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Abstract. This paper provides a rigorous, self contained analysis of the intermittent

behavior of turbulent diffusion models with a mean gradient. The intermittency can be

described as large spikes randomly occurring in the time sequence of a passive tracer or

exponential like fat tails in the probability density function. This type of passive tracer

intermittency is subtle and occurs without any positive Lyapunov exponents in the system.

Observations of such passive tracers in nature also show such intermittency. By exploiting

an intrinsic conditional Gaussian structure, the enormous fluctuation in conditional variance

of the passive tracer is found to be the source of intermittency in these models. An intuitive

physical interpretation of such enormous fluctuation can be described through the random

resonance between Fourier modes of the turbulent velocity field and the passive tracer. This

intuition can be rigorously proved in a long time slow varying limit, where the limiting

distribution of the passive tracer is computed through an integral formula. This leads to

rigorous predictions of various types of intermittency. Numerical experiments are conducted

in different dynamical regimes to verify and supplement all the theoretical results. All the

proofs in this paper are elementary and essentially self contained.
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1. Introduction

Turbulent diffusion is the transportation of the mass of a substance, also called a passive

tracer, through the joint effect of turbulence advection and diffusion. Its application ranges

from the spread of hazardous plumes and mixing properties of turbulent combustion, to

the dynamics of anthropogenic gas in climate change science [1, 2, 3]. There is often

additional uniform damping in many applications in environmental science. The physical

law of turbulent diffusion can be described through the dynamics of a passive tracer:

∂Tt
∂t

+ ~v · ∇T = −dTTt + κ∆T, (1.1)
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where κ > 0 is molecular diffusion and the turbulence flow ~v is assumed to be incompressible.

Statistical properties of solutions of (1.1) such as their energy spectrum, probability density

of Tt(x) (PDF) and spatial covariance, cov(Tt(x), Tt(y)), are all critical physical quantities

of the underlying turbulent flow ~v [4, 5].

One key feature of turbulent diffusion with a mean background gradient is its

intermittency. This can be described by large spikes randomly occurring in the time sequence

of Tt(x), or an exponential like heavy tail in the probability density. These phenomena

are observed through laboratory observations such as classical Rayleigh-Benard convection

experiments [6, 7, 8], observation data of the atmosphere [3] and numerical simulations of

judiciously chosen idealized models [4, 9, 10, 11, 12, 5]. On the other hand, intermittency

generally exists in various turbulence models [13, 14, 12, 15, 16, 17]. It is extremely

important to understand intermittency, since such extreme events are crucial in many areas

of environmental science as well as other disciplines. However, the rigorous study of the

mechanisms behind intermittency is challenging.

This paper aims to give a simple but rigorous explanation of the source of intermittency

in turbulent diffusion models with a mean gradient. In these models the two dimensional

incompressible velocity field ~v is assumed to consist of a zonal cross sweep and a meridional

random shear flow:

~vt(x, y) = (ut, v(x, t)).

The passive tracer field is assumed to have a background mean gradient:

Tt(x, y) = T ′t(x) + αy.

Previous works [18, 19, 9, 10, 20, 5] have shown that this simplification preserves key

features for various inertial range statistics of turbulent diffusion, including the intermittent

phenomena described above. On the other hand, this simplification produces explicit

formulations for the solutions which will be very convenient to apply stochastic analysis

tools.

One important feature that will be repeatedly exploited in this paper is that the tracer

field T ′t(x) is conditionally Gaussian given the realization of the cross sweep us≤t. This

will be derived carefully in Section 3.2 as Proposition 3.2. In other words, the conditional

distribution of T ′t(x) can be written as N (0,Σ(us≤t)). Using the law of total expectation, the

PDF of T ′t(x) can be formally computed through a path based integral, and will be a Gaussian

mixture of different variances. The key point here is the conditional variance Σ(us≤t) is a

random variable that has enormous fluctuation, with peak value often being around 100

times the magnitude of its mean. This implies that the occasional realization of us≤t that

maximizes Σ(us≤t), will likely produces a spike in T ′t(x) of 10 times the size of standard

deviation, which is nearly impossible in a Gaussian prediction. Moreover, this enormous

conditional variance dictates the tail of T ′t(x)’s distribution, which will be exponential like in

the tail of 10−2-10−5 range. This fits very well with the intermittent phenomenon described

above.
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A deeper question that naturally follows is when and why does the conditional variance

reach its peak. By analyzing the integral formula, one possible cause is found as the hidden

random resonance between Fourier modes of the shear flow v and passive tracer field T . This

can be described as the moment when the imaginary phase speed of v and T are equal. In

Section 4, this intuitive mechanism is rigorously proved in a long time slow varying limit of

the original model, with the limiting conditional variance being a simple explicit function of

ut. With this explicit result, simple intuition can be developed on the cross sweep’s effect

over passive tracer T , while the PDF can be computed through a simple quadrature.

The remainder of this paper will be organized as follow. Section 2 formulates the

turbulent diffusion model and its special solutions. Section 3 presents the fundamental

properties of the turbulent diffusion models with detailed derivation and explanation,

including geometric ergodicity and rigorous general bounds hinting at intermittency. In

Section 4, the long time slow varying limit of turbulent diffusion models are presented with

rigorous proof of the connection with intermittent random resonances. Numerical simulations

with different dynamical regimes are conducted in Section 5 verifying previous mathematical

claims and enhancing the intuition. Generalizations to general non-Gaussian cross sweeps

and infinitely many Fourier modes are made in Section 6. A summary and discussion of our

results is the final section of this paper. In order to maintain the focus of our discussion,

some straightforward parts of the proofs are relegated to the Appendix.

2. Turbulent diffusion models with mean gradient formulation

In this paper, we assume the velocity field ~v is a special incompressible flow given by a

stochastic zonal cross sweep and a meridional shear flow:

~v(x, t) = (ut, v(x, t)).

We decompose the cross sweep ut into its mean ū and fluctuation: ut = ū+Ut. For simplicity,

Ut is modeled as a mean zero Ornstein-Uhlenbeck (O.U.) process, with dynamics that reads:

dUt = −γUUtdt+ σUdWt,

Here Wt is a standard real Wiener process. In Section 6.1, we will relax this O.U. formulation

to general diffusion processes, but until then we will focus on this simple setting. The

dynamics for the shear flow v can be described through a general formulation:

∂v

∂t
= UtR1

(
∂

∂x

)
v +R2

(
∂

∂x

)
v − γv

(
∂

∂x

)
v + Ẇv(x, t). (2.1)

Here γv is a positive definite linear operator that represents damping and dissipation. R1, R2

are linear operators that represent the internal effect of Ut upon vt such as advection. They

are defined through their image on the Fourier modes:

R1

(
∂

∂x

)
eikx = iake

ikx, R2

(
∂

∂x

)
eikx = ibke

ikx, γv

(
∂

∂x

)
eikx = γv,ke

ikx.
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Since (2.1) is linear, the Fourier expansion v(x, t) =
∑

k∈N v̂k,te
ikx has for each wavenumber

the following dynamics:

dv̂k,t = −γv,kv̂k,tdt+ i(akUt + bk)v̂k,tdt+ σv,kdBk,t.

Here Bk,t are independent complex Wiener processes, i.e. Bk,t = 1√
2
(B1

k,t + iB2
k,t) with Bi

k,t

being independent real Wiener processes. Thus the Gaussian random field Wv(x, t) in (2.1)

is explicitly given by
∑

k∈N Bk,te
ikx. On the other hand, in order to keep v real valued, we

require the wavenumber set N consists of pairs of opposite wavenumbers, while v̂k,t = v̂∗−k,t,

which can be enforced through the relation [20, 5]:

γv,k = γv,−k, ak = −a−k, bk = −b−k, Bk,t = B∗−k,t.

This simple formulation of cross sweep actually includes a wide range of turbulence models.

Here are a few examples that are common in the literature:

(i) In a random cross sweep model, which is a stochastic version of the deterministic model

in [10], R1 = R2 = 0 and γv,k is the sum of dissipation and damping:

γv,k = dv + νk2, ak = bk = 0.

(ii) In the engineering community, non-dispersive waves with selective damping [12] are

commonly considered, they can be formulated using (2.1) with

γv,k = dv + νk2, ak = 0, bk = −ck.

(iii) Baroclinic Rossby waves without a mean flow [21, 12] can be formulated using (2.1)

with

γv,k = dv + Fsk
2, ak = 0, bk =

βk

k2 + F
.

where Fs is the stratification constant and β is the constant for β-plane approximation.

(iv) β-plane Q-G baroclinic 1.5 layer flows [20, 5] can be formulated using (2.1) with

γv,k = dv + νk2, ak =
−k3

k2 + F
, bk =

βk

k2 + F
.

Here F = L−2
R with LR being the deformation radius of Rossby waves.

For detailed physical interpretation and explicit derivation of these parameters, we refer to

the citations in each example. With the dynamics of the velocity field well described, we can

now turn to the passive tracer field T (t). Following the examples of [10, 5], we assume the

turbulent tracer has a mean meridional gradient α:

Tt(x, y) = Tt(x) + αy.
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Inserting this relation into (1.1), the full physical model now reads:

dUt = −γUUtdt+ σUdWt;

∂v

∂t
= UtR1

(
∂

∂x

)
v +R2

(
∂

∂x

)
v − γv

(
∂

∂x

)
v + Ẇv(x, t);

∂Tt
∂t

+ (Ut + ū)
∂Tt
∂x

= −dTTt + κ∆Tt − αvt.

(2.2)

Since this equation is also linear for Tt, the Fourier expansion Tt(x) =
∑

k∈N T̂k,te
ikx has the

following dynamics for each wavenumber:

dT̂k,t = −(γT,k + ik(Ut + ū))T̂k,tdt− αv̂k,tdt,

where γT,k = dT + κk2. In summary, an explicit solution of model (2.2) can be described

through the Fourier modes:

dUt = −γUUtdt+ σUdWt;

dv̂k,t = (−γv,k + iωv,k(t))v̂k,tdt+ σv,kdBk,t;

dT̂k,t = (−γT,k + iωT,k(t))T̂k,tdt− αv̂k,tdt;
ωv,k(t) = akUt + bk, ωT,k(t) = −k(Ut + ū).

(2.3)

For simplicity in exposition, most part of this paper will assume there are only finitely many

pairs of wavenumbers in the Fourier expansion, while a generalization to infinite dimensions

is given in Section 6.2.

3. General mathematical properties

The turbulent diffusion model (2.2) we constructed is a stochastic process with many

desirable mathematical properties, which are very useful for analysis and simulation

purposes.

3.1. Geometric ergodicity

Geometric ergodicity guarantees that the distribution of a stochastic process Xt will converge

to a unique equilibrium measure π exponentially fast in time, i.e. there are strictly positive

Cµ and β such that

‖Pµt − π‖ ≤ Cµe
−βt.

Here Pµt denotes the law of Xt given that X0 ∼ µ and the convergence above is measured in

the total variation norm, which is defined between any two measures µ and ν through

‖µ− ν‖ := sup
|f |≤1

∫
f(x)µ(dx)−

∫
f(x)ν(dx).
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The supreme here goes through all measurable functions bounded by 1. Geometric ergodicity

ensures the uniqueness of invariant measure, which enables the Birkhoff ergodic theorem to be

applied. This means in order to measure an integrable statistic f of the equilibrium measure

π, it suffices to compute the time average of f for one realization of Xt for sufficiently long

time, because by Birkhoff ergodic theorem:

1

T

∫ T

0

f(Xt)dt
T→∞−→

∫
f(x)π(dx) a.s.

This is extremely convenient for simulation purposes, as one long enough simulation is

sufficient to represent the equilibrium measure, while in a standard Monte Carlo simulation,

in principle one has to run the same simulation thousands of times. On the other hand, we

can show the turbulent diffusion system (2.3) is geometrically ergodic using hypoellipticity:

Theorem 3.1. Let the turbulent diffusion system (2.3) consist of conjugating Fourier

modes in a finite wavenumber set N , then the joint process (Ut, v̂k,t, T̂k,t, k ∈ N ∩ Z+) is

geometrically ergodic under the total variation norm. Specifically, for any initial measure µ

of (U0, v̂k,0, T̂k,0, k ∈ N ∩Z+), there is a unique invariant measure π, and constants C, β > 0

such that the following holds:

‖Pµt − π‖ ≤ Ce−βtEµ(1 + |U0|2 +
∑
k∈N

|v̂k,0|2 + |T̂k,0|2).

The reason that we consider only the positive wavenumbers is because their negative

counterparts are conjugate to them.

Proof. The proof is a standard verification of the theoretical framework established in

[22, 23]. We attach the details of the proof in Section Appendix A.1.

3.2. Conditional Gaussian structure

The simple formulation of (2.3) provides us two crucial features: first, the only correlation

between Fourier modes of wavenumbers |k| 6= |j| is through the realization of Us≥0; second,

with the realization of Us≥0 fixed, the dynamics of v̂k,t and T̂k,t will be linear. There are no

positive Lyapunov exponents in this system. Thus by conditioning on the realization Us≥0,

v̂k,t, T̂k,t can be treated independently for each wavenumber and as simple linear processes.

This is known as the conditional Gaussian structure [24], which can be exploited for filtering

and prediction purposes [25, 26]. Here, we will use it to compute the distribution of T̂k,t,

which leads to the hidden source of intermittency developed in the next subsection.

Since Ut is an O.U. process, its invariant measure is a zero mean real Gaussian

distribution:

πU = N (0, EU), EU :=
σ2
U

2γU
.
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By virtue of Theorem 3.1, without loss of generality, we can assume that U0 is distributed

as πU while v̂k,0 and T̂k,0 are initialized from point 0. Thus by Duhamel’s formula, we have

v̂k,s =

∫ s

0

exp(−γv,k(s− r) + iωv,k[r, s])σv,kdBk,r.

Here and in the following, we use the expression X[r, s] to denote the integral of a process

Xt on the interval [r, s], i.e. X[r, s] :=
∫ s
r
Xudu. We can easily split the real and imaginary

parts of v̂k,s into:

Re(v̂k,s) =
σv,k√

2

∫ s

0

exp(−γv,k(s− r)) cos(ωv[r, s])dB
1
k,r − exp(−γv,k(s− r)) sin(ωv[r, s])dB

2
k,r,

Im(v̂k,s) =
σv,k√

2

∫ s

0

exp(−γv,k(s− r)) sin(ωv[r, s])dB
1
k,r − exp(−γv,k(s− r)) cos(ωv[r, s])dB

2
k,r.

Using the Itô isometry, we immediately find that Re(v̂k,s), Im(v̂k,s) are independent mean

zero Gaussian random variables with the same variance. In the engineering literature [27],

especially for signal processing, it is customary to call a random variable Z = X + Y i

circularly symmetric complex Gaussian, denoted by Z ∼ CN (µ,Γ) if (X, Y ) are jointly real

Gaussian while

EX = Re(µ), EY = Im(µ), var(X) = var(Y ) = 1
2
Γ, cov(X, Y ) = 0.

Since all the complex random variables in this paper are of this type, we will call them

complex Gaussian for simplicity. For example, v̂k,s here is evidently complex Gaussian with

zero mean and variance:

E|v̂k,s|2 = 2E|Re(v̂k,s)| =
σ2
k,v

2γk,v
(1− exp(−2γv,ks)). (3.1)

With the long time limit s → ∞, we see v̂k,s converges to its invariant measure πv,k =

CN (0, Ek,v), Ek,v = σ2
k,v/2γk,v.

Likewise, the Fourier modes of the passive tracer T̂k,t, by Duhamel’s formula and Fubini’s

theorem for stochastic integral [28], can be written as:

T̂k,t = α

∫ t

0

exp(−γT,k(t− s) + iωT,k[s, t])v̂k,sds

=

∫ t

0

(∫ t

r

ασv,k exp(−γT,k(t− s)− γv,k(s− r) + iωT,k[s, t] + iωv,k[r, s])ds

)
dBk,r.

Notice that Bk,r are complex Wiener processes independent of Ut, so we immediately have

the following conclusion.

Proposition 3.2. Let Ut, v̂k,t, T̂k,t be as in system (2.3) with U0 ∼ πU , v̂k,0 = T̂k,0 = 0, then

conditioned on the realization of Us≥0, T̂k,t is a complex Gaussian random variable with zero

mean and variance:

Σk,t|U = E(|T̂k,t|2|Us≥0) = α2σ2
v,k

∫ t

0

exp(−2γv,k(t− r))
∣∣∣∣ ∫ t

r

exp(γR,ks+ iωR,k[s, t])

∣∣∣∣2dr,
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with ωR,k(t) := ωT,k(t) − ωv,k(t) being the phase speed difference and γR,k = γT,k − γv,k. By

the law of total expectation, the probability density of T̂k,t is a mixture of zero mean complex

Gaussian distributions:

P(Re(T̂k,t) ∈ dx, Im(T̂k,t) ∈ dy) =

∫
1

πΣ
exp

(
− x2 + y2

Σ

)
P(Σk,t|U ∈ dΣ). (3.2)

Although formula (3.2) admits no closed form expression, we can establish an upper

bound for the tail distribution and variance of T̂k,t through elementary computations:

Proposition 3.3. The conditional variance of T̂k,t given Us≤t is bounded P-a.s. by

Σk,t =
σ2
v,kα

2

γR,k|γR,k|

[
1− exp(−2γv,kt)

2γv,k
− 1− exp(−2γT,kt)

2γT,k

]
, γR,k := γT,k − γv,k.

Therefore the tail distribution of T̂k,t is bounded by a zero mean Gaussian distribution with

variance Σk,t. More strictly speaking, for any λ1, λ2 ∈ R

E exp(λ1Re(T̂k,t) + λ2Im(T̂k,t)) ≤ exp((λ2
1 + λ2

2)Σk,t/4).

On the other hand, the variance of T̂k,t which is also the mean of Σk,t|U is bounded from

above by

E|T̂k,t|2 = EΣk,t|U ≤
|γR,k|Σk,t√

γ2
R,k + (bk + kū)2

.

Proof. The proof is based on elementary bounds and Fourier transformation of a Gaussian

distribution. See Section Appendix A.2 for the complete details.

3.3. Intermittency and resonance

At first sight, the conditional Gaussian structure and Gaussian tail bounds from Proposition

3.3 may seem contradictory to intermittent phenomena, as Gaussian distributions rarely

exhibit intermittent behavior. However, if the conditional variance process Σk,t|U has large

fluctuations, the distribution of T̂k,t generated through formula (3.2) may possess a much

heavier tail comparing to its Gaussian fit. For example, if the variance of T̂k,t is Σ̄ and

P(Σk,t|U > 9Σ̄) ≥ 1%, then

P(|T̂k,t| > 3Σ̄
1
2 ) ≥ 2P(Σk,t|U > 9Σ̄)Φ(1) ≥ 3%,

while in a complex Gaussian distribution with variance Σ̄, the probability of P(|X| > 3Σ̄
1
2 )

is about 0.3%. In other words, the large fluctuation in conditional variance makes extreme

events such as large spikes much more frequent than the Gaussian fit of the distribution,

and thus produces the intermittency seen in the corresponding time sequence. Moreover,

the results of Proposition 3.3 actually imply that Σk,t|U has large fluctuations; since in many
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situations the damping rates γv,k, γT,k are small numbers, the ratio between the upper bound

of Σk,t|U and its mean is a large quantity:

Σk,t

EΣk,t|U
≥
√

(γT,k − γv,k)2 + (bk + kū)2

|γT,k − γv,k|
.

On the other hand, we can have a glimpse of the possible cause of this large fluctuation

based on the formula of Σk,t|U in Proposition 3.2:

Σk,t|U = α2σ2
v,k

∫ t

0

exp(−2γT,k(t− r))
∣∣∣∣ ∫ t

r

exp(γR,ks+ iωR,k[s, t])ds

∣∣∣∣2dr,

where the resonant phase speed is defined by

ωR,k(t) = ωT,k(t)− ωv,k(t) = −(ak + k)Ut − (bk + kū).

In a general scenario, ωR,k is away from 0, so exp(γR,ks + iωR,k[s, t]) will be oscillating in

the complex plane with nonzero phase speed, this inevitably cancels a large portion of its

integral, reducing the size of Σk,t|U . However, when ωR,k(s) is close to 0 for a significant

period of time, the integrand has no phase speed and the integral will be significantly larger.

Looking back at the definition of ωR,k(t), we find that it is zero when the phase speed ωT,k
and ωv,k are equal, in other words, the advection effect of the cross sweep Ut over v̂k,t and

T̂k,t are at resonance. This is the reason why we call ωR,k the resonance phase speed and will

focus on its visit to zero in the following.

Although the intuition is clear, rigorous verification is difficult due to the lack of an

explicit formula for Σk,t|U . One way is to produce a lower bound for Σk,t|U given that ωR,k(t)

is around 0 under some special dynamical regime, which then explicitly bounds Σk,t|U away

from EΣk,t|U using its upper bound in Proposition 3.3. The following result is one such

example, which in principle will work for small γU :

Proposition 3.4. For any fixed t0 < γ−1
U ∧ t the following holds:

E(Σk,t|U |Ut) ≥ Σk,t := α2σ2
v,k

[
1− exp(−2γm,kt0)

2γm,k|γR,k − iωR,k(t)|2
−

γm,k
γT,k+γv,k

+ C(1− exp(−2γm,kt0))

γm,k|γR,k||γR,k − iωR,k(t)|

]
,

where we denote γm,k := γv,k ∧ γT,k and

C = 2− 2 exp(−γU
3

(ak + k)2EU t
3
0) +

γU
2
t20|ωR,k(t) + (bk + kū)|.

Therefore by the Markov inequality, P(Σk,t|U ≥ 1
2
Σk,t|Ut) ≥ 1

2
, P-a.s. As a special case, when

γU,k → 0, one can take t0 = t, therefore

Σk,t → α2σ2
v,k

[
1− exp(−2γm,kt)

2γm,k|γR,k − iωR,k(t)|2
− 1

(γv,k + γT,k)|γR,k||γR,k − iωR,k(t)|

]
,

which closely approximates the upper bound Σk,t given by Proposition 3.3 when γv,k and γT,k
are far apart and ωR,k(t) is close to 0.
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Proof. The proof is based on elementary calculations and inequalities. See Section Appendix

A.3 for details.

For example, consider the dynamical regime for k = 10 with

γT,k = 0.2, γv,k = 1, γU = 10−5, ak = bk = 0, ū = 10, EU = Ev,k = 100. (3.3)

If we pick t0 = 10, we will find Σk,t ≥ 8EΣk,t|U when ωR,k(t) = 0 using the upper bound

in Proposition 3.3. This explicitly shows the large fluctuations in Σk,t|U . Note that here

γT,k � γv,k, which is opposite of what will be studied in Section 4, hinting that intermittency

should generally exists in many dynamical regimes. On the other hand, the lower bound given

by Proposition 3.4 in general settings may be too small or even negative, and probably works

only when γU is very small. We present it here as a prototype tool for intermittency analysis

and we illustrate this with a numerical example in Section 5 (see Figure 5.6). The other

rigorous way to access intermittency is through a rescaling limit, which will be presented in

the next section.

4. Rigorous intermittency in a random resonance regime

4.1. A long time slow varying rescaling limit

Here we consider a scenario where the velocity field (ut, vt) is varying at a slower time scale

than the advection and diffusion process. This prolongs the visit of the resonance phase

ωR near 0, and provides us a magnified view of the corresponding effect over the turbulent

tracer. This can be modeled by external forcing for (ut, v̂t) are of order ε, while keeping the

dynamics of Tt (1.1) the same. More explicitly, we reformulate model (2.2) into

dU ε
t = −εγUU ε

t dt+ ε
1
2σUdWt,

∂vεt
∂t

= R1

(
∂

∂x

)
vεt +R2

(
∂

∂x

)
vεt − εγv

(
∂

∂x

)
vεt + ε

1
2 Ẇv(x, t),

∂T εt
∂t

+ (U ε
t + ū)

∂T εt
∂x

= −dTT εt + κ∆T εt − αvεt .

Notice that there is no rescaling over R1, R2 as they represent the forcing Ut exerts on vt, such

as the advection. By applying Fourier transformation as in Section 2, the joint dynamics of

(U ε
t , v

ε
t , T

ε
t ) can be described through the dynamics of each wavenumber:

dU ε
t = −εγUU ε

t dt+ ε
1
2σUdWU(t),

dv̂εk,t = [−εγv,k + iωv,k(t)]v̂
ε
k,tdt+ ε

1
2σv,kdBk,t,

dT̂ εk,t = [−γT,k + iωT,k(t)]T̂
ε
k,tdt− αv̂k,tdt,

ωv,k(t) = akU
ε
t + bk, ωT,k(t) = −k(U ε

t + ū).

With this formulation of dynamics, it is natural to look at the process at the long time scale

ε−1. With an abuse of notation, we denote the long time rescaling by:

(Ut, v̂k,t, T̂k,t) = (U ε
εt, v̂

ε
k,εt, T̂

ε
k,εt).
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The corresponding dynamics is then given by the following:

dUt = −γUdt+ σUdWt;

dv̂k,t = [−γv,k + iε−1ωv,k(t)]v̂k,tdt+ σk,vdBk,t;

dT̂k,t = ε−1[(−γT,k + iωT,k(t))T̂k,tdt− αv̂k,t]dt;
ωk,V (t) = akUt + bk, ωk,T (t) = −k(Ut + ū).

(4.1)

Immediately, we find that Ut no longer depends on ε anymore, and so does the distribution

of v̂k,t, since phase speeds play no role in its variance, as we can see in formula(3.1). Hence

we can fix the realization of Us≤t, and focus on the conditional distribution of Tk,v(t) and

Tt(x) with ε tends to 0.

4.2. Single Fourier mode

In the ε → 0 rescaling limit of (4.1), the distribution of the passive tracer can be written

down explicitly. As the first step, we analyze the distribution of one fixed Fourier mode.

The result is given by the following theorem:

Theorem 4.1. For any fixed t > 0, let (Ut, v̂k,t, T̂k,t) follow (4.1). Assume the joint process

is initialized with U0 ∼ N (0, EU), V0 = 0, T0 = 0. Then given the realization of Us≤t,

the conditional distribution of T̂k,t is a complex Gaussian distribution with zero mean and

variance Σε
k,t|U , which converges in L1 to

Σ̃k,t(Ut) :=
α2Ev,k(1− exp(−2γv,kt))

γ2
T,k + ω2

R,k(t)
, ωR,k(t) = ωT,k(t)− ωv,k(t).

More specifically, we have E|Σε
k,t|U − Σ̃k,t(Ut)| → 0. The distribution of T̂k,t thus converges

weakly to a mixture of complex Gaussian distributions with density given by:

P(Re(T̂k,t) ∈ dx, Im(T̂k,t) ∈ dy) =

∫ ∞
−∞

exp(− u2

2EU
− x2+y2

Σ̃k,t(cku+dk)
)

π
√

2πEU Σ̃k,t(cku+ dk)
du, (4.2)

where ck = −(ak + k), dk = −(bk + kū). Σ̃t has a limit for large t:

Σ̃k(ω) =
α2Ev,k

γ2
T,k + (ckω + dk)2

.

This can be used for computation of the equilibrium measure for T̂k,t.

In other words, the dependence of T̂k,t’s distribution over the path of Us≤t concentrates

on its end value through the resonance phase speed ωR,k(t). Heuristically speaking, this is

because Us≤t as a slow process will be of constant value around time t, while T̂ has its

distribution converge quickly to the equilibrium distribution with Us≤t being a constant

process.
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The limiting conditional covariance Σ̃k,t(Ut) obviously reaches its peak value when

ωR,k(t) = 0. Moreover, by applying Proposition 3.3 to the rescaled system (4.1), we can

find that:

EΣk,t|U ≤
α2Ev,k(1− exp(−2γvt))

γT,k
√
γ2
T,k + (bk + kū)2

⇒ Σ̃k,t ≥
γT,k

√
γ2
T,k + (bk + kū)2

γ2
T,k + ω2

R,k(t)
EΣk,t|U .

This rigorously shows that in a general scenario where the damping rate γT is small compared

to |bk + kū|, the conditional variance, which can be approximated by Σ̃k,t, will be a large

multiple of its mean around resonance phase ωR,k = 0, and will likely create intermittency as

discussed in Section 3.3. In Figure 5.1, a numerical simulation will validate our claim here

with intermittent time sequence plots.

In a deterministic version of 2.2, [10, 5] studied the large Péclet number limit of

∂T

∂t
+ Pe(~v · ∇T ) = ∆T,

where the velocity field is (ut, v(x, t)) with the process Ut being a deterministic sinusoidal

function. The results there show phase transition type of phenomenon when Ut visits zero, the

streamlines of velocity field will be open against the general situations where the streamlines

are blocked, and the passive tracer’ signal produces strong spikes as consequence. The

asymptotic limit there is derived through stationary phase methods. Our results here produce

a stochastic counterpart in a slightly different rescaling limit. And because Ut is a stochastic

process with non smooth path, the proof is based on different intuition.

Proof of Theorems 4.1. As there is only one wavenumber k being involved, we will suppress

its appearance in subscripts. Moreover, since we can always divide T̂t by ασv, so without loss

of generality we assume that ασv = 1. Based on Proposition 3.2, Σε
t|U =

∫ t
0

∣∣∣∣ ∫ tr σεr,sds∣∣∣∣2dr

with

σεr,s = ε−1 exp(−ε−1γT (t− s)− γv(s− r) + ε−1iωR[s, t]). (4.3)

Consider the following approximation of σεr,s:

δεr,s = ε−1 exp(−ε−1γT (t− s)− γv(s− r) + iε−1ωR(t)(t− s)).

Since δεr,s is an exponential that depends on s linearly, its integral can be explicitly written

down:∫ t

r

δεr,sds =
exp(−γv(t− r))
γT − εγv − iωR(t)

[1− exp(−ε−1γT (t− r) + γv(t− r) + iε−1ωR(t)(t− rε))].

The first step of our proof is showing this quantity converges to Σ̃t(Ut). Notice that for
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ε ≤ γT/2γv,∣∣∣∣ ∫ t

r

δεr,sds−
exp(−γv(t− r))
γT − iωR(t)

∣∣∣∣
≤
∣∣∣∣ exp(−γv(t− r))
γT − εγv − iγR(t)

− exp(−γv(t− r))
γT − iγR(t)

∣∣∣∣+
exp(−ε−1γT (t− r))
|γT − εγv − iωR(t)|

≤ 2εγv exp(−γv(t− r))
γ2
T

+
2 exp(−ε−1γT (t− r))

γT
≤ 4 exp(−γv(t− r))

γT
.

Therefore by the relation |a|2 − |b|2 = (|a| − |b|)2 + 2|b|(|a| − |b|),∣∣∣∣∣∣∣∣ ∫ t

r

δεr,sds

∣∣∣∣2−exp(−2γv(t− r))
γ2
T + ω2

R(t)

∣∣∣∣ ≤ 12 exp(−γv(t− r))
γT

[
εγv exp(−γv(t− r))

γ2
T

+
exp(−ε−1γT (t− r))

γT

]
.

Since

Σ̃t(Ut) =

∫ t

0

exp(−2γv(t− r))
γ2
T + ω2

R(t)
dr,

Therefore ∣∣∣∣ ∫ t

0

∣∣∣∣ ∫ t

r

δεr,sds

∣∣∣∣2dr − Σ̃t(Ut)

∣∣∣∣ ≤ 12ε

γ3
T

(
1 +

1

γT

)
, (4.4)

which goes to zero when ε does. The second step of our proof is showing that the integral

of σεr,s converges to the integral of δεr,s. We will show the following quantity is small when ε

is small:

E
∫ t

0

∣∣∣∣ ∫ t

r

(σεr,s − δεr,s)ds
∣∣∣∣2dr.

For this purpose, with any fixed δ > 0, there is an M such that the following holds for all

γT ≥ dT :

exp(−γTM) ≤ δ

γT
.

Denote rε = (t−Mε) ∨ r. Notice that∫ rε

r

(σεr,s − δεr,s)ds ≤
∫ rε

r

|σεr,s|+ |δεr,s|ds ≤
2δ

γT
.

For the integral between rε and t, using the relation |eai−ebi| ≤ |a−b| and Cauchy Schwartz:(∫ t

rε

|σεr,s − δεr,s|ds
)2

≤ ε−2

(∫ t

rε

exp(−ε−1γT (t− s))|ε−1ωR[t, s]− ε−1(t− s)ωR(t)|ds
)2

≤ ε−2

∫ t

rε

exp(−2ε−1γT (t− s))ds
∫ t

rε

[ε−1[ωR[t, s]− ωR(t)(t− s)]]2ds

≤ 2

ε3γT

[ ∫ t

rε

[ωR[t, s]− ωR(t)(t− s)]2ds

]
.
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Since ωR(t) is a linear function of Ut, it suffices to show for all r ≤ t, there is a constant D

E
∫ t

rε

[

∫ t

s

Urdr − (t− s)Ut]2ds ≤ Dε5.

This can be proved through Lemma Appendix A.4 and using the Markov property of Ut,

and it holds for general diffusion process Ut. Then by Young’s inequality∫ t

0

E
∣∣∣∣ ∫ t

r

(σεr,s − δεr,s)ds
∣∣∣∣2dr ≤ 2

∫ t

0

δ2

γ2
T

+ E
∣∣∣∣ ∫ t

rε

(σεr,s − δεr,s)ds
∣∣∣∣2dr ≤ 2t

[
δ2

γ2
T

+
2ε2D

γT

]
.

Next, using a particular version of Cauchy Schwartz inequality, which is detailed in Lemma

Appendix A.3,

E
∣∣∣∣ ∫ t

0

∣∣∣∣ ∫ t

r

σεr,sds

∣∣∣∣2dr −
∫ t

0

∣∣∣∣ ∫ t

r

δεr,sds

∣∣∣∣2dr

∣∣∣∣
≤ 2

√
C

γT

√
2t

[
δ2

γ2
T

+
2ε2D

γT

]
+ 8t

[
δ2

γ2
T

+
2ε2D

γT

]
.

Here C is a constant such that ∫ t

0

v̂~k,±(s)eik·~xds ≤ C

γ2
T

,

while by inequality (4.4) we know such C does exist. So combining these estimates and

putting back α2σ2
v

E|Σε
t|U − Σ̃t(ωR(t))|

≤ α2σ2
v

[
12ε

γ3
T

(
1 +

1

γT

)
+ 2

√
C

γT

√
2t

[
δ2

γ2
T

+
2ε2D

γT

]
+ 8t

[
δ2

γ2
T

+
2ε2D

γT

]]
. (4.5)

Since δ can be any small number, this quantity goes to 0 as ε→ 0.

To see this implies that T̂ ’s distribution converges weakly to (4.2), consider the following

Gaussian operator,

KΣ : f(x, y) 7→
∫

exp(−(x2 + y2)/Σ)

πΣ
f(x, y)dxdy.

Then Ef(Re(T̂ ), Im(T̂ )) = EKΣε
t|U
f . Notice that KΣf depends continuously on Σ > 0 for

any fixed bounded f , and the law of Σε
t|U converges towards the one of Σ̃t by L1 convergence,

so EKΣε
t|U
f → EKΣ̃t

f . On the other hand, EKΣ̃t
f is clearly given by the integration of f

under density (4.2), so by standard properties of weak convergence, see for example [29], T̂ ’s

distribution converges weakly towards (4.2).



Intermittency in Turbulent Diffusion Models with a Mean Gradient 15

4.3. Finitely many Fourier modes

With a clear understanding of each Fourier mode, the distribution of the passive tracer field

Tt(x) can be easily studied by summing all the Fourier modes together. Here for simplicity,

we assume the wavenumber set N is finite.

Theorem 4.2. Assume that in the Fourier expansion Tt(x) =
∑

k∈N T̂k,te
ikx, N consists

of finitely many pairs of Fourier modes, and each follows (4.1), then conditioned on each

realization of Us≤t, Tt(x) is a Gaussian random field on [0, 2π] with mean 0, while its

conditional covariance converges in L1 to

Σ̃t(Ut) =
∑
k∈N

α2Ev,k(1− exp(−2γv,kt))

γ2
T,k + ω2

R,k(t)
, ωR,k(t) = −(ak + k)Ut − (bk + kū).

Moreover the conditional covariance between two points x, y ∈ [0, 2π] converges in L1 to:

C̃t(Ut) =
∑
k∈N

α2Ev,k cos(k(x− y))(1− exp(−2γv,kt))

γ2
T,k + ω2

R,k(t)
.

Thus the pdf of Tt(x) will converge to a density

P(Tt(x) ∈ dλ) =

∫
1

2π
√

Σ̃t(u)EU

exp

(
− λ2

2Σ̃t(u)
− u2

2EU

)
du. (4.6)

Unlike the limiting conditional variance of a single Fourier mode, Σ̃t(u) may have many

peaks. Heuristically speaking, each pair of conjugating Fourier modes will contribute one

peak of Σ̃t(Ut), which is close to the time when ωR,k(t) reaches 0. In other words, as Ut
crosses different resonant phases

ωk := −bk + kū

ak + k
,

the Fourier modes of wavenumber ±k will be excited and contribute a large spike of

intermittency. These phenomena are explicitly verified by simulations in Figures 5.3-5.5

in the next section.

Proof for Theorem 4.2. Recall that the complete tracer field is given by:

Tt(x) =
∑
k∈N

T̂k,te
ikx, T̂−k,t = T̂ ∗k,t.

Conditioned on the realization of Us≤t, (v̂k,t, T̂k,t) is independent of (v̂j,t, T̂j,t) for |j| 6= |k|,
and T̂k,t ∼ CN (0,Σε

k,t|U). Thus conditioned on Us≤t, Tt(x) is also Gaussian with mean 0 and

covariance

E[Tt(x)|Us≤t]2 =
1

4
E
[∑
k∈N

(T̂k,te
ikx + T̂−k,te

−ikx)

∣∣∣∣Us≤t]2

=
∑
k∈N

E[|T̂k,t|2|Us≤t] =
∑
k∈N

Σε
k,t|U .
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Likewise, the conditional covariance is given by

E[Tt(x)Tt(y)|Us≤t] = E
[ ∑
j,k∈N

T̂j,tT̂k,te
i(kx+jy)

∣∣∣∣Us≤t]2

= E
[∑
k∈N

|T̂k,t|2eik(x−y)

∣∣∣∣Us≤t]2

=
∑
k

cos(k(x− y))Σε
k,t|U .

In order to show our claim it suffices to show

E
∑
k∈N

|Σε
k,t|U − Σ̃k,t(Ut)|

ε→0−→ 0.

Since N is a finite set, one can simply apply the proof of Theorem 4.1 to each individual k

and see the convergence holds.

5. Intermittency in various regimes: theory and numerical experiments

In this section we use elementary numerical experiments to provide evidence for our theorems

in Section 3 and 4. We also show how the theory leads to a wide variety of intermittent

behavior in the turbulent signals. We begin with the β-plane Q-G flow model from [5]:

γv,k = dv + νk2, γT,k = dT + κk2, ak =
−k3

k2 + F
, bk =

βk

k2 + F
.

where the parameters are the same ones used in [5]:

dT = 0.1 κ = 0.001, dv = 0.6, ν = 0.1, α = 1, β = 8.91, F = 16, EU = 0.5.

For their physical background, we refer to [5, 20]. We will also test the example described

by (3.3) and the random cross sweep model based on [10], i.e. ak = bk = 0, which gives us

connections with previously known results. Since we will simulate a multiscale system (4.1),

we use an explicit Euler scheme with exponential integrator to avoid possible stiffness. In

other words, system (4.1) is simulated as:

Ut+∆ = (1− γU∆)Ut + σU
√

∆wt;

v̂k,t+∆ = exp(−∆γv,k + iε−1∆ωv,k(t))v̂k,t + σv,k
√

∆
b1
t + ib2

t√
2

;

T̂k,t+∆ = exp(−ε−1γT,k∆ + ε−1i∆ωT,k(t))T̂k,t − α∆v̂t.

Here wt, b
i
t are sequences of standard normal random variables. In order to avoid numerical

error, the time step ∆ is chosen to satisfy:

∆ε−1(EωT,k +
√

var(ωT,k)) ≤ 0.2, ∆ε−1(Eωv,k +
√

var(ωv,k)) ≤ 0.2.

By the virtue of geometric ergodicity, Theorem 3.1, we can represent the equilibrium

distribution of T̂k,t and Tt(x) with the histogram of the time sequence T̂k,n∆, Tn∆(x), as

long as the time span Tmax is long enough. Since ε is the time scale of T̂k,t, here we pick

Tmax = 106ε for ε = 0.1, 0.01, 0.001, which is at least 1000 times longer than the decorrelation

time of any variable.
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5.1. Various types of intermittency in a single mode of the Q-G model

First we focus on a model with only one single mode. We pick the first Fourier mode k = 1

of the β-plane Q-G model. Since T̂k,t has its real and imaginary parts symmetric, it suffices

for us to focus on its real part. By Theorem 4.1, as ε → 0, for sufficiently large t, the

distribution of Re(T̂k,t) can be approximated by:

P(Re(T̂1,t) ∈ dx) =

∫ ∞
−∞

exp(− u2

2EU
− x2

Σ̃1(c1u+d1)
)

π
√

2EU Σ̃1(c1u+ d1)
du, Σ̃1(ω) =

α2Ev,1
γ2
T,1 + ω2

. (5.1)

First, we will fix the stochastic energy of v̂1,t to be Ev,1 = 1, and Ut to be the O.U. process

dUt = −Utdt+ dWt.

First, we validate the limiting behavior predicted by Theorem 4.1. In subplots a), b)

and c) of Figure 5.1, the histograms of T̂v,1(t) in (4.1) are plotted with ε = 0.1, 0.01 and

0.001, while the limiting density given by formula (5.1) is also given for comparison. The

convergence of histograms towards the limiting distribution is evident.

Moreover, it is worth noticing that both the histogram and the limiting distribution

have exponential like tails in a range roughly between 10−2 − 10−4. In a rough sense, the

tail distribution of (5.1) has its shape determined by a Gaussian tail with peak conditional

covariance

sup
u

Σ̃1,t(u) =
α2Ev,1
γ2
T,1

,

which is approximately 100 in our parameters setting. Therefore if we focus on the tail

P(ReT̂1,t ∈ dλ) for λ ∈ [5, 15], which is a range of practical interest, then the curve

exp(−λ2/200) looks very much like an exponential one. In other words, the claims of

Propositions 3.2 and 3.3 do not contradict with the exponential fat tails observed through

experiments or simulations, but rather fit quite well.

In a time sequential perspective, Theorem 4.1 also claims that Re(T̂1,t) should be

distributed roughly as N (0, 1
2
Σ1,t|U). Since the maximum conditional covariance is reached

at ω1,R(t) = 0, this indicates that the spikes of T̂1,t should generally occur when ω1,R(t) = 0.

In the time sequence subplots e) and f) of Figure 5.1, the snapshot of Re(T̂1,t) and ω1,R(t)

with ε = 0.001 are presented within time [0, 100]. We can see clearly that the spikes are

correlated with ω1,R(t)’s visit to 0. A more rigorous test of our claim will be checking the

Gaussianality of the data Re(T̂1,t)/
√

1
2
Σ1,t|U , which is carried out by the Quantile-Quantile

subplot d) of Figure 5.1. We see the distribution of Re(T̂1,t)/
√

1
2
Σ1,t|U is Gaussian up to

0.1% error.

On the other hand, Theorem 4.1 also provides us a general guideline for the type

of intermittency created by the cross sweep Ut, which depends on the stochastic energy

EU . The impact of Ut over T̂k,t is through the resonance phase ωR,k(t) = ckUt + dk, with
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ck = −ak − k, dk = −bk − kū. Therefore the density function of ωk,R(t) is clearly:

P(ωR,k(t) ∈ dλ) =
1

ck
√

2EUπ
exp

(
− (λ− dk)2

2c2
kEU

)
.

Since the resonance condition, ωR,k(t) = 0, is the source of the spikes, by the maximum

likelihood principle, we would expect EU that maximizes the density above at λ = 0 would

produce stronger and more frequent intermittency in T̂k,t. By taking the gradient, one can

find the density function at λ = 0 is maximized at

E∗U =
m2

2q2
.

We verify this rule of thumb in Figure 5.2 by plotting the limiting distribution (5.1) for

EU = 0.1E∗U , EU = E∗U , EU = 10E∗U . As shown by subplots a) and b), the EU = E∗U has

the fattest tail. We also simulate system (4.1) with different σU in different energy regimes.

It can be seen that EU = 0.1E∗U rarely gives any spikes, EU = E∗U gives frequent and long

lasting spikes, EU = 10E∗U has frequent spikes but rather short lived.

5.2. Q-G models with multiple Fourier modes

Here we consider the combined effect of multiple Fourier modes upon the tracer field Tt(x).

As a simple demonstration, we simulate the system (4.1) with k ∈ {−5, . . . , 5} and ε = 0.001.

Since we assume
∫
Tt(x)dx = 0 after a normalization, the 0-th mode is constantly 0. We

keep Ut to be the O.U. process dUt = −Utdt + dWt. The other system parameters are the

same as in the beginning of this section. We set the energy spectrum of the shear flow v̂k,t
to be either equipartition or following the Kolmogorov spectrum:

Ek,v = 1 or k−
5
3 .

The result with equipartition energy is presented in Figure 5.3. Through the histogram of

Tt(x) and the Q-Q plot of Tt(x)/Σ̃t(Ut), we find the limiting distribution of Tt(x) is clearly

given by the conditional Gaussian distribution N (0, Σ̃t(Ut)) with more than 99% accuracy,

validating Theorem 4.2. The combination of various Fourier modes produces a much richer

dynamics, since different Fourier modes are excited at different resonance conditions:

ωR,k(t) = 0 ⇔ Ut = ωk := −bk + kū

ak + k
= − 1

F
(k2ū+ Fū+ β).

This can first be seen in the plot of Σ̃t(u), where we see that there are 5 peaks of similar

heights corresponds to 5 different modes. We can also check the time sequence of Tt(x) and

Ut. We immediately see that the spikes of the Tt(x) are correlated with Ut’s visits to ωk’s.

Moreover, as each wavenumber has the same energy, visits to different ωk create the same

amplitudes of spikes. For example, in subplot e) around time t = 90, Ut crosses several

resonance phases ωk, creating a long lasting burst in Tt(x).
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In Figure 5.4, the case with Ev,k being the Kolmogorov spectrum is studied. The

situation is very similar to the one of equipartition. The only difference is that different

resonances create spikes of very different size, as reflected by the subplot b) of Figure 5.4.

Therefore Ut’s visits to the resonance phase of the first Fourier mode creates much larger

intermittency in the system. Notice in subplot e) around time t = 20, Ut crosses several

resonance phases ωk, but the resulting burst in Tt(x) is of mediocre size, while the strongest

bursts in Tt(x) are created by visits of Ut to ω1 only. This is very different from Figure 5.3.

5.3. Synchronized excitation in random cross sweep model

Here we consider the random cross sweep model, which is a stochastic version of the model in

[10] and mentioned earlier in Section 2. The damping and advection parameters are simply

γv,k = dv + νk2, ak = bk = 0.

We also set the energy spectrum of v to be equipartition. Unlike the Q-G model we

considered in the last subsection, the resonance phase on all Fourier modes are the same

and synchronized automatically:

ωk = −bk + kū

ak + k
= −ū.

In other words, all the Fourier modes will be excited with large conditional variance when

Ut = −ū. The combined effect on Tt(x) is the possibility of enormous spikes. Yet these

spikes are relatively short lived comparing to the case of the Q-G model, since Tt(x) will

decay quickly to its normal value when Ut passes −ū. This is exactly what we see in subplot

d) of Figure 5.5. Notice the y-axis here scales differently from the one in Figure 5.3.

5.4. Random cross sweep model in a non asymptotic regime

Proposition 3.4 produces a conditional lower bound for Σk,t|U , especially when γU is small.

In a special dynamical regime of the random cross sweep model given by (3.3):

k = 10, γT,k = 0.2, γv,k = 1, γU = 10−5, ū = 10, EU = Ev,k = 100,

direct computation using Proposition 3.4 shows that conditioned on ωR,k(t) = 0, Σk,t|U is

more than 8 times of its mean value. We numerically verify the predicted phenomenon in

Figure 5.6. As we can clearly see in the time sequence, there is obvious intermittency in T̂k,t,

which is correlated with ωR,k’s visits to 0. Note that since γU is very small, the simulation

time span has been extended to [0, 105].
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Figure 5.1: The first Fourier mode of system (4.1). In subplots a), b) and c) we have the

histograms of Re(T̂1,t) for ε = 0.1, 0.01, 0.001 with the limiting distribution (5.1) as reference.

Subplot d) is the Q-Q plot of Re(T̂1,t)/
√

1
2
Σ1,t|U v.s. standard Gaussian for ε = 0.001. e) is

the time sequence of Re(T̂1,t) and f) is the time sequence of ωR,1(t) with t ∈ [0, 100].
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Figure 5.2: Re(T̂t) with different stochastic energy EU . Subplots a) and b) are the limiting

distributions of Tt(x) for three different energy regime, while c) is the magnification of b)’s

tail between [5, 10]. Subplots d), f), h) are time sequences of Tt(x) when the cross sweep Ut
has stochastic energy EU = 0.1E∗U , E

∗
U , 10E∗U . Subplots e), g), i) are time sequences of Ut in

corresponding energy regime.
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Figure 5.3: Distribution of Tt(0) in Q-G model with ε = 0.001 for equipartition energy in

Ev,k. Subplot a) compares the histogram of Tt(0) with the limiting distribution produced by

Theorem 4.2. Subplot b) demonstrates the dependence of limiting conditional variance of

Tt(x) over U . Subplot c) is the Q-Q plot of Tt(x)/
√

Σ̃t(Ut) against standard normal. e) is

the time sequence of T̂t(0) and f) is the time sequence of Ut with t ∈ [0, 100], the reference

lines in f) indicates the resonance phase ωk.
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Figure 5.4: Distribution of Tt(x) in Q-G model with ε = 0.001 for Kolmogorov spectrum in

Ev,k. Subplot a) compares the histogram of Tt(0) with the limiting distribution produced by

Theorem 4.2. Subplot b) demonstrates the dependence of limiting conditional variance of

Tt(x) over U . Subplot c) is the Q-Q plot of Tt(x)/
√

Σ̃t(Ut) against standard normal. e) is

the time sequence of T̂t(0) and f) is the time sequence of Ut with t ∈ [0, 100], the reference

lines in f) indicates the resonance phase ωk.
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Figure 5.5: Tracer field Tt(x) in random cross sweep model with ε = 0.001 for equipartition

spectrum in Ev,k. Subplot a) compares the histogram of Tt(0) with the limiting distribution

produced by Theorem 4.2. Subplot b) demonstrates the dependence of limiting conditional

variance of Tt(x) over U . Subplot c) is the Q-Q plot of Tt(x)/
√

Σ̃t(Ut) against standard

normal. e) is the time sequence of T̂t(0) and f) is the time sequence of Ut with t ∈ [0, 100],

the reference lines in f) indicates the resonance phase ωk.
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6. Generalizations

6.1. Nonlinear cross sweeps

The requirement that the cross sweep Ut is an O.U. process is not necessary for our claims

to hold. Actually, we can assume Ut to be a general diffusion process:

dUt = fU(Ut)dt+ σU(Ut)dWt. (6.1)

An interesting concrete example is the canonical scalar model with cubic nonlinearity [13, 14]

with formulation:

dUt = [F + aUt + bU2
t − cU3

t ]dt+
√

(A−BUt)2 + σ2dWt, c, σ > 0. (6.2)

Such a model arises naturally in low frequency reductions of large-scale climate models [13].

Such a process has a wide variety of different regimes including intermittency of various

types, which are described with details in [13, 14]. In order to include these cross sweeps

into our framework, we apply classical results [22, 23] and make the following assumption:

Assumption 6.1. There exists a positive function E, known as a Lyapunov function, such

that:

• For any M > 0, the sub-level set {u : E(u) ≤M} is compact.

• E is locally dissipative, i.e. there are constants γ, kv > 0 such that:

fU(u)
∂E(u)

∂u
+

1

2
σ2
U(u)

∂2E(u)

∂u2
≤ −γE(u) + kv.

• There exists a constant M such that |fU(u)|2, |σU(u)|2 ≤ME(u).

• The stochastic forcing is non-degenerate, i.e. |σU | is strictly positive.

For an O.U. process dUt = −γUUtdt + σUdWt, it is easy to see E(u) = u2 is sufficient.

For the concrete example (6.2), one can verify E(u) = u6 is a proper Lyapunov function using

Hölder’s inequality. A short treatment of Lyapunov function is given in Section Appendix

A.5 with detailed verification of the claims above. With Assumption 6.1, Theorem 2.3 of

[22] shows that Ut will be geometrically ergodic. The density of the invariant measure πU
can be formally computed through the Fokker Plank equation, which is the solution to

∂

∂u
(fUπU) =

1

2

∂2

∂u2
(σ2

UπU).

As shown in [13, 14], the invariant measure of (6.2) has an explicit density:

πU(u) =
N0

((Bu− A)2 + σ2
u)
a1

exp

(
d1 arctan

(
Bu− A
σu

))
exp

(
− c1u

2 + b1u

B4

)
,

where N0, a1, b1, c1, d, d1, d2 are constants determined by the parameterization of (6.2). One

thing worth noticing is the tail of πU is Gaussian like.
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Since we can always move the mean of Ut into the term ū, without loss of generality we

assume that
∫
uπU(du) = 0 here. In this general setting, all of our major claims actually

remain true. The dynamics of the joint process can generally be written as:

dUt = −fU(Ut)dt+ σU(Ut)dWt;

dv̂k,t = [−γv,k + iε−1ωv,k(t)]v̂k,tdt+ σk,vdBk,t;

dT̂k,t = ε−1[(−γT,k + iωT,k(t))T̂k,tdt− αv̂k,t]dt;
ωk,V (t) = akUt + bk, ωk,T (t) = −k(Ut + ū).

(6.3)

The first generalization is the geometric ergodicity of (6.3):

Theorem 6.2. For any fixed ε > 0, let the turbulent diffusion system (6.3) consist of Fourier

modes in a finite wavenumber set N , then the joint process (Ut, v̂k,t, T̂k,t, k ∈ N ∩ Z+) is

geometrically ergodic under the total variation norm. Specifically, for any initial measure µ

of (U0, v̂k,0, T̂k,0, k ∈ N ∩Z+), there is a unique invariant measure π, and constants C, β > 0

such that the following holds:

‖Pµt − π‖ ≤ Ce−βtEµ(1 + V (U0) +
∑
k∈N

|v̂k,0|2 + |T̂k,0|2).

Proof. This is a standard application of the framework set up in [22, 23]. The details are

given in Section Appendix A.1.

Our second result is a generalization of Theorems 4.1 and 4.2:

Theorem 6.3. For any fixed t > 0, let (Ut, v̂k,t, T̂k,t) follow (6.3) satisfying Assumption 6.1.

Assume the joint process is initialized with U0 ∼ N (0, EU), v̂k = 0, T̂k = 0. Then conditioned

on P-a.s. realization of Us≤t, as ε → 0, the claims of conditional variance’s convergence in

Theorem 4.1 and 4.2 hold, while (4.2) is replaced by:

P(Re(T̂k,t) ∈ dx, Im(T̂k,t) ∈ dy) =

∫ ∞
−∞

πU(du)
exp(− x2+y2

Σ̃k,t(cku+dk)
)

πΣ̃k,t(cku+ dk)
.

And formula (4.6) is replaced by:

P(Tt(x) ∈ dλ) =

∫
πU(du)

1√
2πΣ̃t(u)

exp

(
− λ2

2Σ̃t(u)

)
.

Here Σ̃k,t, Σ̃t are the limits of conditional variance given by Theorems 4.1 and 4.2.

Proof. The proof is identical to the one of Theorems 4.1 and 4.2, since the only part that

uses the formulation of Ut is proved under our general conditions here by Lemma Appendix

A.4.
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6.2. Infinite Fourier modes

The theoretical framework we established can be easily generalized to models with countably

many Fourier modes, e.g. Tt(x) =
∑

k∈N e
ikxT̂k,t with N = Z, as long as certain summability

conditions are met. First, in order for the Birkhoff ergodic theorem to work, it suffices to

show the uniqueness of invariant measure for the joint system (Ut, v̂k,t, T̂k,t, k ∈ N ∩ Z+).

However, for any two invariant measures µ and ν of the joint system, and any finite subset

M ⊂ N ∩ Z+, consider the restriction of µ and ν on the σ-field

FM = σ{Ut, v̂k,t, T̂k,t, k ∈M}.

Since the truncation (Ut, v̂k,t, T̂k,t, k ∈ M) is itself a Markov process, by Theorem 3.1 or 6.2

and the invariance of µ and ν, we find

‖µ|FM − ν|FM‖ =

∥∥∥∥Pµ|FMt − Pν|FMt

∥∥∥∥ t→∞−→ 0.

In other words, µ and ν are identical on any finite Galerkin truncation of the full process,

therefore they must the same measure, thus we have

Theorem 6.4. Under the conditions of Theorem 6.2, the joint system (Ut, v̂k,t, T̂k,t, k ∈
N ∩ Z+) has a unique invariant measure, i.e. it is ergodic.

Infinite dimensional systems with their finite dimensional truncation converging to a

corresponding distribution under total variation norm, such as the turbulent diffusion system

here, are generally known as locally mixing [30] or locally ergodic [31]. One point worth

noticing is that Theorem 6.4 does not require any summable conditions, since it separates

each Fourier mode into a different dimension. So even systems with
∑

k |v̂k,t|2 = ∞ are in

the range of our discussion, though v(t, x) =
∑
eikxv̂k,t will be ill defined. On the other

hand, if one poses certain summability condition on the parameters, the joint process will

likely converges to its invariant measure under certain Wasserstein norms [32, 33, 34]. But

this is beyond the scope of the present paper.

The other result that requires the finiteness of the wavenumber set N in this paper is

Theorem 4.2, since we need to check that
∑

k∈N E|Σε
k,t − Σ̃k,t(ωR,k(t))| → 0 when ε → 0.

Thanks to the careful treatment in the proof of Theorem 4.1 with a special version of Cauchy

Schwartz, it suffices for us to show the summability of term (4.5) among all k. This leads to

many different summability conditions that all generalize Theorem 4.2; the following version

is the simplest and does hold for all examples mentioned in Section 2:

Theorem 6.5. Suppose γT,k is non-decreasing for k ∈ Z+, moreover assume that∑
k∈N

Ev,k <∞,
∑
k∈N

σ2
v,k

γT,k
<∞,

then under same conditions of Theorem 4.2 and 6.3, the same conclusions hold with countable

set N of Fourier modes.
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7. Conclusion and discussion

Intermittency is an important feature that generally exists in turbulent flows. It can be

described as exceptionally large spikes in the time sequence, or an exponential like fat tail

in the probability density. This paper studies a passive tracer with a mean gradient in

turbulence models that consists of a zonal cross sweep and a meridional shear flow [10, 20, 5].

The intermittency in these models is especially subtle, since there are no positive Lyapunov

exponents in these models, yet they exhibit realistic intermittency. By transforming the

dynamics into the Fourier domain, we find the solution is conditionally Gaussian given the

realization of the cross sweep Ut. Therefore the behavior of the passive tracer is controlled by

Us≤t through the conditional covariance, which is given by the integral formula in Proposition

3.2. The randomness in Us≤t makes this conditional covariance highly fluctuating, as the

peak value could be 100 times larger than the mean value in some dynamical regimes,

according to the analysis of Proposition 3.3. This potentially can generate the large spikes

in the time sequence of a passive tracer and fat tails in the distribution. On the other hand,

by analyzing the formula of the conditional covariance, we found that the large fluctuation

is caused by random resonance effects between the phase speed of the shear flow and the

passive tracer. In Theorems 4.1 and 4.2, such intuition is rigorously proved in a long time

slow varying rescaling limit of the original model, while the limiting conditional covariance

has an explicit and concise dependence on the cross sweep Ut. Through this result, it is found

that Ut’s visits to different resonance phases excites different Fourier modes of the passive

tracer field, which in turn produce intermittent spikes. Numerical simulations are presented

to verify our theoretical results. They also show very different intermittent behaviors in

various dynamical regimes, which all can be well explained by the theory presented here.

Moreover, the simulations here can be done for only one long enough realization, since

Theorem 3.1 guarantees that the turbulent diffusion model here is geometrically ergodic.

Two generalizations are made at the end for cross sweeps with general formulations and the

case where there are infinitely many Fourier modes.

Although this paper gives an intuitive, rigorous and simple explanation of the

intermittency, there are many related questions which remain unanswered. Here are a list of

directions that wait further exploration:

(i) This paper hinges heavily on the conditional Gaussian structure of the special turbulent

diffusion model. Yet there are many intermittent systems that lack such structure, e.g.

the canonical scalar model with cubic nonlinearity (6.2). It will be very interesting if

we can apply the conditional covariance fluctuation argument presented here to other

models. Actually, a broader question will be: how can we characterize intermittent

behaviors without looking at the time sequence or tail distribution.

(ii) On the other hand, conditional Gaussian structure could be exploited in a wide range

of models as well. It can be seen as a middle land between nonlinear dynamics and

linear dynamics, where it is very possible to apply many well understood tools in linear
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dynamics to study nonlinear systems, e.g. [25, 26]. It is a general question that many

features of these linear tools will change in these applications. Another general question

is how can we detect whether a system has a conditional Gaussian structure based on

its phenomenon or data.

(iii) It seems the estimate of conditional covariance in this paper can be improved for non-

asymptotic settings. In order to show large fluctuations in conditional covariance,

especially showing the peak values is many times the mean, we need a lower bound

for the peak value and a upper bound for the mean. Proposition 3.4 is a prototype

lower bound, since it is designed to work assuming the cross sweep is slow varying.

The reason that we often assume the cross sweep is slow varying is because then the

conditional covariance depends highly on the end value of the cross sweep, of which the

distribution is well known. The authors conjecture that a more general non asymptotic

result can be produced if we focus on Ut’s path in an interval rather than on the end

point.

(iv) One important application problem of stochastic system is filtering and prediction.

Intermittent systems are very difficult to predict in general for their enormous spikes.

Yet, the prediction of these rare events are very important in real world applications.

The results of this paper may shed some light on this direction.
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Appendix A. Proofs for the theorems

Appendix A.1. geometric ergodicity

Proof of Theorems 3.1 and 6.2. Since Theorem 6.2 has a more general condition, it suffices

to prove it only. By the results of [23, 22], for a general diffusion process in Rd

dXt = b(Xt)dt+ Σ(Xt)dWt

to be geometrically ergodic, it suffices to show the following three properties:

• There is a Lyapunov function V and constants γ, kv > 0 so that V has all it sub-level

sets being compact and

LV (x) = b(x) · ∇V (x) +
1

2
tr[Σ(x)(HV )Σt(x)] ≤ −γV (x) + kv.

Here HV is the Hessian matrix of V .

• Denote the columns of Σ as Σ1, . . . ,Σm, and L0 as the Lie algebra generated by

{Σi, [Σi, b], i = 1, . . . ,m} with [ , ] denotes the Lie bracket. Then L0 spans Rd.
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• There is an x∗ ∈ Rd so that for any fixed x ∈ Rd, ε > 0, there is a smooth process ws≤t
and time t0, such the solution to

dxs = b(xs)ds+ Σ(xs)wsds, x0 = x,

satisfies |xt0 − x∗| < ε.

First of all, we construct a Lyapunov function by letting

Vt = E(Ut) +
∑

k∈N∩Z+

|v̂k,t|2

γv,k
+
γT,k
α2
|T̂k,t|2.

Then the infinitesimal generator is bounded by some constants Mk and kv:

LVt = 2ufU(Ut) + σUσ
∗
U(Ut) +

∑
k∈N∩Z+

[
− 2|v̂k,t|2 +

σ2
v,k

γv,k
−

2γ2
T,k

α2
|T̂k,t|2 +

γT,k
α2

σ2
T,k −

2γT,k
α

Re(T̂k,tv̂k,t)

]

≤ −γE(Ut)−
∑

k∈N∩Z+

[
|v̂k,t|2 +

γ2
T,k

α2
|T̂k,t|2 −Mk

]
≤ −γ̃Vt + kv.

where we used the Young’s inequality:

2γT,k
α
|T̂k,tv̂k,t| ≤ |v̂k,t|2 +

γ2
T,k

α2
|T̂k,t|2

and γ̃ = min{γ, γv,k, γT,k, k ∈ N} > 0.

To verify the Lie bracket condition, we split the real and imaginary parts: v̂k,t =

v̂1
k,t + iv̂2

k,t, T̂k,t = T̂ 1
k,t + iT̂ 2

k,t. The joint dynamics can be rewritten as:

d



Ut
...

v̂1
k,t

v̂2
k,t

T̂ 1
k,t

T̂ 2
k,t


= Ldt+ σU(Ut)MdWt +

∑
k

σv,k√
2

(M1
kdB1

k,t +M2
kdB2

k,t), (A.1)

with

L =



fU(Ut)
...

−γvv̂1
k,t − ωvv̂2

k,t

−γvv̂2
k,t + ωvv̂

1
k,t

−γT T̂ 1
k,t − ωT T̂ 2

k,t − αv̂1
k,t

−γT T̂ 2
k,t + ωT T̂

1
k,t − αv̂2

k,t


, M =



1
...

0

0

0

0


, M1

k =



0
...

1

0

0

0


, M2

k =



0
...

0

1

0

0


.
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Then it suffices to note that

[L,M1
k ] =



0
...

0

0

−α
0


, [L,M2

k ] =



0
...

0

0

0

−α


.

So {M1
k ,M

2
k , [L,M

1
k ], [L,M2

k ]} obvious spans the linear space for the k-th Fourier modes, and

M spans the dimension for Ut.

For the last reachability condition, we can simply let x0 = ~0 and let the control process

be

ws = [−σU(Us)
−1(fU(Us) + Us), 0, . . . , 0].

In other words, we only control Wt in (A.1) and let Bi
k,t simply be 0. The driven process

simply follows:

dUs = −Usds, dv̂k,t = [−γv,k + iωv,k]v̂k,tdt, dT̂k,t = [−γT,k + iωT,k]T̂k,tdt− αv̂k,tdt.

It’s easy to see that Us and v̂k,t converge to 0 exponentially fast, then so does T̂k,t since by

Duhamel’s formula

T̂k,t = exp(−γT,kt+ iωT,k[0, t])T̂k,0 − α
∫ t

0

exp(−γT,k(t− s) + iωT,k[s, t])v̂k,sds.

Its norm can be bounded by

|T̂k,t| ≤ exp(−γT,kt)|T̂k,0|+ α

∫ t

0

exp(−γT (t− s))|v̂k,s|ds.

So apparently it will converge to 0 as well.

Appendix A.2. Bounds for sub-gaussian and variance

Proof of Proposition 3.3. As we focus on one wavenumber k at the moment, its appearance

in the subscript will be suppressed. Denote:

σtr,s = ασv,k exp(−γT,k(t− s)− γv,k(s− r) + iωT,k[s, t] + iωv,k[r, s]), (A.2)

then Σt|U =
∫ t

0
[
∫ t
r
|σtr,s|ds]2. The upper bound for conditional covariance can be easily

verified through the observation that |σtr,s| ≤ ασv exp(−γT t+γvr) exp(γRs), where we defined

γR = γT − γv

Σt|U ≤ σ2
vα

2

∫ t

0

exp(−2γT t+ 2γvr)

(
exp(2γRt) + exp(2γRr)

|γR|γR

)
dr

≤ σ2
vα

2

γR|γR|

[
1− exp(−2γvt)

2γv
− 1− exp(−2γT t)

2γT

]
.
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A side note here is that this bound is not optimal, but we choose it in order to make a better

comparison with the second claim. Moreover the optimal upper bound will be of the same

order anyway. This also bounds the Laplace transformation, since by Laplace transformation

of Gaussian distribution:

E exp(λ1Re(T̂t) + λ2Im(T̂t)) = EE(exp(λ1Re(T̂t) + λ2Im(T̂t))|Us≤t)
= E exp((λ2

1 + λ2
2)Σt|U/4) ≤ exp((λ2

1 + λ2
2)Σt/4).

For the second claim, notice that∣∣∣∣ ∫ t

r

σtr,sds

∣∣∣∣2 = α2σ2
v,k exp(−2γT t+ 2γvr)

∫ t

r

∫ t

r

exp(γR(s1 + s2) + iωR[s1, s2])ds1ds2.

Here if s1 > s2 then ωR[s1, s2] = −ωR[s2, s1]. Then as ωR(t) = ckUt + dk where

ck = −(ak + k), dk = −(bk + kū), (A.3)

we easily find that EωR(t) = dk and cov(ωR(t), ωR(s)) = exp(−γU |s− t|)c2
kEU . Thus,

ωR[s1, s2] ∼ N
(
dk(s2 − s1),

c2
kEU
γ2
U

(γU |s2 − s1| − 1 + e−γU |s2−s1|)

)
.

Since for a Gaussian random variable X, E exp(iX) = exp(iEX − 1
2
var(X)), we have

E exp(iωR[s1, s2]) = exp

(
idk(s2 − s1)− c2

kEU
2γ2

U

(γU |s2 − s1| − 1 + e−γU |s2−s1|)

)
.

Thus∫ t

0

E exp((γT − γv)(s2 + s1) + iωR[s1, s2])ds2

= exp(2(γT − γv)s1)

∫ t−s1

r−s1
exp((γT − γv)s− idks) exp

(
− c2

kEU
2γ2

U

(γU |s| − 1 + exp(−γU |s|))
)

ds.

We will apply elementary Lemma Appendix A.1 presented below and give an upper bound.

Denote

f(x) = exp

(
− c2

kEU
2γ2

U

(γUx− 1 + exp(−γUx))

)
.

By checking its first derivative, clearly f(x) is positive and decreasing on R+, therefore by

Lemma Appendix A.1 below∣∣∣∣ ∫ t

r

E exp(γR(s2 + s1) + iωR[s1, s2])ds2

∣∣∣∣
= exp(2γRs1)

∣∣∣∣ ∫ t−s1

0

exp(γRs− idks)f(s)ds+

∫ s1−r

0

exp(−γRs+ idks)f(s)ds

∣∣∣∣
≤ 2 exp(γRt+ γRs1) + 4 exp(2γRs1) + 2 exp(γRr + γRs1)√

γ2
R + d2

k

.
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Integrating both sides with s1 ∈ [r, t] gives us

E
∫ t

r

∫ t

r

exp((γT − γv)(s1 + s2) + iωR[s1, s2])ds1ds2 ≤
4(exp(2γRt)− exp(2γRr))

γR
√
γ2
R + d2

k

.

Integrating both sides with r ∈ [0, t] gives us:

EΣt|U ≤
α2σ2

v

γR
√
γ2
R + d2

k

[
1− exp(−2γvt)

2γv
− 1− exp(−2γT t)

2γT

]
.

Lemma Appendix A.1. Let f(s) be a positive decreasing C1 function and a, b to be two

real constants, then ∣∣∣∣ ∫ t

r

e(a+ib)sf(s)ds

∣∣∣∣ ≤ 2
exp(ar) + exp(at)√

a2 + b2
f(r).

Proof. This can directly be obtained through integration by part:∣∣∣∣ ∫ t

r

e(a+ib)sf(s)ds

∣∣∣∣ =

∣∣∣∣e(a+ib)s

a+ ib
f(s)

∣∣∣∣t
r

−
∫ t

r

e(a+ib)s

a+ ib
ḟ(s)ds

∣∣∣∣
≤ exp(ar) + exp(at)√

a2 + b2
f(r) +

∫ t

r

eas

|a+ ib|
|ḟ(s)|ds

≤ exp(ar) + exp(at)√
a2 + b2

f(r) +
exp(ar) + exp(at)√

a2 + b2

∫ t

r

|ḟ(s)|ds

≤ 2
exp(ar) + exp(at)√

a2 + b2
f(r).

Appendix A.3. Non asymptotic lower bound

Proof of Proposition 3.4. As we focus on one wavenumber k at the moment, its appearance

in the subscript will be suppressed. Using the notation (A.2), Σt|U =
∫ t

0
|
∫ t
r
σtr,sds|2dr with∣∣∣∣ ∫ t

r

σtr,sds

∣∣∣∣ = exp(−γv(t− r))
∣∣∣∣ ∫ t−r

0

exp(−γRs+ iω̃R[0, s])ds

∣∣∣∣
where ω̃R(s) = ωR(t− s) is the reverse process. ω̃R is also an OU process, which follows:

dω̃R(s) = −γU ω̃R(s)ds+ γUdkds+ ckσUdW̃s.

where ck, dk are given by (A.3) and W̃s is a Wiener process. This is known as the reversibility

of O.U. processes. One easy way to see it is checking the time covariance function of ω̃R(s),
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which is the same as ωR(s), while both of them are Gaussian processes. Thus by Duhamel’s

formula:

ω̃R(s) = e−γUsω̃R(0) + (1− e−γUs)dk + ckσU

∫ s

0

e−γU (s−u)dW̃u.

We will write the conditional expectation with ω̃R(0), or equivalently ωR(t), given as E0,

then

E0ω̃R(s) = e−γUsω̃R(0) + (1− e−γUs)dk,

while

cov0(ω̃R(s), ω̃R(t)) = E0ω̃R(s)ω̃R(t)− E0ω̃R(s)E0ω̃R(t)

= c2
kσ

2
U

∫ s∧t

0

e−γU (s+t−2u)du

= Ec(e
−γU |s−t| − e−γU (s+t)), Ec := c2

kEU .

So conditioned on ω̃R(0), ω̃R[s, t] is normal distributed with conditional mean

ms,t = dk(t− s) +
e−γUs − e−γU t

γU
(ω̃R(0)− dk)

= ω̃R(0)(t− s) +

[
e−γUs − e−γU t

γU
− (t− s)

]
(ω̃R(0)− dk)

=: ω̃R(0)(t− s) + ns,t;

and conditional variance

Vs,t = Ec

[
2|t− s|
γU

− 2− 2e−γU |t−s|

γ2
U

− (e−γUs − e−γU t)2

γ2
U

]
.

Thus by Fourier transform of Gaussian variables: E exp(iX) = exp(iEX− 1
2
var(X)), we have

E0

∣∣∣∣ ∫ t

t−r
σtt−r,sds

∣∣∣∣2 = exp(−2γvr)

∫ r

0

exp(−γRs1)

∫ r

0

E0 exp(−γRs2 + iω̃R[s1, s2])ds2ds1.

(A.4)

By Lemma Appendix A.2 established below, the inner layer of integral can be written as∫ r

0

E0 exp(−γRs2 + iω̃R[s1, s2])ds2

=

∫ r

0

exp(−γRs+ ims1,s −
1

2
Vs1,s)ds

=

∫ r

0

exp(−γRs+ iω̃Rs) exp(−1

2
Vs1,s + ims1,s)ds

=
exp(−1

2
Vs1,0 + ims1,0)

γR − iω̃R(0)
−

exp(−γRr + ims1,r − 1
2
Vs1,s2)

γR − iω̃R(0)
+Qs1,r, (A.5)
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with the residual term bounded by

|Qs1,r| ≤
1 ∨ e−γRr

|γR − iω̃R(0)|
(Vr[0,r] exp(−1

2
Vs1,x) + Vr[0,r]ns1,x).

Here Vr[0,r]f(x) denotes the total variation of function f inside interval [0, r]. For function

ns1,x, it is easy to check that it is increasing on [0, s1] and decreasing on [s1, r], if ω̃R(0) > 0

or vice versa. Moreover, for s, t ≤ r < γ−1
U , since

e−γUs − e−γU t

γU
=
e−γUs(1− e−γU (t−s))

γU
≥ (1− γUs)(t− s−

1

2
γU(t− s)2).

Therefore

|ns,t| ≤ [
1

2
γU(t− s)2 + s(t− s)γU ]|ω̃R(0)− dk| =

1

2
γU(t2 − s2)|ω̃R(0)− dk|.

Thus

Vr[0,r]ns1,x ≤ γUr
2|ω̃R(0)− dk|. (A.6)

For function exp(−1
2
Vs1,x), notice that Vs1,x is decreasing in [0, s1] and increasing on [s1, r].

Moreover, for s, t ≤ r ≤ γ−1
U an upper bound of Vs,t can be obtained through

1− e−γU |t−s| ≥ γU |t− s| −
1

2
γ2
U |t− s|2

(e−γUs − e−γU t)2 = e−2γUs(1− e−γU (t−s))2 ≥ (1− 2γUs)γ
2
U(t− s)2

Thus

Vs,t ≤ Ec

[
2|t− s|
γU

− 2|t− s|
γU

+ |t− s|2 − (1− 2γUs)(t− s)2

]
= 2EcγUs(t− s)2, (A.7)

and

Vr[0,r] exp(−1
2
Vs1,x) ≤ 2− 2 exp(−EcγUr3).

Based on our definition of C, when r ≤ 1, |Qs,r| ≤ |γR − iω̃R(0)|−1C(1 ∨ e−γRr).
Note that the claimed lower bound in this proposition is actually negative if γR = 0,

which then will trivially hold. So it suffices for us to work in the general case that γR 6= 0.

First suppose that γR > 0, we will treat the first item in (A.5) as the main item, so we write

(A.5) =
exp(−1

2
Vs1,0 + ims1,0)

−γR + iω̃R(0)
+Rs1,r, with |Rs1,r| ≤

exp(−γRr) + C

|γR − iω̃R(0)|
.

Thus the second layer of integral in (A.4) is bounded below by:∣∣∣∣ ∫ r

0

exp(−γRs1)

∫ r

0

E0 exp(−γRs2 + iω̃R[s1, s2])ds2ds1

∣∣∣∣
≥
|
∫ r

0
exp(−γRs1 − 1

2
Vs1,0 + ims1,0)ds1|

|γR − iω̃R(0)|
− (1− exp(−γRr))(exp(−γRr) + C)

γR|γR − iω̃R(0)|
. (A.8)
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We apply Lemma Appendix A.2 to the integral in the first item, following the steps in (A.5),

since (A.6) and (A.7) are bounds for functions nx,0 and Vx,0 as well, we can find:∣∣∣∣ ∫ r

0

exp(−γRs1 + iω̃R(0)s1 −
1

2
Vs1,0 + ins1,0)ds1

∣∣∣∣ ≥ 1

|γR − iω̃R(0)|
− exp(−γRr) + C

|γR − iω̃R(0)|
.

Thus in combine

(A.8) ≥ 1

|γR − iω̃R(0)|2
− 2C + 2 exp(−γRr)

γR|γR − iω̃R(0)|
,

E0Σt|U ≥ E0

∫ t0

0

(A.4)dr ≥ 1− exp(−2γvt0)

2γv|γR − iω̃R(0)|2
−

γv
γT+γv

+ C(1− exp(−2γvt0))

γv|γR||γR − iω̃R(0)|
.

This is our claim for γR > 0. The γR < 0 case is completely symmetric. We take the second

term in (A.5) as the main term, and rewrite (A.5) as∫ r

0

E0 exp(−γRs2 + iω̃R[s1, s2])ds2 =
exp(−γRr − 1

2
Vs1,s2 + ims1,s2)

−γR + iω̃R(0)
+Rs1,r,

while the residual:

|Rs1,r| ≤
∣∣∣∣exp(−1

2
Vs1,0 + ims1,0)

γR − iω̃R(0)

∣∣∣∣+ |Qs1,r| ≤
1 + C exp(−γRr)
|γR − iω̃R(0)|

.

Hence the second layer of integral (A.4) is bounded by∣∣∣∣ ∫ r

0

ds1 exp(−γRs1)

∫ r

0

E0 exp(−γRs2 + iω̃R[s1, s2])ds2

∣∣∣∣
≥
∣∣∣∣ ∫ r

0

exp(−γR(s1 + r)− 1
2
Vs1,r + ims1,r)ds1

−γR + iω̃R(0)

∣∣∣∣− exp(−γRr) + C exp(−2γRr)

|γR||γR − iω̃R(0)|
.

Then we apply Lemma Appendix A.2 to the integral in the first item, and find∣∣∣∣ ∫ r

0

exp(−γR(s1 + r)− 1

2
Vs1,r + ims1,r)ds1

∣∣∣∣ ≥ exp(−2γRr)− C exp(−2γRr)− exp(−γRr)
|γR − iω̃R(0)|

.

So in combine

(A.4) ≥ exp(−2γT r)

|γR − iω̃R(0)|2
− 2 exp(−(γT + γv)r) + 2C exp(−2γT r)

|γR||γR − iω̃R(0)|

. Therefore our claim for γR < 0 is obtained through

E0Σt|U ≥
∫ t0

0

(A.4)dr ≥ 1− exp(−2γT t0)

2γT |γR − iω̃R(0)|2
−

γT
γT+γv

+ C(1− exp(−2γT t0))

γT |γR||γR − iω̃R(0)|
.
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Lemma Appendix A.2. Let f(s) be a positive C1 function, θ(s) be a C1 function with a, b

being two real constants, then∣∣∣∣ ∫ t

0

e(a+ib)sf(s)eiθ(s)ds− e(a+ib)s

a+ ib
eiθ(s)f(s)

∣∣∣∣t
0

∣∣∣∣ ≤ 1 ∨ eat

|a+ bi|
[Vr[0,t](f) + Vr[0,t](θ)].

A direct consequence is:∣∣∣∣ ∫ t

0

e(a+ib)sf(s)eiθ(s)ds

∣∣∣∣ ≥ |f(0)− eatf(t)|
|a+ ib|

− 1 ∨ eat

|a+ bi|
[Vr[0,t](f) + Vr[0,t](θ)].

Here Vr[0,t]f denotes the total variation of f on the interval [0, t].

Proof. The first claim is obtained through integration by part formula, since∫ t

0

e(a+ib)seiθ(s)f(s)ds =
e(a+ib)s

a+ ib
eiθ(s)f(s)

∣∣∣∣t
0

−
∫ t

0

e(a+ib)s

a+ ib
ḟ(s)eiθ(s)ds−i

∫ t

0

e(a+ib)s

a+ ib
f(s)eiθ(s)θ̇(s)ds,

where the two integrals on the right hand side can be bounded by:∣∣∣∣ ∫ t

0

e(a+ib)s

a+ ib
ḟ(s)eiθ(s)ds

∣∣∣∣ ≤ ∫ t

0

|eas||ḟ(s)|
|a+ ib|

ds ≤ 1 ∨ eat

|a+ ib|
Vr[0,t]f,∣∣∣∣ ∫ t

0

e(a+ib)s

a+ ib
f(s)eiθ(s)θ̇(s)ds

∣∣∣∣ ≤ ∣∣∣∣ ∫ t

0

|eas|
|a+ ib|

|f(s)||θ̇(s)|ds ≤ 1 ∨ eat

|a+ ib|
Vr[0,t]θ.

The consequence is a direct one by the relation |x− y| ≤ ||x| − |y||:∣∣∣∣e(a+ib)s

a+ ib
eiθ(s)f(s)

∣∣∣∣t
0

∣∣∣∣ ≤ ∣∣∣∣ |eat|f(t)

|a+ ib|
− f(0)

|a+ ib|

∣∣∣∣.

Appendix A.4. Proofs for the asymptotic results

Lemma Appendix A.3. The following holds by Cauchy Schwartz and Young’s inequality(∫ t

0

(Y 2
s −X2

s )ds

)2

≤
(∫ t

0

(Xs + Ys)
2ds

)(∫ t

0

(Xs − Ys)2ds

)
≤ 2

(∫ t

0

X2
sds

)(∫ t

0

(Xs − Ys)2ds

)
+ 8

(∫ t

0

(Xs − Ys)2ds

)2

.

Therefore the following holds by checking the square of both sides∣∣∣∣ ∫ t

0

(Y 2
s −X2

s )ds

∣∣∣∣ ≤ 2

√∫ t

0

X2
sds

√∫ t

0

(Xs − Ys)2ds+ 4

∫ t

0

(Xs − Ys)2ds.

And so does its expectation form:

E
∣∣∣∣ ∫ t

0

(Y 2
s −X2

s )ds

∣∣∣∣ ≤ 2

√
E
∫ t

0

X2
sds

√
E
∫ t

0

(Xs − Ys)2ds+ 4E
∫ t

0

(Xs − Ys)2ds.



Intermittency in Turbulent Diffusion Models with a Mean Gradient 39

Lemma Appendix A.4. Let dUt = fU(Ut)dt+ σU(Ut)dWt be a diffusion process such that

Assumption 6.1 holds, assume U0 is initialized with the invariant distribution of Ut, then

there exists a constant M such that:

E
∫ t

0

[ ∫ t

s

Urdr − (t− s)Ut
]2

ds ≤Mt5.

Proof. By definition, Ut can be written as

Ut = Us +

∫ t

s

f(Ur)dr +

∫ t

s

σU(Ur)dWr.

By Fubini’s theorem of stochastic integrals,∫ t

s

Urdr = (t− s)Us +

∫ t

s

(t− r)f(Ur)dr +

∫ t

s

(t− r)σU(Ur)dWr.

Therefore for s ≤ t,

E
∣∣∣∣ ∫ t

s

Urdr − (t− s)Ut
∣∣∣∣2 = E

∣∣∣∣ ∫ t

s

(t− r)f(Ur)dr +

∫ t

s

(t− r)σU(Ur)dWr

∣∣∣∣2
≤ 2E

[ ∫ t

s

(t− r)f(Ur)dr

]2

+ 2E
[ ∫ t

s

(t− r)σU(Ur)dWr

]2

≤ 2t3E
∫ t

0

f 2(Us)ds+ 2t3E
∫ t

0

σ2
U(Us)ds,

which implies:

E
∫ t

0

[ ∫ t

s

Urdr − (t− s)Ut
]2

ds ≤ 3t4E
∫ t

0

[f 2
U(Us) + σ2

U(Us)]ds.

Recall that f 2(Us), σ
2(Us) ≤ E(Us), and since E is a Lyapunov function, the expectation

under equilibrium measure, EE(Us), is bounded using its property (A.9) shown in the next

section. Hence the quantity above is bounded by Mt5 for a proper M .

Appendix A.5. Lyapunov functions

Lyapunov functions are commonly used in probability theory to stabilize a stochastic process

Xt. One way to define it is through the infinitesimal generator

Lf(x) := lim
t→0

1

t
[f(E(Xt)|X0 = x)− f(x)],

that is requiring for some strictly positive constants γ, kv the following holds:

LE(x) ≤ −γE(x) + kv,
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while E should be strictly positive with its sub level sets being compact. The central role of

Lyapunov function is that it can bound the behavior of stochastic process Xt, since using

Dynkin’s formula, we have

EE(Xt) = E(X0) + E
∫ t

0

LE(Xs)ds ≤ E(x) + E
∫ t

0

LE(Xs)ds.

Then the time derivative is bounded by d
dt
EE(Xt) ≤ −γEE(Xt) + kv, which by Gronwall

inequality gives us

EE(Xt) ≤ e−γtE(X0) +
kv
γ
. (A.9)

As for a dimensional one diffusion process dUt = b(Ut)dt + σ(Ut)dWt, it’s a standard result

through Fokker Plank equation that the infinitesimal generator is given by:

Lf(u) = b(u)
∂f

∂u
+

1

2

∂2f

∂u2
.

For details proof of the claims above, we refer to classic works in this direction [22, 23]. To

see that E(u) = u2 is a Lyapunov function for dUt = −γUUtdt + σUdWt, simply apply the

previous formula:

Lu2 = −2γUu
2 + σ2

U ,

so γU = 2γ and kv = σ2
U applies. For the canonical cubic scalar model (6.2), direct

computation shows:

Lu6 = −6u8 + 6u5[F + au+ bu2] + 15u4[(A−Bu)2 + σ2].

Since the right hand side is a polynomial of u, with the highest order term being −6u8. Then

by Hölder’s inequality, for any fixed γ > 0, one can find a kv such that Lu6 ≤ −γu6 + kv.
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