

is also a North Atlantic signal with anomalies in the subpolar gyre region that are in-phase337

with the North Pacific anomalies. This mode has a maximum pattern correlation of 0.98338

with EOF 1 of Arctic SST from CCSM3. LSST
2 (Fig. 7h) exhibits out-of-phase anomalies339

between the North Pacific and North Atlantic. The North Atlantic anomalies correspond to340

variability in the subpolar gyre, and the North Pacific anomalies are strongest in the Bering341

Sea, extending through most of the Pacific portion of the domain. This mode is most similar342

to EOF 2, with 0.96 pattern correlation.343

The intermittent modes associated with LSST
1 and LSST

2 are {ISST1 , ISST2 , ISST8 , ISST9 } and344

{ISST5 , ISST6 , ISST11 }, respectively. As with the SIC modes, these modes are active in the345

same parts of the domain as their associated low-frequency mode, and have finer spatial346

structure. A primary difference is that these intermittent modes exhibit spatially propagating347

anomalies, as compared with their stationary SIC counterparts. This propagation is most348

evident in the subpolar gyre region of the North Atlantic.349
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4) SLP Spatiotemporal Patterns350

LSLP
1 (Fig. 7f) has a similar SLP pattern to the AO, with an anomaly centered over the351

pole, and anomalies of opposite sign in the North Atlantic and North Pacific basins. The352

AO is defined as the leading EOF of SLP north of 20◦N. Considering EOFs of CCSM3 SLP353

north of 20◦N, we find a maximum pattern correlation of 0.98 with EOF 1. In light of this354

strong correlation, we call LSLP
1 the AO mode. LSLP

2 also closely resembles the AO, with a355

maximum pattern correlation of 0.98 with EOF 1. However, LSLP
1 and LSLP

2 have distinct356

temporal patterns and are non-degenerate modes.357

LSLP
3 (Fig. 7i) has a strong resemblance to the DA, which consists of opposite-signed SLP358

anomalies between the Eastern and Western Arctic. Following Wu et al. (2006), we define the359

dipole anomaly as the second leading EOF of winter (October-March) SLP north of 70◦N. Let360

PC 2 be the PC associated with EOF 2. To determine the corresponding spatial pattern over361

the Arctic domain (north of 45◦N), we project winter Arctic SLP onto PC 2, and compare362

the resulting spatial pattern to LSLP
3 . We find a maximum pattern correlation of 0.78, and363

lower correlations when other PCs are used. Another possible technique for determining the364

Arctic SLP signal of the DA, as performed in Wu et al. (2006), is to perform a conditional365

composite, based on the months in which PC 2 is active. This yields a very similar pattern366

correlation of 0.77 with LSLP
3 . Wu et al. (2006) also perform a conditional composite in367

which the influence of the AO is removed via linear regression. We also computed a spatial368

pattern using this technique and found a pattern correlation of 0.78 with LSLP
3 . Based on369

these findings, we refer to LSLP
3 as the DA mode.370

LSLP
1 has associated annual and semiannual intermittent modes {ISLP1 , ISLP2 , ISLP9 , ISLP10 }.371

LSLP
3 is associated with a pair of annual intermittent modes {ISLP7 , ISLP8 }, but not any semi-372

annual intermittent modes.373
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b. Observational Modes374

We compute the coupled NLSA observational modes using a locality parameter of ε = 1.20375

and a truncation level of l = 21 eigenfunctions. A primary difference between the observa-376

tional modes and CCSM3 modes is the variables used for the eigenfunction computation.377

We find that computing SIC-SST-SLP eigenfunctions from the observational datasets yields378

temporal modes which are significantly noisier (more high-frequency power) than the corre-379

sponding modes from CCSM3. This corruption occurs due to the inclusion of the SLP data380

in the eigenfunction computation. We find that the eigenfunctions are substantially cleaner381

when computed using SIC and SST, and we use this as the base case for this study. On the382

other hand, the CCSM3 results are insensitive to the inclusion of SLP, with SIC-SST-SLP383

and SIC-SST eigenfunctions yielding very similar modes and conclusions regarding sea-ice384

reemergence. We obtain SLP observational modes by projecting the SLP data onto the385

SIC-SST eigenfunctions and performing an SVD of the resulting operator. Note that the386

observational SLP data is roughly 4 times finer spatial resolution than the CCSM3 SLP data.387

This discrepancy in resolution may explain the corruption in observational modes compared388

with CCSM3 modes. An NLSA kernel that incorporates an initial spatial smoothing of the389

input data (making them comparable to the T42 resolution of the CCSM3 data) could al-390

leviate these issues, but we elected not to carry out these calculations since we are able to391

identify reemergence families, ahead, using SIC and SST only as inputs to the kernel.392

The observational temporal modes have a similar character to those obtained from393

CCSM3. For each variable, we find periodic, low-frequency, and intermittent modes, and in394

many cases the low-frequency modes act as modulating envelopes for the intermittent modes.395

The temporal modes for SIC, SST, and SLP are shown in Figs. 1-3 of the supplementary396

material.397

Next, we provide a brief description of the spatiotemporal modes that will be discussed398

later in the paper. Movies 3 and 4 of the supplementary material provide a more revealing399

spatiotemporal evolution of these modes and others. LSIC
1 (Fig. 7j) closely resembles the400
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leading EOF of winter Arctic sea ice reported by Deser et al. (2000). In its positive phase,401

LSIC
1 has positive sea-ice anomalies in the Labrador and Bering seas and negative anomalies402

in the Greenland, Barents-Kara, and Okhotsk Seas. This mode has a maximum pattern403

correlation of 0.88 with EOF 1 of Arctic sea ice from HadISST. LSST
1 (Fig. 7k) is most404

similar to EOF 2 of Arctic SST, with a maximum pattern correlation of 0.70. In positive405

phase, this mode has positive anomalies in the Labrador Sea and subpolar gyre region,406

negative anomalies in the Barents-Kara Seas and positive anomalies in the Bering Sea. LSLP
1407

(Fig. 7l) strongly resembles the annular structure of the AO. Computing EOFs of ERA-408

Interim SLP north of 20◦N, we find a maximum pattern correlation of 0.97 with EOF 1, the409

AO pattern. Similar to the CCSM3 results, the intermittent modes are generally associated410

with a low-frequency mode, are active in the same parts of the domain as this low-frequency411

mode, and display finer spatial structure.412

One feature which is conspicuously absent from the observational SLP modes is a DA-413

like mode. Other fields, such as 850mb geopotential height and surface winds, and smaller414

domains were tested, but a low-frequency DA mode analogous to the CCSM3 results was415

not found. Certain modes obtained were quite transient, and resembled the DA pattern at416

certain snapshots in time, but not persistently.417

c. Interpretation of low-frequency SLP modes418

The low-frequency SLP modes have spatial patterns that closely resemble the famil-419

iar spatial patterns obtained via EOF analysis. However, their temporal behavior differs420

substantially. The low-frequency NLSA temporal modes have significant one-year auto-421

correlation and carry most of their power at frequencies below 1 yr−1. This lies in sharp422

contrast to the PCs obtained via EOF analysis, which have a nearly white power spectrum423

and decorrelate very rapidly, losing all memory after 1-2 months. Despite these extremely424

different temporal characteristics, there is natural connection between the two: the low-425

frequency NLSA modes closely resemble a low-pass filtered version of the noisy PCs from426
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EOF analysis.427

This is illustrated in Fig. 8, which shows temporal behavior for LSLP
1 , the leading low-428

frequency NLSA mode from CCSM3, PCSLP
1 , the principal component corresponding to the429

leading EOF of SLP, and 〈PCSLP
1 〉, a low-pass filtered version of PCSLP

1 , computed by taking430

a 24 month running mean. LSLP
1 has a relatively low correlation of 0.31 with PCSLP

1 , but431

a significantly higher correlation of 0.80 with the low-pass filtered PC, 〈PCSLP
1 〉. LSLP

1 and432

〈PCSLP
1 〉 share qualitatively similar autocorrelation functions and power spectra, which are433

very different from the rapidly decaying autocorrelation and nearly white power spectrum434

of PCSLP
1 . These results suggest a natural interpretation of the low-frequency NLSA modes435

as low-pass filtered versions of the PCs from EOF analysis, which emphasize variability on436

interannual to decadal timescales and filter out higher-frequency variability. It is important437

to note that the low-frequency NLSA modes have weak sensitivity to the lag-embedding438

window Δt (as long as Δt ≥ 12; see section 3). Also, a univariate NLSA analysis with only439

SLP was performed, and similar low-frequency modes were recovered. This suggests that440

these low-frequency patterns describe an intrinsic component of SLP variability, which in441

this case can be reproduced by an ad-hoc running averaging of the data.442

The observational SLP modes also display a similar correspondence, with a correlation443

of 0.83 between 〈PCSLP
1 〉 and LSLP

1 . This high correlation indicates that the SIC-SST eigen-444

functions used for the observational data are able to capture important variability in the445

raw SLP data.446

5. Arctic sea-ice reemergence in models and observa-447

tions448

Sea-ice reemergence is a time-lagged correlation phenomenon. SIC anomalies decorrelate449

over a 3-6 month timescale, however, at some time lag in the future, an increase in correlation450

occurs. Sea-ice reemergence is observed in two forms: a spring-fall reemergence, in which451

18



spring anomalies are reproduced the following fall, and a fall-spring reemergence, in which452

fall anomalies are reproduced the following spring. Both forms are observed in CCSM3 model453

output and HadISST observations, with the spring-fall reemergence being the significantly454

stronger signal in both cases.455

We study sea-ice reemergence via the time-lagged pattern correlation methodology of456

Bushuk et al. (2014). For each month of the year, pattern correlations are computed between457

the SIC anomaly field of the given month and the SIC field at lags of 0 to 23 months into458

the future. This is done for all (month, month+lag) pairs in the time series, and we report459

the average of these correlation values. Note that the pattern correlations are performed on460

anomalies from the seasonal cycle, are area-weighted, and are uncentered (global mean has461

not been subtracted from the anomaly field). This differs from the approach of Blanchard-462

Wrigglesworth et al. (2011), where the lagged correlations were performed using a time463

series of total sea-ice area. Performing correlations using the full SIC field, as opposed to its464

total area, allows for inclusion of the spatial distribution of sea ice. The pattern correlation465

approach is able to detect opposite-signed anomaly features, such as sea-ice dipoles, which466

would be integrated away in the total area approach. It also enforces a notion of locality,467

since anomalies must be spatially coincident in order to yield a significant pattern correlation.468

This ensures that a reported sea-ice reemergence signal represents recurrent anomalies at the469

same spatial location.470

In this paper, we focus on the regions defined in Fig. 1: a pan-Arctic domain (0◦ – 360◦471

and 45◦N – 90◦N), the Barents and Kara Seas (30◦E – 90◦E and 65◦N – 80◦N), the Labrador472

Sea and Baffin Bay (70◦W – 40◦W and 45◦N – 80◦N), the Greenland Sea (40◦W – 0◦E and473

55◦N – 80◦N), the Bering Sea (165◦E – 160◦W and 55◦N – 65◦N), and the Sea of Okhotsk474

(135◦E – 165◦E and 45◦N – 65◦N).475
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a. Regional sea-ice reemergence in models and observations476

We begin with a regional study of sea-ice reemergence using raw SIC data from HadISST477

observations and CCSM3 output, the results of which are shown in Fig. 9. This figure shows478

time-lagged pattern correlations, computed for all initial months and lags of 0 to 23 months.479

All correlations plotted in color are greater than 0.1 and are significant at the 95% level,480

based on a t-distribution statistic, which tests for the statistical significance of the time-mean481

pattern correlation values against a null hypothesis that there is no correlation.482

Over a pan-Arctic domain, in both the model and observations, we observe a clear “sum-483

mer limb” of positive correlations corresponding to sea-ice anomalies that originate in the484

melt season (March-August) and reemerge in the growth season (Fig. 9a,b). The “win-485

ter limb” of fall-spring reemergence, corresponding to anomalies originating in September-486

February, is weak over the Arctic domain, except for a small hint of the limb in the CCSM3487

data. An interesting consequence of the time-lagged pattern correlation approach is the488

striking similarity of pan-Arctic lagged correlations in CCSM3 and observations. This lies in489

contrast to the total area lagged correlation methodology of previous studies, which reveal490

a clearly enhanced reemergence signal in the model relative to observations (Blanchard-491

Wrigglesworth et al. 2011; Day et al. 2014). This indicates that, despite differences in492

memory of total sea-ice area anomalies, the model and observations are quite similar in their493

memory of sea-ice spatial patterns.494

The pan-Arctic reemergence signal is similar in the model and observations, however a495

regional analysis reveals significant differences between the two. Both CCSM3 and HadISST496

have strong summer limb signals in the Barents-Kara domain (Fig. 9g,h) and the Greenland497

Sea (Fig. 9k,l). The CCSM3 data also exhibits a winter limb in the Barents-Kara domain,498

which is not significant in observations. A striking difference is found in the Labrador Sea,499

with a strong summer limb and a significant winter limb in observations, neither of which500

are found in the model (Fig. 9i,j). Conversely, the strong summer limbs in the Bering and501

Okhotsk Seas found in the model data are absent in the observations (Fig. 9c,d,e,f). Note502
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that the winter limb signal in the Bering and Okhotsk Seas should not be over-interpreted,503

as these domains are essentially sea-ice free during the summer and early fall. Therefore, the504

North Pacific winter limb lagged correlations are performed using an extremely low-variance505

signal, and are not robust.506

b. Sea-ice reemergence revealed via coupled NLSA507

Given the non-trivial lagged correlation structures in the CCSM3 and HadISST sea-ice508

datasets, we seek a low-dimensional representation of sea-ice reemergence via the coupled509

NLSA modes obtained in Section 4. We aim to answer two main questions: (1) Can the510

reemergence signal of the raw data be efficiently reproduced by low-dimensional families of511

modes? (2) Can these mode families reveal possible mechanisms for Arctic sea-ice reemer-512

gence? To answer the former, we perform time-lagged pattern correlations using small513

subsets of reconstructed spatiotemporal fields from coupled NLSA. Our approach here is to514

first construct families of SIC modes, and then to augment these families with SST and SLP515

modes, based on correlations.516

1) CCSM3 Reemergence Families517

Based on the associations between low-frequency and intermittent modes identified in518

section 4a.1, we construct two families of SIC modes, each consisting of a low-frequency519

mode and annual and semiannual intermittent modes. These families, which we refer to as520

FM
1 and FM

2 , are able to qualitatively reproduce the reemergence signal of the raw data. They521

are given by FM
1 = {LSIC

1 , ISIC1 , ISIC2 , ISIC7 , ISIC8 } and FM
2 = {LSIC

2 , ISIC3 , ISIC4 , ISIC9 , ISIC10 , ISIC11 }.522

Here, the M superscript indicates that these families come from model output. Each family523

is particularly active in the Barents-Kara, Bering, and Labrador Seas, but shares different524

phase relationships between the different regions. Within each family, the low-frequency and525

intermittent modes are closely related, in the sense that the low-frequency mode provides the526
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modulating envelope for the intermittent modes. This means that all modes in a given family527

tend to be active or inactive at the same times. Note that similar envelope associations were528

observed in the reemergence families identified in Bushuk et al. (2014), suggesting that this529

approach may be useful in a broader context. Many other mode subsets were tested, but were530

unable to reproduce the lagged correlation structure as effectively as these families, likely531

because they lack the envelope relationships that characterize the families. Moreover, FM
1532

and FM
2 appear to be the minimal mode subsets, as smaller sets are unable to qualitatively533

reproduce the reemergence signal.534

In Fig. 10d, we show time-lagged pattern correlations computed over the Arctic domain535

using NLSA family FM
1 . Comparing with the time-lagged pattern correlation structure of the536

raw data, shown in Fig. 10a, we observe qualitatively similar features. The FM
1 correlations537

have a clear summer limb structure, with correlations that decay to near zero over the538

summer months and reemerge the following fall. They also have a slightly weaker winter539

limb, which may correspond to the weaker fall-spring reemergence seen in the raw data. The540

FM
1 correlations are substantially higher than the raw data correlations because the family’s541

activity is primarily governed by LSIC
1 , which has a decorrelation time of 3 years.542

This NLSA family has a qualitatively similar correlation structure to the raw data, yet it543

is natural to ask whether this family is capturing the portion of the signal responsible for the544

summer limb in the raw data. As a method for addressing this question, we compute time-545

lagged cross correlations between the raw data and the NLSA subspaces, shown in Fig. 10b546

and 10c. To explain panels b and c, we introduce LC(A,B), a function that computes time-547

lagged pattern correlations, with the dataset B lagging A. Using this notation, Fig. 10a548

shows LC(Raw,Raw) and Fig. 10d shows LC(FM
1 ,FM

1 ). In Fig. 10b and 10c, we plot549

LC(Raw,FM
1 ) and LC(FM

1 ,Raw), respectively.550

If the reemergence signal of FM
1 is not representative of the signal in the raw data, one551

would expect these cross correlations to be small. However, we observe strong summer limbs552

in panels 10b and 10c, similar to the correlation structure of the raw data. The fact that553
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these panels are similar to panel 10a, indicates that family FM
1 is capturing the portion of554

the data responsible for the sea-ice reemergence signal.555

In Fig. 10e-h, we plot the same quantities as Fig. 10a-d, but for Family FM
2 . LC(FM

2 ,FM
2 )556

also has a strong summer limb and a weaker winter limb, but each of these limbs is weaker557

than their respective counterparts in LC(FM
1 ,FM

1 ). Also, LC(Raw,FM
2 ) and LC(FM

2 ,Raw),558

plotted in Fig. 10f and 10g, shows partial summer limbs, but these correlations are weaker559

than the reemergence signal of the raw data. This indicates that family FM
2 is capturing560

some of the reemergence signal, but not as significant a portion as family FM
1 .561

2) HadISST Reemergence Families562

The observational modes also admit a mode family which is able to reproduce the reemer-563

gence signal of the raw HadISST data. This family is given by FO
1 = {LSIC

1 , ISIC1 , ISIC2 , ISIC5 , ISIC6 },564

where the O indicates observational data. There is no clear second family which has non-565

trivial cross-correlations with the raw observational data. In Fig. 11 we plot time-lagged566

cross correlations for FO
1 . LC(FO

1 ,FO
1 ) has a clear summer limb and a weaker winter limb.567

We also find a strong summer limb structure in LC(Raw,FO
1 ) and LC(FO

1 ,Raw), except for568

a small gap in the limb for anomalies beginning in July. This indicates that the family FO
1569

is capturing a substantial portion of the reemergence signal in the raw data.570

c. Variance explained by reemergence families571

Another way to test the effectiveness of the families in capturing the reemergence signal is572

to directly subtract the families from the raw sea-ice data, and compute time-lagged pattern573

correlations on the resulting dataset. Fig. 12c shows LC(Raw−FM
1 −FM

2 ,Raw−FM
1 −FM

2 ),574

and Fig. 12d shows LC(Raw−FO
1 ,Raw−FO

1 ). Each of these has a clearly reduced summer575

limb relative to LC(Raw,Raw), which are shown in Fig. 12a for CCSM3 and Fig. 12b576

for HadISST. This demonstrates that the reemergence families are capturing a substantial577
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portion of the reemergence signal. In terms of total sea-ice area anomalies, family FM
1578

explains 41%, 25%, and 8% of the variance in the Bering, Barents-Kara, and Labrador Seas,579

respectively. Similarly, FM
2 explains 18%, 1%, and 14% of the variance, and FO

1 explains580

7%, 30%, and 18% of the variance, in these respective regions.581

The variance explained by these families is lower if one considers the full (non-integrated)582

sea-ice anomaly field. Over the full Arctic domain family FM
1 explains 5% of the variance,583

FM
2 explains 3% and FO

1 explains 7%. While these values seem somewhat low, it is inter-584

esting to note that the leading two EOFs from CCSM3 capture 7% and 6% of the variance,585

respectively. These values are lower than those typically reported in EOF studies for three586

reasons: (1) the spatial domain is large; (2) there has been no temporal smoothing or averag-587

ing performed; and (3) the spatial resolution is relatively fine. For example, the leading EOF588

of Deser et al. (2000) captures 35% of the sea-ice variance in the Arctic, but this is based on a589

time series of winter mean sea-ice anomalies. This temporal averaging substantially smooths590

the data, and the leading EOF captures variance more efficiently in this time-filtered dataset.591

By contrast, the leading 10 EOFs of CCSM3 Arctic sea ice capture 38% of the variance.592

The comparison with SSA, a variance greedy algorithm, is also illuminating. The leading593

two SSA modes capture 2.5% and 2% of the variance, respectively, and the leading 10594

non-periodic SSA modes capture 14% of the variance. By comparison, the leading 10 non-595

periodic NLSA modes capture 10% of the variance, which is modestly less than SSA. The596

main reason for this discrepancy is that the intermittent modes of NLSA carry less variance597

than low-frequency modes. Despite being low-variance, these intermittent modes are crucial598

components of the reemergence families and illustrate an important point: low-variance599

modes can play an important role in explaining dynamical phenomena.600

d. Temporal variability of sea-ice reemergence601

To this point, all reported lagged correlations have been time-mean values, computed over602

the full time series. Next, we consider the time-dependent aspects of sea-ice reemergence.603
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Fig. 12e shows lagged correlations of the raw CCSM3 sea-ice data, conditional on the low-604

frequency modes of FM
1 or FM

2 , LSIC
1 and LSIC

2 , being active. Specifically, we condition on605

all times for which |LSIC
1 (t)| > 2 or |LSIC

2 (t)| > 2 (which corresponds to 11% of the data).606

Similarly, Fig. 12f shows lagged correlations of the raw HadISST data conditional on the607

low-frequency mode of FO
1 being active (|LSIC

1 (t)| > 1.5, which corresponds to 14% of the608

data). We observe a clearly enhanced reemergence signal (both summer and winter limbs)609

during times when these modes are active. Figs. 12g and 12h show lagged correlations610

conditional on these modes being inactive (|LSIC
1 (t)| < 1 and |LSIC

2 (t)| < 1 for CCSM3 and611

|LSIC
1 (t)| < 1 for HadISST). This corresponds to 45% and 59% of the data, respectively. In612

both cases, particularly with CCSM3, we observe a diminished reemergence signal. These613

results indicate that reemergence events have significant temporal variability, characterized614

by regimes of quiescence and other regimes of intense activity. Another notable feature is the615

robust initial decay of correlation for lags of 0–3 months. The most significant differences616

between Figs. 12e,f and Figs. 12g,h occur at lags greater than 3 months, indicating that617

reemergence events display more temporal variability than the initial decay of persistence.618

Note that due to the shortness of observational record, the conditional correlations from619

HadISST are less robust than those from CCSM3.620

In CCSM3, about half of the record is characterized by a very weak reemergence signal621

(Fig. 12g), whereas other times exhibit strong reemergence (Fig. 12e). This may have impor-622

tant implications for sea-ice predictability, since predictability resulting from reemergence623

will have a strong temporal dependence, dependent on the strength of the reemergence sig-624

nal at a given time. The results here also demonstrate the efficacy of certain low-frequency625

NLSA modes as predictors for the strength of reemergence events. Therefore, these modes626

could be a valuable addition to statistical sea-ice forecast models.627

As another method to test the temporal variability of reemergence events, we measure628

the strength of the reemergence signal as a function of time. We define the reemergence629

strength as the sum of correlation values along the summer limb, compute this quantity for630
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each year of the time series, and create a probability density function (PDF). The PDF (not631

shown here) is close to Gaussian, with a slight skew towards large reemergence events. If we632

let μ be the mean of the PDF, we find that 23% of reemergence events are less that 0.5μ and633

23% of events are greater than 1.5μ. This spread in event distribution demonstrates that634

reemergence strength fluctuates strongly in time.635

This temporal characterization of Arctic reemergence events is a new result of this study,636

which was inaccessible in previous studies of reemergence based on time-lagged total area637

correlations. In the time-lagged pattern correlation methodology, correlations are performed638

space, rather than time, which allows for the temporal variations of these correlations to639

be studied. The mode families also allow for an investigation of the temporal variability of640

reemergence events and mechanisms, and this will be returned to in section 6c, ahead.641

e. SIC-SST-SLP reemergence families642

We have identified families of coupled NLSA SIC modes which are able to reproduce the643

reemergence signal of the raw SIC data. Next, we focus on the spatiotemporal evolution644

of these families, and their associated SST and SLP patterns. As noted earlier, there are645

strong correlations between the temporal modes of SIC, SST, and SLP. We use this fact to646

augment the families FM
1 , FM

2 , and FO
1 with associated SST and SLP modes.647

The low-frequency mode of FM
1 is LSIC

1 . Performing correlations between this mode and648

all low-frequency SST and SLP PCs, we find maximum correlations of -0.99 with LSST
1 and649

-0.69 with LSLP
3 . Similarly, for the LSIC

2 mode of FM
2 , we find maximum correlations of -0.93650

with LSST
2 and 0.64 with LSLP

1 . For the observational family, FO
1 , we find that LSIC

1 has651

maximum correlations of 0.998 with LSST
1 and -0.81 with LSLP

1 . Note that the low-frequency652

mode correlations are higher between SIC and SST than between SIC and SLP, indicating653

that the temporal co-variability between SIC and SST is somewhat stronger.654

Each family consists of a low-frequency mode and associated annual and semiannual655

intermittent modes. In order to form the augmented families, we identify the intermittent656
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modes associated with the low-frequency SST and SLP modes identified above. Based on657

the envelope correlations shown in Fig. 6, we define the following augmented families:658

FM
1 = {LSIC

1 , ISIC{1,2,7,8}, L
SST
1 , ISST{2,3,8,9}, L

SLP
3 , ISLP{7,8}},

FM
2 = {LSIC

2 , ISIC{3,4,9,10,11}, L
SST
2 , ISST{5,6,11}, L

SLP
1 , ISLP{1,2,9,10}},

FO
1 = {LSIC

1 , ISIC{1,2,5,6}, L
SST
1 , ISST{1,2,7,8}, L

SLP
1 , ISLP{1} }.

Here, the intermittent mode indices are given in braces for each variable.659

6. Sea-ice reemergence mechanisms660

a. SST–sea-ice reemergence mechanism661

We now examine the sea-ice reemergence mechanisms suggested by the SIC-SST-SLP662

families defined above. Bushuk et al. (2014) showed that low-dimensional families of NLSA663

modes produce an SST–sea-ice reemergence mechanism in the North Pacific sector which664

is consistent with that proposed by Blanchard-Wrigglesworth et al. (2011). Can a similar665

mechanism be observed in Arctic NLSA modes? In both the model and observations, the666

answer is yes.667

Figure 13 shows spatial reconstructions of SIC, SST, and SLP using family FM
1 . These668

spatial patterns are composites, produced by averaging over all times where LSIC
1 (t) > 1669

(which corresponds to 17% of the data). Similar patterns, with opposite sign, are obtained670

by compositing over times when LSIC
1 (t) is in negative phase. This figure shows four months671

of the year, but the time evolution of FM
1 , shown in Movie 5 of the supplementary material,672

is much more illuminating.673

In the winter months of January–March, we observe strong negative sea-ice anomalies674

in the Barents Sea and strong positive anomalies in the Bering and Labrador Seas. These675

anomalies reach their maximum southerly extent in March. We observe SST anomalies of676

opposite sign, which are roughly spatially coincident with the sea-ice anomalies, but also677
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extend further south in each of the three seas. Note that in March the Kara sea, the678

northern Bering Sea and the northern Labrador Sea are all SST anomaly-free. The ice679

anomalies move northward and weaken over the melt season, which begins in April. In June,680

the ice anomalies in the Barents-Kara region are located primarily in the Kara sea. Also,681

the Bering and Labrador anomalies have moved into the northern parts of these seas and682

weakened substantially.683

As the ice anomalies move northward, they imprint an anomaly of opposite sign in the684

SST field. In particular, the previously anomaly-free Kara and northern Bering and Labrador685

Seas now have strong SST anomalies. The ice continues to retreat northwards over the melt686

season, reaching its minimum extent in September. In September the sea-ice anomalies687

are extremely weak in the Barents-Kara, Bering, and Labrador Seas, yet each of these seas688

has retained an SST anomaly. The SST anomaly retained in the Barents-Kara and Bering689

Seas is particularly strong, with a weaker anomaly in the Labrador Sea. As the growth690

season begins, the ice moves southward, interacts with the SST anomalies that have been691

stored over the summer months, and reinherits anomalies of the same sign as the previous692

spring. In December, we observe that most of the summer imprinted SST anomalies have693

disappeared, and the sea-ice anomalies have reemerged with the same sign as the spring694

anomalies. This reemergence family is typically active for a 2-8 year period, during which695

we observe reemerging sea-ice anomalies of a consistent sign (see Movie 5).696

We observe a similar SST–sea-ice reemergence mechanism in family FM
2 , shown in Fig. 14697

and Movie 6 of the supplementary material. This figure is based on a composite over all698

times in which LSIC
2 > 1 (which corresponds to 16% of the data). This family exhibits699

strong winter sea-ice anomalies in the Bering and Labrador Seas, which are out of phase700

with each other. These anomalies disappear over the melt season, leaving an SST imprint in701

the northern parts of these seas in June and September. We observe a sea-ice reemergence702

during the growth season, as the SST anomalies are converted into ice anomalies. This703

family does not have a strong signal in the Barents-Kara Seas.704
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The observational family, FO
1 , displays a clear sea-ice reemergence, which is active pri-705

marily in the Barents-Kara, Bering, Okhotsk, Labrador, and Greenland Seas (Movie 7). This706

family, shown for the year 1991 in Fig. 15, also displays the SST–sea-ice reemergence mech-707

anism, but in a slightly less clean manner than the model output. FO
1 has positive winter708

sea-ice anomalies in the Bering and Labrador Seas, and negative anomalies in the Barents-709

Kara, Greenland and Okhotsk Seas. The family has winter SST anomalies of opposite sign710

to these sea-ice anomalies, which extend southward of the sea-ice anomalies. Comparing the711

March panels to the June and September panels, an SST imprinting can be observed in the712

Barents-Kara Sea and, to a lesser extent, the Labrador and Bering Seas. Sea-ice anomalies713

of the same sign reappear in the fall, and this pattern roughly repeats the following year.714

The reemergence families are able to capture the SST–sea-ice mechanism of Blanchard-715

Wrigglesworth et al. (2011), previously only accessible via time correlation analysis of raw716

sea-ice and SST fields. This mode-based representation of reemergence allows one to track717

the temporal variability and strength of the SST–sea-ice reemergence mechanism, as will be718

done ahead in section 6c. Also, the low-dimensionality of these families has implications for719

predictability, since a small number of predictors (specifically, the low-frequency modes of720

the families) define the amplitude and sign of reemergence events.721

b. Sea-ice teleconnections and reemergence via low-frequency SLP variability722

Movies 5-7 reveal consistent phase relationships between sea-ice anomalies in the Barents-723

Kara, Bering, and Labrador Seas. The SST mechanism described above provides a local724

mechanism for sea-ice reemergence, but does not explain this phase-locking between geo-725

graphically disconnected seas. We find that the SLP patterns of FM
1 , FM

2 , and FO
1 (shown726

in the third column of Figs. 13, 14, and 15) provide pan-Arctic scale teleconnections between727

these different regions.728

We begin with family FM
1 (Fig. 13), which has an SLP pattern closely resembling the729

DA. This pattern is characterized by four main centers of action: pressure anomalies of730
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the same sign over Greenland and Northwest North America and opposite-signed anomalies731

over Western Russia and Eastern Siberia. The geostrophic winds associated with this SLP732

pattern are primarily meridional, blowing across the Arctic from the Bering to the Barents-733

Kara Seas, or vice versa. We find that the ice advection and surface air temperature advection734

associated with these large-scale winds is consistent with the observed phase relationships735

in regional sea-ice anomalies.736

From January–March, the dipole anomaly is very active, with strong northerly winds737

over the Bering Sea and strong southerly winds over the Barents-Kara Seas. The northerly738

winds advect cold Arctic air over the Bering Sea and also push the ice edge southwards739

and advect additional ice into the sea. Each of these effects encourages the formation of740

a positive sea-ice anomaly in the Bering Sea. Similarly, the Barents-Kara Seas experience741

warm southerly winds, which melt additional ice, and also push the ice edge northward,742

contributing to the observed negative sea-ice anomaly. Also, the SLP anomaly centered743

over Greenland produces northerly geostrophic winds over the Labrador Sea, contributing744

to its positive sea-ice anomalies for the same reasons. The SLP anomalies and corresponding745

winds weaken substantially over the summer months, as do the sea-ice anomalies in each746

of these regions. In October, the SLP anomalies begin to reappear with the same sign and747

a similar spatial pattern to the previous winter. This coincides with the beginning of the748

sea-ice growth season and the reemergence of ice anomalies from the previous spring. In749

December, we observe a strong dipole SLP anomaly, and, again, observe sea-ice anomalies750

in the Bering, Barents-Kara and Labrador Seas, which are physically consistent with this751

pattern.752

Besides explaining the observed teleconnection in sea-ice anomalies, these SLP patterns753

also suggest an SLP–sea-ice reemergence mechanism via their winter-to-winter regime per-754

sistence. LSLP
3 , the low-frequency SLP mode of FM

1 , has a strong one-year autocorrelation of755

0.70. Because SLP anomalies produce a significant sea-ice response, recurring SLP patterns756

will produce recurring sea-ice patterns. Thus, the observed winter-to-winter persistence of757
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the SLP patterns of FM
1 provides a candidate mechanism for sea-ice reemergence.758

As mentioned earlier in section 4c, the SLP patterns of FM
1 represent a low-pass filtered759

version of the full atmospheric signal. The SLP patterns of FM
1 should be thought of as a760

slowly evolving atmospheric circulation regime, rather than a snapshot of the full SLP field761

at each point in time. For example, the temporal evolution of the full SLP field is similar to762

the time series of PCSLP
1 in Fig. 8, whereas the SLP patterns of FM

1 are similar to the low-pass763

filtered PC (red curve in Fig. 8). It is the persistence of the atmospheric circulation regime764

of FM
1 that provides a plausible mechanism for sea-ice reemergence. Sea-ice anomalies are765

known to have a persistence of 2-5 months (Blanchard-Wrigglesworth et al. 2011), therefore766

the sea-ice anomalies at a given time represent an integrated response to earlier atmospheric767

and oceanic forcing. Given this, one would expect that sea-ice anomalies are not strongly768

dependent on the chaotic month-to-month fluctuations of the atmosphere, but are more769

dependent on a temporally smoothed version of this fluctuating field. Therefore, the low-770

pass filtered SLP patterns of FM
1 provide a plausible physical link between atmospheric771

and sea-ice variability. The study of Blanchard-Wrigglesworth et al. (2011) dismisses SLP772

persistence as a source of sea-ice reemergence because of the low one-month autocorrelation773

of the SLP pattern that best explains changes in sea-ice extent. Here, we argue that the774

low-frequency component of similar SLP patterns may play an important role in sea-ice775

reemergence.776

Similar relationships between sea-ice and SLP anomalies are also observed in family FM
2777

(Fig. 14), which has an annular SLP pattern resembling the AO, and a one-year autocorre-778

lation of 0.41. Similar to FM
1 , these SLP patterns are strongly active over the winter months779

(October–March), and fairly inactive over the summer months. The geostrophic winds of780

this pattern are primarily zonal, but also have a meridional component, which affects sea781

ice via surface air temperature advection. In January–March, there are northeasterly winds782

over the Bering Sea, southeasterly winds over Labrador Sea, and northeasterly winds over783

the Barents-Kara Seas, with corresponding positive, negative, and positive sea-ice anoma-784
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lies, respectively. The SLP anomalies become small over the summer months, and reappear785

during the fall months with the same sign as the previous winter. With the reappearance786

of these SLP anomalies, we observe an ice reemergence, which is particularly strong in the787

Bering and Labrador Seas.788

The relationship between SLP and sea ice is somewhat less clear in the observations than789

in the model. Column three of Fig. 15 shows the FO
1 SLP patterns for 1991, a year when the790

family was active. In January–March, there is an AO-like SLP pattern producing northerly791

winds over the Labrador Sea and southerly winds over the Barents-Kara Seas. We observe792

corresponding positive and negative sea-ice anomalies in these seas, analogous to what was793

observed in FM
2 . However, the SLP patterns differ in the North Pacific. There is mini-794

mal advection over the Bering Sea, as a high-pressure anomaly is centered directly over it.795

This anomaly produces southerly winds over the Sea of Okhotsk, which are consistent with796

the negative sea-ice anomaly. On the other hand, the SLP patterns do not provide a clear797

explanation, in terms of meridional wind, for the positive Bering sea-ice anomalies. Com-798

pared to FM
2 , these SLP patterns do not decorrelate as strongly over the summer months,799

and a negative SLP anomaly is retained over the pole, which also shifts onto the Eurasian800

continent over the summer months. The anomaly strengthens during the fall, producing801

similar winds and sea-ice patterns to the previous winter. One notable difference between802

the observational and model SLP families is the spatial stationarity of the SLP patterns.803

The SLP patterns of FM
1 and FM

2 are relatively fixed in space and pulse on and off with the804

annual cycle. The FO
1 SLP patterns also pulse with the annual cycle, yet are transient in805

space. The SLP centers-of-action advect substantially over the course of a year.806

Given the seemingly similar sea-ice anomalies of FM
1 and FO

1 , a natural question is why807

these families have such different atmospheric patterns. A closer analysis of the sea-ice808

variability of each family reveals clear differences between the two. For each family, we809

compute the proportion of sea-ice variance in a given region, relative to the variance of the810

full Arctic domain. We find that FM
1 contains 24% of its variance in the Bering Sea, 22%811
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in the Barents-Kara Seas, and 8% in the Labrador Sea. Conversely, FO
1 contains 5% of812

its variance in the Bering Sea, 35% in the Barents-Kara Seas, and 14% in the Labrador813

Sea. Therefore, the dominant sea-ice feature of FM
1 is the dipole between the Bering and814

Barents-Kara Seas, whereas the dominant feature of FO
1 is the dipole between the Labrador815

and Barents-Kara Seas. The corresponding atmospheric circulation patterns of each family816

act to reinforce these dominant sea-ice anomalies, and have significantly different spatial817

patterns.818

It should be noted that the data analysis approach employed here is capable of identifying819

correlation, but not causality. In particular, we have not quantified the relative importance820

of the ocean and the atmosphere in producing sea-ice reemergence. Also, we have identified821

SLP modes with interannual to decadal variability, but have not provided a mechanism for822

this observed variability. We speculate that, rather than intrinsic atmospheric variability,823

this low-frequency variability of the atmosphere results from SST or sea-ice forcing. The824

generation of low-frequency atmospheric variability has been widely studied, with many825

authors suggesting that extratropical and tropical SST anomalies are capable of driving826

low-frequency variability in the atmosphere (Lau and Nath 1990; Latif and Barnett 1994;827

Trenberth and Hurrell 1994; Weng and Neelin 1998; Selten et al. 1999; Robertson et al. 2000;828

Kushnir et al. 2002; Czaja and Frankignoul 2002). Other authors (e.g., Mysak and Venegas829

1998), have suggested that sea-ice anomalies could drive low-frequency atmospheric patterns,830

but modeling studies have suggested that the atmospheric response is quite weak compared831

with the typical magnitude of atmospheric anomalies (Alexander et al. 2004; Magnusdottir832

et al. 2004). Therefore, we speculate that anomalous SST forcing is the most likely candidate833

for the observed low-frequency SLP patterns, but more study is required on this problem.834

These unanswered questions could be investigated in a future study involving a hierarchy of835

GCM experiments.836
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c. Metrics for sea-ice reemergence837

We now establish a set of reemergence metrics for sea ice, SST, and SLP, by which one838

can judge the activity of sea-ice reemergence and associated mechanisms in different regions.839

These metrics, computed for the reconstructed fields of each family, quantify the intensity840

and sign of ice reemergence events. We focus on the values of these metrics in the Bering,841

Barents-Kara, and Labrador Seas. The sea-ice metric is defined as the integrated (area-842

weighted) SIC anomaly in a given region. We define the SLP metric as the maximum value843

of the meridional geostrophic wind over a given region. This is a proxy for the amount of844

warm/cold air advection and northward/southward ice advection over a given region. The845

SST metric is defined as the integrated (area-weighted) SST anomalies in the portion of the846

seas that are imprinted by summer SST anomalies. Specifically, we compute the integrated847

SST anomalies in the Kara sea (75◦E – 100◦E and 65◦N – 80◦N), the northern Bering Sea848

(165◦E – 160◦W and 60◦N – 65◦N), and the northern Labrador Sea (70◦W – 40◦W and 60◦N849

– 80◦N). It is helpful to compare the metrics, plotted in Figs. 16–18, to Movies 5–7 which850

show the dynamical evolution of the corresponding fields for the same time period.851

Figure 16 shows FM
1 metrics for 100 years of model output. We observe a number852

of reemergence events, characterized by periods in which the sea-ice metric is large, with853

consistent sign, over a number of successive winters. For example, notable periods of active854

reemergence occur during years 101–106, 128–131, 146–155, and 175–179. The sea-ice phase855

relationships for this family are striking, with strong positive correlation (0.95) between the856

Bering and the Labrador Seas and strong anti-correlation (-0.95) between the Bering and857

Barents-Kara Seas. The SST metric reveals the SST-sea-ice reemergence mechanism, as years858

with large ice metrics have large SST metrics of the opposite sign (note the anti-correlation859

of like-colored curves in panels A and B). During reemergence events, the SST metrics are860

close to zero in the winter months and grow large in the summer months as the sea-ice861

anomalies imprint the SST field. These SST metrics also show a clear in-phase relationship862

between the Bering and Labrador Seas and out-of-phase relationship between the Bering and863
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Barents-Kara Seas. The SLP metric is clearly out-of-phase with the sea-ice metric, which864

illustrates the sea ice-SLP reemergence mechanism, since positive (negative) meridional wind865

anomalies produce negative (positive) sea-ice anomalies. During reemergence events, in the866

Bering and Labrador Seas, we observe that the SLP metric is large over the winter and close867

to zero over the summer. In the Barents-Kara Sea, we observe more persistence, as the868

family maintains its wind anomalies throughout an entire reemergence event.869

Figure 17 shows the metrics for family FM
2 . Again, we observe very strong phase relation-870

ships in sea-ice anomalies, with in-phase anomalies between the Barents-Kara and Bering871

Seas and out-of-phase anomalies between the Bering and Labrador Seas. The SST metric872

displays strong SST–sea-ice reemergence mechanisms in the Labrador and Bering Seas. Also,873

as noted in section 5c, there is not a clear SST–sea-ice mechanism in the Barents-Kara Sea.874

The SLP metric has a strong signal in the Labrador Sea, which is large in winter and small875

in summer, and out-of-phase with the sea-ice anomalies. The SLP–sea-ice mechanism is less876

strong in the Barents-Kara and Bering Seas, yet we do observe persistent wind anomalies877

which are out-of-phase with the sea-ice anomalies.878

We show metrics for FO
1 in Fig. 18. This family exhibits a strong SST–sea-ice reemergence879

mechanism in the Barents-Kara Sea. The SST signal is very weak in the Bering Sea, and880

in the Labrador Sea it tends to persist over periods of reemergence, rather than being881

imprinted each summer. The wind anomalies in the Labrador and Barents-Kara Seas are882

consistent with the sea ice-SLP reemergence mechanism. As noted earlier, the Bering Sea883

wind anomalies are not consistent with the sea-ice anomalies. Rather, we observe that the884

wind anomalies are inconsistent (in-phase) with the sea-ice anomalies.885

d. Regional sea-ice relationships conditional on SLP modes886

The reemergence families suggest a number of sea-ice teleconnections which are related887

to large-scale SLP patterns. Are these regional teleconnections visible in the raw SIC data?888

Are the teleconnections strengthened by conditioning on certain low-frequency SLP modes889
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being active? To answer these questions, we select pairs of regions and compute lagged cross-890

correlations in total sea-ice area anomalies of the raw data between these regions. Note that891

the cross-correlations are obtained by computing a time series of sea-ice area anomalies for892

each region, and performing lagged correlations between these two time series. Our choice893

of regions and SLP modes is guided by the reemergence families. We consider the regions894

and SLP pattern that display the strongest teleconnection for each family.895

The results are shown in Fig. 19, for months of the year with sea-ice coverage in the896

marginal ice zones (December–May) and for lags of -23 to 23 months. Panels A and B show897

lagged cross-correlations between the Barents-Kara and Bering Seas for the raw CCSM3898

data and conditional on |LSLP
3 | > 1.5 (corresponds to 14% of the data), respectively. This899

corresponds to the primary teleconnection of FM
1 . All correlations plotted in color are900

significant at the 95% level, based on a t-distribution statistic. In the raw data, we observe901

negative correlations between the Bering and Barents-Kara Seas, which are strongest at lags902

of -6 to 6 months. There is a dramatic strengthening of these negative correlations when903

conditioned on an active LSLP
3 mode (the DA mode). We also observe that the correlations904

are more persistent when the DA mode is active. Another interesting feature is the clear905

bias in correlations towards lags in which Bering anomalies lead Barents-Kara anomalies.906

The analogous correlations, corresponding to family FM
2 , are shown in panels C and D for907

the Labrador and Bering Seas and for SLP mode LSLP
1 (the AO mode). These correlations908

are very small compared with panels A and B. The raw data displays very little correlation909

structure and weak correlations, that are primarily negative, emerge after conditioning on910

the AO mode. It should be noted that the limb of negative correlations, with Bering lagging911

Labrador, corresponds to summer sea-ice anomalies in the Bering Sea, which are extremely912

weak. Therefore, this limb has questionable significance.913

Panels E and F show cross-correlations between the Barents-Kara and Labrador Seas for914

the HadISST dataset, conditional on |LSLP
1 | > 1 (corresponds to 35% of the data). Note915

that we use a value of 1 rather than 1.5 for the conditional correlations because of the916
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shortness of the observational time series. Also, the shortness of the time series implies a917

higher 95% significance level for correlations. We plot correlations using the same colorbar918

as CCSM3 and simply white-out all correlations which are not significant at the 95% level.919

The raw data displays some negative correlation, but a dramatic strengthening is observed920

when conditioning on an active AO mode. The limb of white in panel F, extending from921

(May, +3) to (Dec, +9) corresponds to lagged correlations with summer months. At lags922

beyond this limb, we observe strong negative correlations. This feature is a reemergence of923

anti-correlation between the Barents-Kara and Labrador Seas. The reemergence structure is924

less clear for negative lags, where the Labrador leads the Barents-Kara, however we generally925

observe anti-correlation between the two seas, which is significantly stronger than the raw926

data.927

7. Conclusions928

We have studied Arctic sea-ice reemergence (Blanchard-Wrigglesworth et al. 2011) in a929

comprehensive climate model and observations. This study has documented the regional930

and temporal details of sea-ice reemergence and illustrated two potential reemergence mech-931

anisms, involving SST and SLP persistence, respectively. We have used coupled NLSA (Gi-932

annakis and Majda 2012b, 2013; Bushuk et al. 2014), a nonlinear data analysis technique for933

multivariate timeseries, to analyze the co-variability of Arctic SIC, SST, and SLP. Coupled934

NLSA was applied to a 900-year equilibrated control integration of CCSM3, yielding spa-935

tiotemporal modes, analogous to EEOFs, and temporal patterns, analogous to PCs. Modes936

were also extracted from 34 years of observational data, using SIC and SST observations from937

HadISST and SLP reanalysis from ERA-Interim. In both the model and observations, these938

NLSA modes capture three distinct types of temporal behavior: periodic, low-frequency,939

and intermittent variability. The low-frequency modes have spatial patterns that closely940

resemble the leading EOFs of each variable. In particular, the low-frequency SLP modes941
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correlate strongly with the well-known Arctic Oscillation (AO, Thompson and Wallace 1998)942

and Arctic Dipole Anomaly (DA, Wu et al. 2006) patterns of SLP variability. The temporal943

patterns of the low-frequency SLP modes, obtained here without any preprocessing of the944

raw data, closely resemble a low-pass filtered version of the corresponding PCs obtained via945

EOF analysis.946

Performing time-lagged pattern correlations, we have found clear pan-Arctic sea-ice947

reemergence signals in the model and observations. The lagged pattern correlation approach948

employed in this study reveals a stronger reemergence signal in observations than previous949

studies on reemergence (Blanchard-Wrigglesworth et al. 2011; Day et al. 2014). Using cou-950

pled NLSA modes, we have found low-dimensional families that are able to reproduce the951

reemergence signal of the raw SIC data. Intriguingly, these families explain a relatively small952

portion of the raw SIC variance, yet when removed from the raw data the resulting signal953

exhibits significantly weaker reemergence. Moreover, the associated SST and SLP patterns954

of these families demonstrate two possible reemergence mechanisms, consistent with those955

proposed by Blanchard-Wrigglesworth et al. (2011) and Deser et al. (2002). The SST–sea-ice956

reemergence mechanism, in which spring sea-ice anomalies are imprinted and stored as sum-957

mer SST anomalies, is clearly active in the Barents-Kara, Bering, and Labrador Seas. The958

SLP–sea-ice mechanism, in which sea-ice anomalies reemerge due to the winter-to-winter959

persistence of low-pass filtered SLP anomalies (atmospheric regimes), is also observed in960

these regions, with the exception of the Bering Sea in the observational record.961

A key finding of this study is that these reemergence patterns are part of a pan-Arctic962

scale organization involving SLP teleconnection patterns. In particular, we have found strong963

phase relationships between sea-ice reemergence events in geographically distinct regions.964

Unable to explain this teleconnection in terms of purely local SST anomalies, we find clear965

relationships between regional sea-ice anomalies and large-scale SLP variability. In CCSM3,966

an out-of-phase relationship between the Bering/Labrador and Barents-Kara Seas is found967

to be consistent with the phase and amplitude of the DA mode. Similarly, an out-of-phase968
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relationship between the Bering/Barents-Kara and Labrador Seas is found to be consistent969

with the phase and amplitude of the AO mode. In observations, the AO mode is able970

to explain the strong out-of-phase anomalies of the Barents-Kara and Labrador Seas, but971

cannot explain the weaker anomalies of the Bering Sea. These regional phase relationships972

are weakly visible in the raw SIC data, and are significantly strengthened by conditioning973

on an appropriate SLP mode (the AO or DA) being active.974

Another key aspect of this study is the regional and temporal characterization of sea-975

ice reemergence. We have identified significant regional differences in reemergence between976

the model and observations, particularly in the Labrador Sea and the North Pacific sec-977

tor, despite their pan-Arctic agreement. We have also found that reemergence events and978

mechanisms have significant temporal variability, and that the low-frequency modes of the979

reemergence families act as effective predictors of periods of active or quiescent reemergence.980

A set of reemergence metrics has been created, by which one can judge the strength and981

sign of sea-ice reemergence events, and the associated SST and SLP mechanisms.982

In this study, we have demonstrated two plausible mechanisms for sea-ice reemergence,983

involving the atmosphere and the ocean, but which mechanism is most crucial in producing984

ice reemergence? Is sea-ice reemergence a fully coupled phenomenon, or does it also occur985

in more idealized situations? This data analysis study has identified correlation, but not986

causation. An interesting subject for future work would be to perform a suite of coupled987

model experiments to study this question of causality.988
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Fig. 1. The regions of interest in this study: the Barents-Kara Seas (BK), the Labrador
Sea (LS), the Greenland Sea (GS), the Bering Sea (BER), and the Sea of Okhotsk (OK).
The Arctic domain is defined as all grid points north of 45◦N.
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Fig. 3. Snapshots of the time series, power spectral density, and autocorrelation functions
for the CCSM3 SIC PCs (vk) from coupled NLSA. Shown here for 50-year portions of the
900-yr time series are the annual periodic (P SIC

1 ) and semiannual periodic (P SIC
3 ) modes,

low-frequency modes (LSIC
1 and LSIC

2 ), annual intermittent modes (ISIC1 and ISIC3 ), and semi-
annual intermittent modes (ISIC7 and ISIC9 ). The autocorrelation vertical scale is [-1,1]. The
power spectral densities (fk) were estimated via the multitaper method with time-bandwidth
product p = 6 and K = 2p− 1 = 11 Slepian tapers. The effective half-bandwidth resolution
for the s monthly samples is Δν = p/(sδt) = 1/150 y−1, where δt= 1/12 y is the sampling
interval.
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Fig. 4. Snapshots of the time series, power spectral density, and autocorrelation functions
for the CCSM3 SST PCs from coupled NLSA. Shown here are the annual periodic (P SST

1 )
and semiannual periodic (P SST

3 ) modes, low-frequency modes (LSST
1 , LSST

2 , and LSST
3 ), an-

nual intermittent modes (ISST1 and ISST3 ), and semiannual intermittent modes (ISST7 ). The
autocorrelation vertical scale is [-1,1].
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Fig. 5. Snapshots of the time series, power spectral density, and autocorrelation functions
for the CCSM3 SLP PCs from coupled NLSA. Shown here are the annual periodic (P SLP

1 )
and semiannual periodic (P SLP

3 ) modes, low-frequency modes (LSLP
1 , LSLP

2 , LSLP
3 ), and inter-

mittent modes (ISLP1 , ISLP3 ,ISLP7 ). The autocorrelation vertical scale is [-1,1].
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Fig. 6. Correlations between low-frequency modes and envelope functions for intermittent
modes. Mode pairs with large positive correlations indicate that the low-frequency mode
provides the modulating envelope for the intermittent mode.
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Fig. 7. Spatial patterns of selected sea ice, SST, and SLP NLSA modes. For each mode,
we plot the spatial pattern with largest variance (of the q spatial patterns that make up
the spatiotemporal pattern). Rows 1-3 show CCSM3 modes and row 4 shows observational
modes, indicated by an O subscript. The fields have been normalized to have a maximum
absolute value of 1.

58



Power Spectral Density

L
1
SLP

1E−4
1E−3
1E−2
1E−1
1E0
1E1
1E2
1E3

Autocorrelation Function

PC
1
SLP

1E−4
1E−3
1E−2
1E−1
1E0
1E1
1E2
1E3

frequency ν (y−1)

<PC
1
SLP>

1E−2 1E−1 1E0 1E1
1E−4
1E−3
1E−2
1E−1
1E0
1E1
1E2
1E3

time t (m)
0 12 24 36 48

Snapshot of Time Series

−2

0

2

−2

0

2

time t (y)
0 10 20

−2

0

2

Fig. 8. Snapshots of the time series, power spectral density, and autocorrelation functions for
LSLP
1 , the leading low-frequency NLSA mode from CCSM3, PCSLP

1 , the principal component
corresponding to the leading EOF of SLP, and 〈PCSLP

1 〉, a low-pass filtered version of PCSLP
1 ,

computed by taking a 24 month running mean. The red curve is 〈PCSLP
1 〉 plotted on top of

PCSLP
1 . Note that the 〈PCSLP

1 〉 time series shown in the third row has been normalized to
have a standard deviation of 1.
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Fig. 9. Time lagged pattern correlations of Arctic sea ice in different regions. The left
column shows results from CCSM3 model output, and the right column shows results from
HadISST observations. All colored boxes are significant at the 95% level, based on a t-test.
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Fig. 10. Time lagged pattern correlations of sea ice computed over the Arctic domain, using
NLSA Familes FM

1 and FM
2 . Panels (A) and (D) show correlations of the raw data and FM

1 ,
respectively. Panels (B) and (C) show cross-correlations of FM

1 and the raw data, with the
NLSA data lagging and leading, respectively. The same correlations for FM

2 are shown in
panels (E)-(H). All colored boxes are significant at the 95% level.
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Fig. 11. Time lagged pattern correlations of sea ice computed over the Arctic domain,
using HadISST Family FO

1 . Panels (A) and (D) show correlations of the raw data and
NLSA Family FO

1 , respectively. Panels (B) and (C) show cross-correlations of FO
1 and the

raw data, with the NLSA data lagging and leading, respectively. All colored boxes are
significant at the 95% level.
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Fig. 12. Time lagged patterns correlations of sea ice computed over the Arctic domain.
Lagged correlations for CCSM3 data are shown for: (A) the raw data, (C) Raw−FM

1 −FM
2 ,

(E) conditional on |LSIC
1 (t)| > 2 or |LSIC

2 (t)| > 2 (which corresponds to 11% of the data)
and (G) conditional on |LSIC

1 (t)| < 1 and |LSIC
2 (t)| < 1 (45% of the data). HadISST lagged

correlations are shown for: (B) the raw data, (D) Raw−FO
1 , (F) conditional on |LSIC

1 (t)| > 1.5
(which corresponds to 14% of the data) and (H) conditional on |LSIC

1 (t)| < 1 (59% of the
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Fig. 13. Sea ice, SST, and SLP patterns of CCSM3 reemergence Family FM
1 at different

months of the year. These spatial patterns are composites, obtained by averaging over all
years in which LSIC

1 > 1.
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Fig. 14. Sea ice, SST, and SLP patterns of CCSM3 reemergence Family FM
2 at different

months of the year. These spatial patterns are composites, obtained by averaging over all
years in which LSIC

2 > 1.
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Fig. 15. Sea ice, SST, and SLP patterns of HadISST reemergence Family FO
1 shown for

different months of 1991.

66
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Fig. 16. Reemergence metrics for ice, SST and wind of family FM
1 in the Barents/Kara,

Bering, and Labrador Seas, by which we judge the activity of ice reemergence. Active periods
of reemergence are characterized by repeated years in which these metrics are large (either
positive or negative). Note that the SIC and SST metrics have been normalized by their
respective standard deviations. The SLP metric is reported in m/s.
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Maximum Meridional Velocity, Correlations: BBK= 0.59, BL= −0.76, LBK = −0.90
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Fig. 17. Reemergence metrics for ice, SST and wind of family FM
2 in the Barents/Kara,

Bering, and Labrador Seas, by which we judge the activity of ice reemergence. Active periods
of reemergence are characterized by repeated years in which these metrics are large (either
positive or negative).
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Maximum Meridional Velocity, Correlations: BBK= 0.53, BL= −0.91, LBK = −0.40
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Fig. 18. Reemergence metrics for ice, SST and wind of family FO
1 in the Barents/Kara,

Bering, and Labrador Seas, by which we judge the activity of ice reemergence. Active periods
of reemergence are characterized by repeated years in which these metrics are large (either
positive or negative).
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Fig. 19. Lagged correlations in sea-ice area anomalies between different seas. (A) and (B)
show CCSM3 correlations between the Barents-Kara and Bering Seas for the raw data and
conditional on |LSLP

3 | > 1.5, respectively. (C) and (D) show CCSM3 correlations between
the Bering and Labrador Seas for the raw data and conditional on |LSLP

1 | > 1.5, respectively.
(E) and (F) show HadISST correlations between the Barents-Kara and Labrador Seas for
the raw data and conditional on |LSLP
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