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Abstract12

The stochastic skeleton model is a simpli�ed model for the Madden-Julian oscil-13

lation (MJO) and intraseasonal-planetary variability in general involving coupling of14

planetary-scale dry dynamics, moisture, and a stochastic parametrization for the unre-15

solved details of synoptic-scale activity. The model captures the fundamental features16

of the MJO such as the intermittent growth and demise of MJO wave trains, the MJO17

propagation speed, peculiar dispersion relation, quadrupole vortex structure, etc. We18

analyze here the solutions of a stochastic skeleton model with an idealized seasonal19

cycle, namely a background warm pool state of heating/moistening displacing merid-20

ionally during the year. The present model considers both equatorial and o�-equatorial21
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components of the envelope of synoptic scale convective activity, which allows for a22

large diversity of meridionally symmetric and asymmetric intraseasonal events found23

in nature. These include examples of symmetric events with MJO quadrupole vor-24

tex structure, half-quadrupole events with o�-equatorial convective heating structure,25

as well as tilted events with convective heating structure oriented north-westward and26

associated northward propagation that is reminiscent of the summer monsoon intrasea-27

sonal oscillation. The model also reproduces qualitatively the meridional migration of28

intraseasonal variability during the year, that approximatively follows the meridional29

migration of the background warm pool.30

1 Introduction31

The dominant component of intraseasonal variability in the tropics is the 40 to 50 day intraseasonal32

oscillation, often called the Madden-Julian oscillation (MJO) after its discoverers (Madden and33

Julian, 1971; 1994). In the troposphere, the MJO is an equatorial planetary-scale wave, that is34

most active over the Indian and western Paci�c oceans and propagates eastward at a speed of35

around 5ms−1. The planetary-scale circulation anomalies associated with the MJO signi�cantly36

a�ect monsoon development, intraseasonal predictability in midlatitudes, and the development of37

El Niño events in the Paci�c ocean, which is one of the most important components of seasonal38

prediction.39

One fundamental and not fully understood characteristic of the MJO and the intraseasonal40

oscillation (ISO) in the tropics in general is its pronounced seasonality. The MJO signals migrate in41

latitude during the year, approximatively following the migration of warm sea surface temperatures,42

with for example a peak activity of zonal winds and precipitation located slightly south of the43

equator in boreal winter and north of the equator in boreal summer (Salby and Hendon, 1994;44

Zhang and Dong, 2004). The MJO is strongest during the boreal winter and spring seasons45

where it appears as a predominantly eastward propagating system of convection along (or sligthly46

south of) the equator. Noteworthy the MJO signals in boreal winter are related to the onset and47

breaks of the Australian monsoon (Wheeler and Hendon, 2004; Lau and Waliser, 2012 chapt 5).48
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In boreal summer, the ISO is of a di�erent character: the dominant intraseasonal oscillation, of49

period 30-60 days, shows a pronounced o�-equatorial component that is associated in particular50

with northward or north-eastward propagation of convection over the Indian ocean and the Asian51

continent (Zhang, 2005; Kikuchi et al., 2011). This intraseasonal mode is sometimes referred to52

as the summer monsoon ISO, or boreal summer ISO, in order to di�erentiate it from the boreal53

winter MJO. Several studies interpret the northward propagation as resulting from the interaction54

between the eastward propagation of convection at the equator (e.g. the northern gyre of equatorial55

Rossby waves forced by equatorial convective heating) and the background mean state (Lau and56

Peng, 1990; Wang and Xie, 1997; Lawrence and Webster, 2002), though there is also observational57

and theoretical evidence that northward propagation can be independent (Webster, 1983; Wang58

and Rui, 1990; Jiang et al., 2004; Annamalai and Sperber, 2005). The summer monsoon ISO59

signals are strongly related to the onset and breaks of the South Asian and East Asian monsoon60

(Lau and Waliser, 2012 chapt 2, 3).61

In addition to such climatological features, the structure of individual intraseasonal events is62

often unique. For example, both equatorial and o�-equatorial convective heating coexist during63

intraseasonal events with characteristics and intensity that di�er from one event to another (Wang64

and Rui, 1990; Jones et al., 2004; Masunaga, 2007), including during MJO events (Tung et al.,65

2014a, b). Biello and Majda (2005, 2006) for example have analyzed in a multiscale model for66

the MJO the di�erences in planetary-scale circulation induced by equatorial or o�-equatorial con-67

vective heating of synoptic-scale. Individual intraseasonal events also show unique re�ned vertical68

structures as well as complex dynamic and convective features within their envelope. The MJO for69

example shows front-to-rear vertical tilts, westerly wind bursts, etc within its envelope (Kikuchi70

and Takayabu, 2004; Kiladis et al., 2005; Tian et al., 2006), while the summer monsoon ISO shows71

dynamic and convective features of a di�erent nature (Goswami et al., 2003; Straub and Kiladis,72

2003)73

Despite the primary importance of the MJO and the decades of research progress since its74

original discovery, no theory for the MJO has yet been generally accepted. Simple theories provide75

some useful insight on certain isolated aspects of the MJO, but they have been largely unsuccessful76
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in reproducing all of its fundamental features together (Zhang, 2005). Meanwhile, present-day77

simulations by general circulation models (GCMs) typically have poor representations of it, despite78

some recent improvements (Lin et al., 2006; Kim et al., 2009; Hung et al., 2013). A growing body79

of evidence suggests that this poor performance of both theories and simulations in general is80

due to the inadequate treatment of the organized structures of tropical convection (convectively-81

coupled waves, cloud-clusters...), that are de�ned on a vast range of spatiotemporal scales (synoptic,82

mesoscale...) and that generate the MJO as their planetary envelope (Hendon and Liebmann,83

1994; Moncrie� et al., 2007). For example, in current GCMs and models in general computing84

resources signi�cantly limit spatial grids (to ≈ 10 − 100 km), and therefore there are several85

important small scale moist processes that are unresolved or parametrized according to various86

recipes. Insight has been gained from the study of MJO-like waves in multicloud model simulations87

and in superparametrization computer simulations, which appear to capture many of the observed88

features of the MJO by accounting for coherent smaller-scale convective structures within the89

MJO envelope (e.g. Grabowski and Moncrie�, 2004; Majda et al., 2007; Khouider et al., 2011;90

Ajayamohan et al., 2013). Suitable stochastic parametrizations also appear to be good canditates91

to account for irregular and intermittent organized small scale moist processes while remaining92

computationally e�cient (Majda et al., 2008; Khouider et al., 2010; Stechmann and Neelin, 2011;93

Frenkel et al., 2012; Deng et al., 2014). As another example, the role of synoptic scale waves in94

producing key features of the MJO's planetary scale envelope has been elucidated in multiscale95

asymptotic models (Majda and Biello, 2004; Biello and Majda, 2005, 2006; Majda and Stechmann,96

2009a; Stechmann et al., 2013).97

While theory and simulation of the MJO remain di�cult challenges, they are guided by some98

generally accepted, fundamental features of the MJO on intraseasonal-planetary scales that have99

been identi�ed relatively clearly in observations (Hendon and Salby, 1994; Wheeler and Kiladis,100

1999; Zhang, 2005). These features are referred to here as the MJO's �skeleton� features:101

I. A slow eastward phase speed of roughly 5ms−1,102

II. A peculiar dispersion relation with dω/dk ≈ 0, and103

III. A horizontal quadrupole structure.104
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Recently, Majda and Stechmann (2009b) introduced a minimal dynamical model, the skeleton105

model, that captures the MJO's intraseasonal features (I-III) together for the �rst time in a simple106

model. The model is a coupled nonlinear oscillator model for the MJO skeleton features as well107

as tropical intraseasonal variability in general. In particular, there is no instability mechanism108

at planetary scale, and the interaction with sub-planetary convective processes discussed above109

is accounted for, at least in a crude fashion. In a collection of numerical experiments, the non-110

linear skeleton model has been shown to simulate realistic MJO events with signi�cant variations111

in occurrence and strength, asymmetric east-west structures, as well as a preferred localization112

over the background state warm pool region (Majda and Stechmann, 2011). More recently, a113

stochastic version of the skeleton model has been developed (Thual et al., 2014). In the stochastic114

skeleton model, a simple stochastic parametrization allows for an intermittent evolution of the115

unresolved synoptic-scale convective/wave processes and their planetary envelope. This stochastic116

parametrization follows a similar strategy found in the related studies mentioned above (e.g. as117

reviewed in Majda et al., 2008). Most notably, the stochastic skeleton model has been shown to118

reproduce qualitatively the intermittent growth and demise of MJO wave trains found in nature,119

i.e. the occurence of series of successive MJO events, either two, three or sometimes more in a row120

(Matthews, 2008; Yoneyama et al., 2013).121

In the present article, we will examine the solutions of a stochastic skeleton model with seasonal122

cycle. While previous work on the skeleton model has focused essentially on the MJO, we focus123

here on the tropical intraseasonal variability in general, as discussed above. Two main features of124

the intraseasonal variability that are qualitatively reproduced by the model are:125

IV. Meridionally asymmetric intraseasonal events, and126

V. A seasonal modulation of intraseasonal variability.127

Indeed, we will show that the stochastic skeleton model with seasonal cycle reproduces a large128

diversity of intraseasonal events found in nature, with for example some characteristics reminis-129

cent of both the MJO and the summer monsoon ISO. This occurs despite the fact that important130

details such as land-sea contrast, shear, tilted vertical structure, and continental topography are131

not treated in the model. In addition, we will show that the model reproduces qualitatively the132
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meridional migration of the intraseasonal variability during the year. In order to account for fea-133

tures (IV-V), two important modi�cations are considered in the stochastic skeleton model with134

seasonal cycle. First, while in previous works with the skeleton model focusing on the MJO (Ma-135

jda and Stechmann, 2009b, 2011; Thual et al., 2014) a single equatorial component of convective136

heating was considered, here we consider additional o�-equatorial components of convective heat-137

ing in order to further produce meridionally asymmetric intraseasonal events beyond the MJO.138

Second, a simple seasonal cycle is included that consists of a background warm pool state of139

heating/moistening that migrates meridionally during the year.140

The article is organized as follows. In section 2 we recall the design and main features of the141

skeleton model, and present the stochastic skeleton model with seasonal cycle used here. In section142

3 we present the main features of the model solutions, including their zonal wavenumber-frequency143

power spectra and seasonal modulation, as well as several hovmoller diagrams. In section 4 we144

focus on three interesting types of intraseasonal events found in the model solutions and analyze145

their potential observational surrogates, their approximate structure and occurence through the146

year. Section 5 is a discussion with concluding remarks.147

2 Model Formulation148

2.1 Stochastic Skeleton Model149

The skeleton model has been proposed originally by Majda and Stechmann (2009b) (hereafter150

MS2009), and further analyzed in Majda and Stechmann (2011) (hereafter MS2011) and Thual151

et al. (2014) (hereafter TMS2014). It is a minimal non-linear oscillator model for the MJO and the152

intraseasonal-planetary variability in general. The design of the skeleton model is brie�y recalled153

here, and the reader is invited to refer to those previous publications for further details.154

The fundamental assumption in the skeleton model is that the MJO involves a simple multi-155

scale interaction between (i) planetary-scale dry dynamics, (ii) lower-level moisture q and (iii) the156

planetary-scale envelope of synoptic-scale convection/wave activity, a. The planetary envelope a in157

particular is a collective (i.e. integrated) representation of the convection/wave activity occurring158
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at sub-planetary scale (i.e. at synoptic-scale and possibly at mesoscale), the details of which are159

unresolved. A key part of the q − a interaction is how moisture anomalies in�uence convection.160

Rather than a functional relationship a = a(q), it is assumed that q in�uences the tendency (i.e.161

the growth and decay rates) of the envelope of synoptic activity:162

∂ta = Γqa , (1)

where Γ > 0 is a constant of proportionality: positive (negative) low-level moisture anomalies163

create a tendency to enhance (decrease) the envelope of synoptic activity.164

The basis for equation (1) comes from a combination of observations, modeling, and theory.165

Generally speaking, lower-tropospheric moisture is well-known to play a key role in regulating166

convection (Grabowski and Moncrie�, 2004; Moncrie�, 2004; Holloway and Neelin, 2009), and has167

been shown to lead the MJO's heating anomalies (Kikuchi and Takayabu, 2004; Kiladis et al.,168

2005; Tian et al., 2006), which suggests the relationship in equation (1). This relationship is169

further suggested by simpli�ed models for synoptic-scale convectively coupled waves showing that170

the growth rates of the convectively coupled waves depend on the wave's environment, such as171

the environmental moisture content (Khouider and Majda, 2006; Majda and Stechmann, 2009a;172

Stechmann et al., 2013). In particular, Stechmann et al. (2013) estimate the value of Γ from these173

growth rate variations.174

In the skeleton model, the q − a interaction parametrized in equation (1) is further combined175

with the linear primitive equations projected on the �rst vertical baroclinic mode. This reads, in176

non-dimensional units,177

∂tu− yv − ∂xθ = 0

yu− ∂yθ = 0

∂tθ − (∂xu+ ∂yv) = Ha− sθ

∂tq +Q(∂xu+ ∂yv) = −Ha+ sq

(2)

with periodic boundary conditions along the equatorial belt. The �rst three rows of equation (2)178

describe the dry atmosphere dynamics, with equatorial long-wave scaling as allowed at planetary179

scale. The u and v are the zonal and meridional velocity, respectively, θ is the potential temperature180

7



and in addition p = −θ is the pressure. The fourth row describes the evolution of low-level181

moisture q. All variables are anomalies from a radiative-convective equilibrium, except a. In182

order to reconstruct the complete �elds having the structure of the �rst vertical baroclinic mode,183

one must use u(x, y, z, t) = u(x, y, t)
√

2cos(z), θ(x, y, z, t) = θ(x, y, t)
√

2sin(z), etc., with a slight184

abuse of notation. This model contains a minimal number of parameters: Q is the background185

vertical moisture gradient, Γ is a proportionality constant. The H is irrelevant to the dynamics186

(as can be seen by rescaling a) but allows us to de�ne a heating/drying rate Ha for the system187

in dimensional units. The sθ and sq are external sources of cooling and moistening, respectively,188

that need to be prescribed in the system (see hereafter). The skeleton model depicts the MJO as a189

neutrally-stable planetary wave. In particular, the linear solutions of the system of equations (1-2)190

(when a is truncated at the �rst Hermite function component, see hereafter) exhibit a MJO mode191

with essential observed features, namely a slow eastward phase speed of roughly 5ms−1, a peculiar192

dispersion relation with dω/dk ≈ 0 and a horizontal quadrupole structure (MS2009; MS2011).193

The stochastic skeleton model, introduced in TMS2014, is a modi�ed version of the skeleton194

model from equations (1-2) with a simple stochastic parametrization of the synoptic scale pro-195

cesses. The amplitude equation (1) is replaced by a stochastic birth/death process (the simplest196

continuous-time Markov process) that allows for intermittent changes in the envelope of synoptic197

activity (see chapter 7 of Gardiner, 1994; Lawler, 2006). Let a be a random variable taking discrete198

values a = ∆a η, where η is a positive integer. The probabilities of transiting from one state η to199

another over a time step ∆t read as follows:200

P{η(t+ ∆t) = η(t) + 1} = λ∆t+ o(∆t)

P{η(t+ ∆t) = η(t)− 1} = µ∆t+ o(∆t)

P{η(t+ ∆t) = η(t)} = 1− (λ+ µ)∆t+ o(∆t)

P{η(t+ ∆t) 6= η(t)− 1, η(t), η(t) + 1} = o(∆t) ,

(3)
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where λ and µ are the upward and downward rates of transition, respectively. They read:201

λ =


Γ|q|η + δη0 if q ≥ 0

δη0 if q < 0
and µ =


0 if q ≥ 0

Γ|q|η if q < 0
(4)

where δη0 is the kronecker delta operator. The above choice of the transition rates ensures that202

∂tE(a) = ΓE(qa) for ∆a small, where E denotes the statistical expected value, so that the q − a203

interaction described in equation (1) is recovered on average.204

This stochastic birth/death process allows us to account for the intermittent contribution of205

unresolved synoptic-scale details on the MJO. The synoptic-scale activity consists of a complex206

menagerie of convectively coupled equatorial waves, such as 2-day waves, convectively coupled207

Kelvin waves, etc (Kiladis et al., 2009). Some of these synoptic details are important to the208

MJO, as they can be both modulated by the planetary background state and contribute to it, for209

example through upscale convective momentum transport or enhanced surface heat �uxes (Majda210

and Biello, 2004; Biello and Majda, 2005, 2006; Moncrie� et al., 2007; Majda and Stechmann,211

2009a; Stechmann et al., 2013). With respect to the planetary processes depicted in the skeleton212

model, the contribution of those synoptic details appears most particularly to be highly irregular,213

intermittent, and with a low predictability (e.g. Dias et al., 2013), which is parametrized by214

equation (3). This stochastic parametrization follows the same prototype found in previous related215

studies (Majda et al., 2008). The methodology consists in coupling some simple stochastic triggers216

to the otherwise deterministic processes, according to some probability laws motivated by physical217

intuition gained (elsewhere) from observations and detailed numerical simulations. Most notably,218

the stochastic skeleton model has been shown to reproduce qualitatively the intermittent growth219

and demise of MJO wave trains found in nature, i.e. the occurence of series of successive MJO220

events, either two, three or sometimes more in a row (Matthews, 2008; Yoneyama et al., 2013;221

TMS2014).222
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2.2 Meridionally Extended Skeleton Model223

We now introduce a meridionally extended version of the stochastic skeleton model. Previous work224

on the skeleton model has focused essentially on the MJO dynamics, associated with an equatorial225

component of convective heating Ha (MS2009, MS2011, TMS2014). In order to produce intrasea-226

sonal events beyond the MJO, with either a meridionally symmetric or asymmetric structure, we227

include here additional o�-equatorial components of convective heating Ha in the skeleton model.228

The meridionally extended skeleton model is e�ciently solved using a pseudo-spectral method (i.e.229

using both spectral space and physical space) that is similar to the one from Majda and Khouider230

(2001), which is detailed below.231

First, we consider a projection of the skeleton model variables from equation (2) on a spectral232

space consisting of the �rst M meridional Hermite functions φm(y) (see e.g. Biello and Majda,233

2006):234

a(x, y, t) =
M−1∑
m=0

Am(x, t)φm(y), with (5)

235

φm(y) =
Hme

−y2/2√
2mm!

√
π
, 0 ≤ m ≤M − 1, and with Hermite polynomials Hm(y) = (−1)mey

2 dm

dym
e−y

2

(6)

This spectral space allows us to easily solve the dry dynamics component of the skeleton model236

(�rst three rows of equation 2). A suitable change of variables for this is to introduce K and237

Rm, 1 ≤ m ≤ M − 2, that are the amplitudes of the �rst equatorial Kelvin and Rossby waves,238

respectively. Their evolution reads:239

∂tK + ∂xK = − 1√
2
S0 (7)

240

∂tRm −
∂xRm

2m+ 1
= −

2
√
m(m+ 1)

2m+ 1

(√
mSm+1 +

√
m+ 1Sm−1

)
(8)

with Sm = HAm−Sθm, 0 ≤ m ≤M−1. The variables from equation (2) can then be reconstructed241

as:242

u(x, y, t) =
K√

2
φ0 +

M−2∑
m=1

Rm

4

[
φm+1√
m+ 1

− φm−1√
m

]
(9)
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243

θ(x, y, t) = − K√
2
φ0 −

M−2∑
m=1

Rm

4

[
φm+1√
m+ 1

+
φm−1√
m

]
(10)

244

v(x, y, t) =
S1√

2
φ0 +

M−2∑
m=1

[
∂xRm +

√
m+ 1Sm+1 −

√
mSm−1

] φm√
2(2m+ 1)

(11)

Second, we consider a physical space consisting of an ensemble of M zonal �stochastic strips�245

with meridional positions yl, −(M − 1)/2 ≤ l ≤ (M − 1)/2 given by the roots φM(yl) = 0 (with246

here M odd, though the method is also valid for M even). See �gure 1 for the setup with M = 5.247

The values of the skeleton model variables on such stochastic strips reads:248

a(x, yl, t) = al(x, t) (12)

One advantage of using these special points in physical space is that the spectral components Am249

from equation (5) can be computed e�ciently as:250

Am ≈
(M−1)/2∑

l=−(M−1)/2

alφm(yl)Gl, with Gl =
1

M(φM−1(yl))2
, (13)

which follows from the Gauss-Hermite quadrature approximation (Majda and Khouider, 2001).251

This representation allows us to easily solve the moisture and stochastic component of the skeleton252

model (fourth row of equation 2 and equation 3). A suitable change of variables to achieve this253

is to introduce Z = q + Qθ, in order to solve for each zonal stochastic strip a local system of254

equations:255

∂tZl = (Q− 1)Hal + sql −Qsθl (14)

as well as the stochastic process from equation (3) for each al (or ηl).256

The spectral and physical space used in the present article are shown in �gure 1. We consider257

here a meridional truncationM = 5 (i.e. 5 Hermites functions/zonal stochastic strips) that retains258

the main equatorial Kelvin and Rossby waves that are relevant for symmetric and asymmetric259

intraseasonal events (Gill, 1980; Biello and Majda 2005, 2006). This corresponds to one zonal260

stochastic strip at the equator and four strips o�-equator. The spectral components of heating261
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A0, A1, A2 (with meridional pro�les φ0, φ1, φ2 shown in �gure 1) may excite the equatorial Kelvin262

and �rst three Rossby waves from equations (7-8). Note that in previous work with the skeleton263

model for the MJO only (MS2009, MS2011, and TMS2014) a meridional truncation M = 1 was264

used, corresponding to a single zonal stochastic strip at the equator with associated component265

A0 exciting the Kelvin and �rst Rossby symmetric waves.266

2.3 Seasonal cycle warm pool267

In the present article, we consider a background warm pool state of the meridionally extended268

skeleton model from section 2.2 that is seasonally varying. The background warm pool state269

migrates meridionally with seasons, in qualitative agreement with observations (Zhang and Dong,270

2004). The sources of heating/moisture are balanced and read, in dimensional units (K.day−1):271

sθ = sq = (1− 0.6cos(2πx/L))exp(−(y − yC)2/2), with (15)
272

yC = Y sin(2πt/T ) (16)

where L is the equatorial belt length, T is the seasonal cycle period (one year), and Y =273

900 km. The background warm pool state in equation (15) consists of a maximal region of heat-274

ing/moistening that extends from x ≈ 10, 000− 30, 000 km and that is centered around yc, and a275

cold pool elsewhere. In boreal spring/autumn (yc = 0) the background warm pool state is centered276

at the equator and its meridional pro�le matches the one of the Hermite function φ0 shown in �gure277

1 (e.g. as in MS2011; TMS2014). The background warm pool displaces meridionally during the278

year, with its meridional center being yc = −Y in boreal winter, yC = 0 in boreal spring/autumn,279

and yc = Y in boreal summer. This meridional displacement is qualitatively consistent with the280

one found in observations. However, here for simplicity the warm pool displacement is symmetric281

with respect to the equator; in nature the warm pool displacement is greater in boreal summer282

(around 1000 km north) than in boreal winter (around 600km south, see e.g. �gure 4 of Zhang283

and Dong, 2004). As a result, a direct comparison of the model solutions with observations must284

be considered carefully.285
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The other reference parameters values used in this article are identical to TMS2014. They286

read, in non-dimensional units: Q = 0.9, Γ = 1.66 (≈ 0.3K−1day−1), H = 0.22 (10Kday−1), with287

stochastic transition parameter ∆a = 0.001. Details on the numerical method used to compute288

the simulations can be found in appendix A of TMS2014. In the following sections of this article,289

simulation results are presented in dimensional units. The dimensional reference scales are x, y:290

1500 km, t: 8 hours, u: 50m.s−1, θ, q: 15 K (see TMS2014).291

3 Model Solutions292

In this article we analyze the dynamics of the stochastic skeleton model with seasonal cycle in a293

statistically equilibrated regime. This section presents the main features of the model solutions,294

namely their zonal wavenumber-frequency power spectra, seasonal modulation, as well as several295

hovmoller diagrams.296

3.1 Zonal wavenumber-frequency power spectra297

The stochastic skeleton model with seasonal cycle simulates a MJO-like signal that is the dominant298

signal at intraseasonal-planetary scale, consistent with observations (Wheeler and Kiladis, 1999).299

Figure 2 shows the zonal wavenumber-frequency power spectra of model variables averaged within300

1500km south/north as a function of the zonal wavenumber k (in 2π/40, 000 km) and frequency ω301

(in cpd). The MJO appears here as a power peak in the intraseasonal-planetary band (1 ≤ k ≤ 3302

and 1/90 ≤ ω ≤ 1/30 cpd), most prominent in u, q and Ha. This power peak roughly corresponds303

to the slow eastward phase speed of ω/k ≈ 5ms−1 with the peculiar relation dispersion dω/dk ≈ 0304

found in observations (Wheeler and Kiladis, 1999). Those results are consistent with the ones of305

TMS2014 (its �gure 2 and 7), though the power spectra are here more blurred in comparison. We306

denote hereafter the band 1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd as the MJO band, which will be307

used to �lter the model solutions in the next sections.308

The other features in �gure 2 are weaker power peaks near the dispersion curves of a moist309

Rossby mode (around k ≈ −2 and ω ≈ 1/90 cpd) and of the dry uncoupled Kelvin and Rossby310
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waves from equation (8) (see MS2009; TMS2014). We note that for an antisymmetric average311

(0− 1500km north minus 0− 1500km south) the main feature is a power peak near the dispersion312

curve of the uncoupled Rossby wave R2 (not shown).313

3.2 Seasonal modulation314

The intraseasonal variability in the stochastic skeleton model migrates meridionally during the315

year, approximatively following the meridional migration of the background warm pool. Figure 3316

shows the seasonal variations of intraseasonal activity over the warm pool region, as a function of317

meridional position y. This diagnostic is somewhat similar to the one of Zhang and Dong (2004,318

�gure 4). Figure 3(f) will be described in details in section 4.5.319

This meridional migration of intraseasonal variability shares some similarities with the one320

observed in nature (Zhang and Dong, 2004), with overall an increased variability in the northern321

(southern) hemisphere in boreal summer (winter) as seen for all variables. The present model how-322

ever considers a qualitative truncation of the planetary-scale circulation to a few main components323

(see section 2), and as result the meridional displacement of intraseasonal variability is strongly324

dependent on the meridional shape of the �rst equatorial Kelvin and Rossby waves. This dis-325

placement is di�erent for each variable: the variable θ for example shows two strong o�-equatorial326

components that approximatively match the o�-equatorial gyres of the �rst symmetric Rossby wave327

structure (R1) from equations (8-11). It is useful here to remember that θ = −p for the surface328

pressure p with our crude �rst baroclinic vertical truncation. The variables u and Ha show strong329

equatorial components during the entire year that approximatively match the Kelvin wave struc-330

ture (K), while the variables v and q show strong o�-equatorial components that approximatively331

match the �rst antisymmetric Rossby wave structure (R2).332

3.3 y − t Hovmoller diagrams333

The stochastic skeleton model with seasonal cycle simulates a large diversity of intreaseasonal334

events, either meridionally symmetric or asymmetric, with a realistic intermittency. Figure 4(a-335

e) shows the y − t Hovmollers diagrams of the model variables, �ltered in the MJO band and336
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considered in a meridional slice at the zonal center of the background warm pool (x = 20, 000 km).337

Figure 4(f) shows the convective heating Ha at di�erent times in order to provide additional338

examples of intraseasonal events.339

A new feature of the stochastic skeleton model with seasonal cycle as compared to previous340

work with the skeleton model (MS2009; MS2011; TMS2014) is the simulation of a large diversity of341

meridionally symmetric and asymmetric intraseasonal events, beyond the MJO. As seen in �gure342

4 on all model variables the intraseasonal events show a great diversity in meridional structure,343

localization, strength and lifetime. In �gure 4(e-f), there are examples of intraseasonal events344

(hereafter symmetric events) with equatorial convective heating Ha around time 72500 days, 75600345

days, 79500 days, and of intraseasonal events (hereafter half-quadrupole events) with o�-equatorial346

convective heating around time 74800 days, 77300 days, and 80100 days. Some intraseasonal events347

(hereafter tilted events) even exhibit apparent meridional propagations of convective heating, for348

example around time 73000 days, 73800 days, and 81700 days. The symmetric, half-quadrupole349

and tilted types of events are analyzed in further detail in the next section. In addition, the350

intraseasonal events in �gure 4 are organized into intermittent wave trains with growth and demise,351

i.e. into series of successive intraseasonal events following a primary intraseasonal event, as seen352

in nature (Matthews, 2008; Yoneyama et al., 2013; TMS2014). This is an attractive feature of the353

stochastic skeleton model in generating intraseasonal variability.354

4 Three types of intraseasonal events355

Three interesting types of intraseasonal events are found in the solutions of the stochastic skeleton356

model with seasonal cycle: symmetric events, half-quadrupole events, and tilted events. In this357

section, we provide examples for each of those types of events and discuss their potential obser-358

vational surrogates. We then analyze the approximate structures of the three types of event and359

their occurence in the model solutions.360
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4.1 Symmetric events361

Figure 5 shows successive snapshots for an example of a symmetric intraseasonal event (for variables362

�ltered in the MJO band). In �gure 5, the symmetric event develops over the warm pool region363

x ≈ 10, 000 − 30, 000 km and propagates eastward at a speed of around 5ms−1. The symmetric364

event consists of an equatorial center of convective heating Ha, with leading moisture anomalies365

q and a surrounding quadrupole vortex structure in θ and the relative vorticity denoted as curl =366

∂xv − ∂yu.367

The symmetric type of event is representative of MJO composites in nature (Hendon and368

Salby, 1994). It also has the structure of the MJO mode from MS2009. In �gure 5, note in369

addition that the divergence matches the structure of Ha, consistent with the weak temperature370

gradient approximation being applied at large scales in the tropics (Sobel et al., 2001; Majda and371

Klein, 2003). This match is also found for the other types of intraseasonal events (see hereafter).372

Such approximation is relevant here to analyze a posteriori the simulation results, �ltered in the373

MJO band, but is however not relevant in the full model dynamics (see the discussion in the374

appendix of MS2011). Note also that the curl has a main contribution from −∂yu and very little375

contribution from ∂xv, as expected from the long-wave approximation (not shown).376

4.2 Half-quadrupole events377

Figure 6 shows an example of a half-quadrupole intraseasonal event. The half-quadrupole event378

consists of an o�-equatorial center of convective heating Ha, with leading o�-equatorial moisture379

anomalies q, and a surrounding vortex structure in θ and the curl that is most pronounced in the380

hemisphere of heating anomalies (i.e. a half-quadrupole). In particular, this event shows strong381

o�-equatorial v anomalies (e.g. as compared to the symmetric event from �gure 5 ).382

The half-quadrupole type of event may be representative of some intraseasonal convective383

anomalies in nature that develop o�-equator over the western Paci�c region (Wang and Rui, 1990;384

Jones et al., 2004; Izumo et al., 2010; Tung et al., 2014a, b). However, in nature those intraseasonal385

convective anomalies often follow convective anomalies at the equator in the Indian ocean, that386

bifurcate either northward (in boreal summer) or southward (in boreal winter) when reaching387
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the maritime continent (Wang and Rui, 1990; Jones et al., 2004). This peculiar behaviour found388

in nature is sometimes observed in the model solutions when a symmetric event transits to a389

half-quadrupole event when reaching the warm pool zonal center corresponding to the maritime390

continent in nature (not shown).391

The half-quadrupole event shown in �gure 6 has maximum anomalies in the northern hemi-392

sphere. For clarity, we denote this type of event as a half-quadrupole north (HQN) event. There393

are also examples in the model solutions of half-quadrupole events with maximum anomalies in394

the southern hemisphere (e.g. at simulation time 74800 days in �gure 4), that we denote as395

half-quadrupole south (HQS) events.396

4.3 Tilted events397

Figure 7 shows an example of a tilted intraseasonal event. The tilted event in �gure 7 consists of398

a structure of convective heating Ha that is oriented north-westward, i.e. tilted, with a similarly399

tilted leading structure of moisture anomalies q and a tilted quadrupole structure in θ and the400

curl. This event shows in addition strong cross-equatorial v anomalies.401

The tilted type of event shows some characteristics that are similar to the ones of the summer402

monsoon ISO in nature. Due to its tilted structure, the eastward propagation of this type of403

event (at around 5ms−1) produces an apparent northward propagation of convective heating (at404

around 1.5ms−1) when viewed along a �xed meridional section, similar to Lawrence and Webster405

(2002). This tilted band of convective heating with apparent northward propagation is one of the406

salient features of the summer monsoon ISO in nature (Kikuchi et al., 2011), though northward407

propagation can be sometimes independent of eastward propagation (Webster, 1983; Wang and408

Rui, 1990; Jiang et al., 2004). In addition, the tilted type of event in the model solutions shows409

strong cross-equatorial v anomalies and a tilted quadrupole structure that is also found in nature410

(e.g. Lau and Waliser, 2012, chapt 2 �g 2.10; Lawrence 1999, �g 3.7).411

The tilted event shown in �gure 6 is oriented north-westward, with maximal anomalies in the412

northern hemisphere. For clarity, we denote this type of event as a tilted north (TN) event. There413

are also examples of tilted events oriented south-westward with maximal anomalies in the southern414
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hemisphere in the model solutions (e.g. at simulation time 73000 days in �gure 4), that we denote415

as tilted south (TS) events. Note that there are also examples in the model solutions of tilted416

events oriented north-westward (south-westward) in the southern (northern) hemisphere, that are417

not considered here (not shown).418

4.4 Approximate Structures of intraseasonal events419

Here we provide a simpli�ed description of the structure of the three type of intraseasonal events420

(symmetric, half-quadrupole and tilted events) found in the solutions of the stochastic skeleton421

model with seasonal cycle. The approximate structure of those events can be retrieved with good422

accuracy by considering the atmospheric response to prescribed heating structures Ha propagating423

eastward at constant speed, in a fashion similar to Chao (1987) (see also Biello and Majda, 2005,424

2006).425

We consider prescribed heating anomalies on the equatorial and �rst northward zonal stochastic426

strips of the skeleton model (cf �gure 1 and equation 12). This reads, in non-dimensional units:427

Ha0 − sθ0 = HaEcos(kx− ωt)

Ha1 − sθ1 = HaNcos(kx− ωt− b)

Hal − sθl = 0, l = −2, −1, 2

(17)

where aE, aN , and b are prescribed parameters. For the truncation M = 5 adopted in the present428

article a0 is the planetary enveloppe of synoptic/convective activity on the zonal stochastic strip429

l = 0 located at the equator, and a1 is the planetary envelope of synoptic/convective activity on430

the zonal stochastic strip l = 1 located at around 1500 km north (see �gure 1).431

The above prescribed heating anomalies are considered in the skeleton model from equation432

(2) (with the meridional truncation M = 5 adopted in the present article), where they replace the433

stochastic parametrization from equation (3). We assume steady-state solutions taken in a moving434

frame with speed which is approximatively the one of the MJO, cF = 5ms−1; this is obtained by435

applying the variable change ∂t = −cF∂x in equation (2). The approach is similar to the one of436

Chao (1987) (see also Biello and Majda, 2005, 2006); however here there is no frictional dissipation437
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and the evolution of lower level moisture q is also considered.438

Figure 8 (top) shows the prescribed heating and associated atmospheric response for a sym-439

metric event. For this event, we consider equatorial heating anomalies only: aE = 0.06 (such that440

Ha ≈ 0.6Kday−1 at the equator), aN = 0 and b = 0. We also choose a wavenumber k = 1 in �gure441

8 for illustration. The atmospheric response is overall consistent with the one of the individual442

event from �gure 5, and is in essence the MJO quadrupole vortex structure centered at the equator443

found in previous works (MS2009).444

Figure 8 (middle) shows the prescribed heating and atmospheric response for a half-quadrupole445

north (HQN) event. For this event, we consider o�-equatorial convective heating only: aE = 0,446

aN = 0.04 with no phase shift so b = 0. The atmospheric response, located in the northern447

hemisphere, is overall consistent with the one of the individual event from �gure 6, with strong o�-448

equatorial θ, q and v anomalies. Note that a half-quadrupole south (HQS) event would be retrieved449

by considering o�-equatorial heating on the southern strip l = −1 instead of the northern strip450

l = 1.451

Figure 8 (bottom) shows the prescribed heating and associated atmospheric response for a452

tilted north (TN) event. For this tilted event, we consider a combination of both equatorial and453

o�-equatorial convective heatings, that are taken out of phase in order to produce a tilted band454

of convective heating oriented north-westward in the northern hemisphere: aE = 0.04, aN = aE,455

with a phase shift b = −π/2. The atmospheric response is overall consistent with the one of the456

individual event from �gure 7, with a tilted leading structure of moisture anomalies q, a tilted457

quadrupole structure in the curl and strong cross-equatorial v anomalies. Note that a tilted south458

(TS) event would be retrieved by considering o�-equatorial heating on the southern strip l = −1459

instead of the northern strip l = 1.460

4.5 Indices of intraseasonal events461

In this subsection we derive indices that estimate the amplitude of the speci�c types of intraseasonal462

events (symmetric, half-quadrupole and tilted events) found in the solutions of the stochastic463

skeleton model with seasonal cycle. Those indices allow one to track the occurence of each type of464
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event through the year. The model reproduces in particular a realistic alternance of the occurence465

of half-quadrupole and tilted events between boreal summer/winter, as well symmetric events466

overall most prominent during the year.467

The de�nition of each index is motivated from the approximate structure of individual events468

presented in section 4.4. Each index is computed from the component of convective heating Ha469

over one or various zonal stochastic strips, �ltered in the MJO band. For symmetric events the470

index is Ha0, namely the Ha component on the zonal stochastic strip l = 0 located at the equator471

(see �gure 1). For half-quadrupole north (HQN) events the index is Ha1, while for half-quadrupole472

south (HQS) events the index is Ha−1. For tilted north (TN) events the index is (Ha0 + Ha∗1)/2473

, where a∗1 is the Ha component on the northern zonal stochastic strip l = 1 shifted eastward by474

90 degrees for each wavenumber k = 1, 2, 3, in a fashion similar to equation (17) and �gure 8. For475

tilted south (TS) events the index is similarly (Ha0 +Ha∗−1)/2.476

Figure 9 shows the longitude-time hovmoller diagrams of each index compared to a y − t477

Hovmoller diagram of Ha (identical to the one in �gure 4e). This representation allows to track478

the occurence of each type of event in the simulations. As shown in �gure 9, symmetric events are479

overall most prominent. The strong tilted events at simulation time 73000 days and 73800 days in480

particular are well captured by the associated indices, though a drawback of the present method481

is that they are also counted as symmetric and half-quadrupole events.482

The above indices also allow to diagnose the occurence of each type of intraseasonal event483

through the year. Figure 3(f) shows the occurence of each type of event, as a function of seasons.484

The occurence of each type of event is computed based on a threshold criteria: we compute for485

each index a threshold criteria that is equal to unity when the index magnitude from �gure 9 is486

superior to a threshold value set here at 0.2Kday−1, and zero otherwise. The threshold criteria is487

then averaged over the warm pool region (x = 10, 000 to 30, 000 km) and over each day of the488

year, which is shown in �gure 3(f).489

The occurence of each type of intraseasonal event shown in �gure 3(f) is qualitatively consistent490

with the one found in nature. In particular, half-quadrupole north (HQN) and tilted north (TN)491

events are most prominent in boreal summer as compared to boreal winter, while half-quadrupole492
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south (HQS) and tilted south (TS) events are most prominent in boreal winter as compared to493

boreal summer (Wang and Rui, 1990; Jones et al., 2004). Meanwhile, the symmetric events are494

most prominent through the entire year as compared to the other types of events. This is consistent495

with observations where MJO events are most prominent through the year, except during boreal496

summer where summer monsoon ISO (i.e. tilted north) events are most prominent (Lawrence and497

Webster, 2002; Kikuchi et al., 2011).498

5 Conclusions499

We have analyzed the dynamics of a stochastic skeleton model for the MJO and the intraseasonal-500

planetary variability in general with a seasonal cycle. It is a modi�ed version of a minimal dy-501

namical model, the skeleton model (Majda and Stechmann, 2009b, 2011; Thual et al., 2014). The502

skeleton model has been shown in previous work to capture together the MJO's salient features503

of (I) a slow eastward phase speed of roughly 5ms−1, (II) a peculiar dispersion relation with504

dω/dk ≈ 0, and (III) a horizontal quadrupole structure. Its stochastic version further includes505

a simple stochastic parametrization of the unresolved synoptic-scale convective/wave processes.506

Most notably, the stochastic skeleton model has been shown to reproduce qualitatively the inter-507

mittent growth and demise of MJO wave trains found in nature. In the present article, we further508

focus on the tropical intraseasonal variability in general simulated by the stochastic skeleton model.509

Two main features of the intraseasonal variability that are qualitatively reproduced by the model510

are:511

IV. Meridionally asymmetric intraseasonal events, and512

V. A seasonal modulation of intraseasonal variability.513

In order to account for features (IV-V), two important modi�cations have been considered in the514

stochastic skeleton model with seasonal cycle. First, while in previous works with the skeleton515

model focusing on the MJO (Majda and Stechmann, 2009b, 2011; Thual et al., 2014) a single516

equatorial component of convective heating was considered, here we have considered additional o�-517

equatorial components of convective heating in order to further produce meridionally asymmetric518
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intraseasonal events beyond the MJO. Second, a simple seasonal cycle has been included that519

consists in a background warm pool state of heating/moistening that migrates meridionally during520

the year.521

A new feature of the stochastic skeleton model with seasonal cycle, as compared to previous522

works with the skeleton model, is the simulation of a large diversity of meridionally symmetric and523

asymmetric intraseasonal-planetary events. Indeed, in nature intraseasonal events show a great524

diversity in horizontal structure, strength, lifetime and localization (Wang and Rui, 1990; Jones525

et al., 2004; Masunaga, 2007). For example, both equatorial and o�-equatorial convective heating526

coexist during intraseasonal events with characteristics and intensity that di�er from one event527

to another, including during MJO events (Tung et al., 2014a, b; Biello and Majda, 2005, 2006).528

The present stochastic skeleton model with seasonal cycle qualitatively reproduces this diversity of529

intraseasonal events. In addition, despite their diversity those intraseasonal events are organized530

into intermittent wave trains with growth and demise, i.e. into series of successive events following531

a primary intraseasonal event, as seen in nature (Matthews, 2008; Yoneyama et al., 2013; Thual532

et al., 2014). This is an attractive feature of the stochastic skeleton model with seasonal cycle in533

generating intraseasonal variability.534

While the stochastic skeleton model with seasonal cycle obviously lacks several key physical535

processes in order to account for the complete dynamics of the MJO and intraseasonal variability536

in general, e.g. topographic e�ects, land-sea contrast, a re�ned vertical structure, mean vertical537

shears, etc (Lau and Waliser, 2012 chapt 10, 11), it is interesting that some aspects of peculiar538

intraseasonal events found in nature are qualitatively recovered in the model solutions. Three inter-539

esting types of intraseasonal-planetary events found in the model solutions are symmetric events,540

half-quadrupole events, and tilted events. As regards observations, the symmetric events with541

quadrupole vortex structure are most representative of MJO composites (Hendon and Salby, 1994;542

Majda and Stechmann, 2009b). The half-quadrupole events, with o�-equatorial heating structure543

may be representative of some intraseasonal convective anomalies that develop o�-equator in the544

western Paci�c, though in nature those convective anomalies often follow convective anomalies at545

the equator in the Indian ocean (Wang and Rui, 1990; Jones et al., 2004; Izumo et al., 2010; Tung546
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et al., 2014a, b). Finally, the tilted events with a heating structure oriented north-westward and547

strong cross-equatorial �ow share some characteristics with the summer monsoon intraseasonal548

oscillation: in particular, the eastward propagation of those events (at around 5ms−1) results549

in apparent northward propagations (at around 1.5ms−1) when viewed along a latitudinal sec-550

tion, similar to Lawrence and Webster (2002). Note in addition that there are other types of551

intraseasonal events simulated by the stochastic skeleton model with seasonal cycle that have not552

been analyzed in detail here. Some events simulated by the present model are for example of a553

mixed type, i.e. result from a combination of the three above types of events, or transit from554

one event type to another during their lifetime. This includes examples of intraseasonal events555

transiting from a symmetric event to a half-quadrupole event when reaching the warm pool center556

corresponding to the maritime continent in nature (Wang and Rui, 1990; Jones et al., 2004).557

The intraseasonal-planetary variability in nature migrates meridionally during the year, ap-558

proximatively following the migration of warm sea surface temperatures (Salby and Hendon, 1994;559

Zhang and Dong, 2004). This feature is qualitatively recovered by the stochastic skeleton model560

with seasonal cycle, despite the fact that the present model considers a qualitative truncation of561

the planetary-scale circulation to a few main components. For example, the meridional displace-562

ment is di�erent for each variable, which is related to the meridional shape of the few equatorial563

Kelvin and Rossby waves considered here (cf section 2). Nevertheless the model exhibits a strong564

o�-equatorial intraseasonal variability in both boreal summer and winter, with potential impli-565

cations for understanding its interactions with the Asian and Australian monsoon (Wheeler and566

Hendon, 2004; Lau and Waliser, 2012 chapt 2, 5). In addition, we have veri�ed that the occurence567

of the three above types of intraseasonal events during the year is qualititatively consistent with568

observations. For instance, tilted events with heating structure oriented north-westward and half-569

quadrupole events with northern o�-equatorial heating structure are more prominent in boreal570

summer as compared to the other seasons (Wang and Rui, 1990; Jones et al., 2004). Meanwhile,571

symmetric events are the most prominent type of event through the entire year, consistent with572

observations where MJO events are most prominent through the year except during boreal summer573

where summer monsoon ISO (i.e. tilted north) events are most prominent (Lawrence and Webster,574

23



2002; Kikuchi et al., 2011).575

While the skeleton model appears to be a plausible representation for the essential mechanisms576

of the MJO and some aspects of intraseasonal variability in general, several issues need to be577

adressed as a perspective for future work. One important issue is to compare further the skeleton578

model solutions with their observational surrogates, qualitatively and also quantitatively. A more579

complete model should also account for more detailed sub-planetary processes within the envelope580

of intraseasonal events, including for example synoptic-scale convectively coupled waves and/or581

mesoscale convective systems (e.g. Moncrie� et al., 2007; Majda et al., 2007; Khouider et al.,582

2010; Frenkel et al., 2012).583
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Figure Captions:731

Figure 1: Model spectral and physical space and warm pool shape: Hermite functions φm, m =732

0, 1, 2 (lines) and zonal strips positions yl, −(M − 1)/2 ≤ l ≤ (M − 1)/2 (dots) for a truncation733

M = 5, as a function of y in 1000km.734

Figure 2: Zonal wavenumber-frequency power spectra: for (a) u (ms−1), (b) θ (K), (c) q735

(K), and (d)Ha (Kday−1), as a function of zonal wavenumber (in 2π/40000km) and frequency736

(in cpd). The contour levels are in the base 10-logarithm, for the dimensional variables averaged737

within 1500 km south/north. The black dashed lines mark the periods 90 and 30 days.738

Figure 3: Intraseasonal activity: for (a) u (m.s−1), (b) v (ms−1), (c) θ (K), (d) q (K), and (e)739

Ha (K.day−1), as a function of season (month of the year) and meridional position y (1000 km).740

The intraseasonal activity is computed as the standard deviation of signals �ltered in the MJO741

band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd) averaged over the warm pool region (x = 10, 000 to742

30, 000 km). (f): Occurence of each type of intraseasonal event: for half-quadrupole south (HQS,743

blue), tilted south (TS, green), symmetric (black), tilted north (TS, magenta), and half-quadrupole744

north (HQN, red) events, nondimensional and as a function of season (month of the year, x-axis).745

Figure 4: y − t Hovmoller diagrams: for (a) u (m.s−1), (b) v (m.s−1), (c) θ (K), (d) q (K),746

and (e) Ha (K.day−1), as a function of meridional position location y (in 1000 km) and simulation747

time (in 1000 days). (f) repeats the Hovmoller diagram for Ha at di�erent times. The variables748

are �ltered in the MJO band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd), and considered at the warm749

pool zonal center (x = 20, 000 km). The meridional position yC of the warm pool center, varying750

with seasons, is overplotted (black line).751

Figure 5: x− y Snapshots for a symmetric intraseasonal event: for (a) u (ms−1), (b) v (ms−1),752

(c) θ (K), (d) q (K), (e) Ha (Kday−1), (f) divergence ∂xu+ ∂yv (m.s−1)(1000km)−1, and (g) curl753

∂xv− ∂yu (m.s−1)(1000km)−1, as a function of zonal position x (1000km) and meridional position754

y (1000km). Left label indicates simulation time for each snapshot (in days). The variables are755

�ltered in the MJO band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd).756

Figure 6: x − y Snapshots for a half-quadrupole north (HQN) intraseasonal event (see legend757

of �gure 5).758
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Figure 7: x− y Snapshots for a tilted north (TN) intraseasonal event (see legend of �gure 5).759

Figure 8: Atmospheric response to prescribed heating: for (a) u (ms−1), (b) v (ms−1), (c)760

θ (K), (d) q (K), (e) Ha (Kday−1), (f) divergence ∂xu + ∂yv (m.s−1)(1000km)−1, and (g) curl761

∂xv− ∂yu (m.s−1)(1000km)−1, as a function of zonal position x (1000km) and meridional position762

y (1000km). This is shown for (top) a symmetric event, (middle) a half-quadrupole north (HQN)763

event, (bottom) a tilted north (TN) event.764

Figure 9: (a) y − t Hovmoller diagram: for Ha (Kday−1), as a function of meridional position765

location y (in 1000 km) and simulation time (in 1000 days), considered at the warm pool zonal766

center (x = 20, 000 km). (b-f): x − t Hovmoller diagrams: for the index of (b) half-quadrupole767

south (HQS), (c) tilted south (TS), (d) symmetric, (e) tilted north (TN), and (f) half-quadrupole768

north (HQN) events, in Kday−1 and as a function of zonal position location x (in 1000 km) and769

simulation time (1000 days).770
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Figure 1: Model spectral and physical space and warm pool shape: Hermite functions φm, m =
0, 1, 2 (lines) and zonal strips positions yl, −(M − 1)/2 ≤ l ≤ (M − 1)/2 (dots) for a truncation
M = 5, as a function of y in 1000km.
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Figure 2: Zonal wavenumber-frequency power spectra: for (a) u (ms−1), (b) θ (K), (c) q (K), and
(d)Ha (Kday−1), as a function of zonal wavenumber (in 2π/40000km) and frequency (in cpd).
The contour levels are in the base 10-logarithm, for the dimensional variables averaged within
1500 km south/north. The black dashed lines mark the periods 90 and 30 days.
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Figure 3: Intraseasonal activity: for (a) u (m.s−1), (b) v (ms−1), (c) θ (K), (d) q (K), and (e)
Ha (K.day−1), as a function of season (month of the year) and meridional position y (1000 km).
The intraseasonal activity is computed as the standard deviation of signals �ltered in the MJO
band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd) averaged over the warm pool region (x = 10, 000 to
30, 000 km). (f): Occurence of each type of intraseasonal event: for half-quadrupole south (HQS,
blue), tilted south (TS, green), symmetric (black), tilted north (TS, magenta), and half-quadrupole
north (HQN, red) events, nondimensional and as a function of season (month of the year, x-axis).
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Figure 4: y− t Hovmoller diagrams: for (a) u (m.s−1), (b) v (m.s−1), (c) θ (K), (d) q (K), and (e)
Ha (K.day−1), as a function of meridional position location y (in 1000 km) and simulation time
(in 1000 days). (f) repeats the Hovmoller diagram for Ha at di�erent times. The variables are
�ltered in the MJO band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd), and considered at the warm pool
zonal center (x = 20, 000 km). The meridional position yC of the warm pool center, varying with
seasons, is overplotted (black line).
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Figure 5: x − y Snapshots for a symmetric intraseasonal event: for (a) u (ms−1), (b) v (ms−1),
(c) θ (K), (d) q (K), (e) Ha (Kday−1), (f) divergence ∂xu+ ∂yv (m.s−1)(1000km)−1, and (g) curl
∂xv− ∂yu (m.s−1)(1000km)−1, as a function of zonal position x (1000km) and meridional position
y (1000km). Left label indicates simulation time for each snapshot (in days). The variables are
�ltered in the MJO band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd).
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Figure 6: x − y Snapshots for a half-quadrupole north (HQN) intraseasonal event (see legend of
�gure 5).
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Figure 7: x− y Snapshots for a tilted north (TN) intraseasonal event (see legend of �gure 5).
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Figure 8: Atmospheric response to prescribed heating: for (a) u (ms−1), (b) v (ms−1), (c) θ
(K), (d) q (K), (e) Ha (Kday−1), (f) divergence ∂xu + ∂yv (m.s−1)(1000km)−1, and (g) curl
∂xv− ∂yu (m.s−1)(1000km)−1, as a function of zonal position x (1000km) and meridional position
y (1000km). This is shown for (top) a symmetric event, (middle) a half-quadrupole north (HQN)
event, (bottom) a tilted north (TN) event. .
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Figure 9: (a) y − t Hovmoller diagram: for Ha (Kday−1), as a function of meridional position
location y (in 1000 km) and simulation time (in 1000 days), considered at the warm pool zonal
center (x = 20, 000 km). (b-f): x − t Hovmoller diagrams: for the index of (b) half-quadrupole
south (HQS), (c) tilted south (TS), (d) symmetric, (e) tilted north (TN), and (f) half-quadrupole
north (HQN) events, in Kday−1 and as a function of zonal position location x (in 1000 km) and
simulation time (1000 days).
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