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1 Calibration of the Nonlinear Stochastic Models

Recall the low-order nonlinear stochastic model

du1
dt

= (−du u1 + γ (v + vf (t))u1 − (a+ ωu)u2) + σu Ẇu1 , (1.1a)

du2
dt

= (−du u2 + γ (v + vf (t))u2 + (a+ ωu)u1) + σu Ẇu2 , (1.1b)

dv

dt
= (−dv v − γ (u21 + u22)) + σv Ẇv, (1.1c)

dωu

dt
= (−dωωu + ω̂u) + σω Ẇω, (1.1d)

where
vf (t) = f0 + ft sin(ωf t+ φ). (1.2)

The optimal parameters in the stochastic model is determined by systematically minimiz-
ing the information distance (model error) of the signal equilibrium PDF of the stochastic
model q compared with that of the actual data p [1, 2],

P(p, q) =

∫
p ln

(
p

q

)
. (1.3)

The sensitivity analysis is shown in Figure 1.1, which indicates the robustness of the
low-order nonlinear stochastic model with respect to the parameters.

Prediction with random suboptimal parameters are shown in Figure 1.2 and 1.3, where
the random suboptimal parameter are given by

σu = σ∗
u + U(−0.05, 0.05), du = d∗u + U(−0.35, 0.25), ft = f ∗

t + U(0, 1)

γ = γ∗ + U(0, 0.2), σv = σ∗
v + U(−0.2, 0.2), dv = d∗v + U(−0.35, 0.25),

(1.4)

where the variables with stars are the optimal parameters and U(a, b) is the uniform
distribution in the interval [a, b].
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Figure 1.1: Sensitivity analysis of parameters ft, σu, du, dv, σv and γ in the low-order
nonlinear stochastic model (1.1).
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Figure 1.2: 15 and 25 days lead prediction skill with random suboptimal parameters.

The prediction with random suboptimal parameters has comparable prediction skill
as that with optimal parameters, implying the robustness of the low-order nonlinear
stochastic model in prediction.
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Figure 1.3: Prediction skill starting from November 1, January 10 and March 1 with
random suboptimal parameters.
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2 Details of data assimilation algorithm

In the prediction stage, the initial values of the hidden variables v and ωu are determined
via data assimilation algorithm.

One feature of the low-order nonlinear stochastic system (1.1) is that it is a conditional
Gaussian system with respect to the observations u1 and u2, meaning that once u1 and
u2 are given, the system is a linear equation with Gaussian statistics provided that the
initial condition is Gaussian. For such type of system, the conditional distribution of v
and ωu given the observations u1 and u2, which is Gaussian, can be explicitly written
down, which is contributed by Lipster and Shiryaev [3].

To run this data assimilation algorithm, we rewrite the low-order nonlinear stochastic
model (1.1) in the following abstract form,

dUt = [A0(t,U) + A1(t,U)Γt]dt+ B1(t,U)dW1(t), (2.1a)

dΓt = [a0(t,U) + a1(t,U)Γt]dt+ b2(t,U)dW2(t), (2.1b)

where Ut = (u1, u2)
T is a vector containing the observed variables while Γt = (v, ωu)T

represents for the unobserved processes. The matrices and vectors A0, A1, a0, a1, B1 and
b2 for the low-order nonlinear stochastic are given as follows

A0(t,U) =

(
−duu1 − au2 + γvf (t)
−duu2 + au1 + γvf (t)

)
, A1(t,U) =

(
γu1 −u2
γu2 u1

)
,

a0(t,U) =

(
−γ(u21 + u22)

ω̂u

)
, a1(t,U) =

(
−dv

−dω

)
,

B1(t,U) =

(
σu

σu

)
, b2(t,U) =

(
σv

σω

)
.

(2.2)

The Theorem in [3] states that assuming the conditional initial conditions being Gaus-
sian and some moments bound for the corresponding processes, the conditional mean µt

and conditional covariance Rt of Γ based on the observed process U are expressed as
follows

dµt =[a0(t,U) + a1(t,U)µt]dt+ (RtA
∗
1(t,U))(B1B

∗
1)

−1(t,U)[dUt − (A0(t,U) + A1(t,U)µt)dt],

dRt =
{
a1(t,U)Rt +Rta

∗
1(t,U) + (b2b

∗
2)(t,U)− (RtA

∗
1(t,U))(B1B

∗
1)

−1(t,U)(RtA
∗
1(t,U))∗

}
dt.

(2.3)
The initial value of the hidden processes for this filtering process is taken as the Gaus-
sian fit of the model equilibrium state. Therefore, with (2.3) the conditional Gaussian
distribution of the hidden processes v and ωu at each fixed time is determined.

As a remark, we point out that the filter (2.1) and (2.3) is an optimal filter if and
only if the signal is generated from system (2.1). Yet, our observed signal is MJO indices
while we utilize the low-order nonlinear stochastic model as the filter, and therefore our
filter is merely a suboptimal filter.

In Figure 2.1 we show the posterior mean and variance of the recovery of the hidden
variable v and ωu in the historic period from 1983/09/03 to 1999/12/31. The cross-
covariance of v and ωu is negligible of order O(10−18) and is not shown here. Note that
when intermittency occurs, the posterior covariance is small, meaning that the recovered
state has small uncertainty.
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Figure 2.1: Recovery of posterior mean and variance of stochastic damping v and stochas-
tic phase ωu in (1.1) from 1983/09/03 to 1999/12/31 as a function of time compared with
the observations of MJO indices. The cross-covariance of v and ωu is negligible of order
O(10−18) and is not shown here.
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3 Twin experiment

In this final section, we consider a twin experiment. That is, we assume the true signal
is generated from the low-order nonlinear stochastic model (1.1). Thus, the data assim-
ilation algorithm is based on a perfect filter. The signal generated by (1.1) is shown in
Figure 3.1. In particular, the signal has the same length as MJO indices and contains
weak and strong events in the prediction period. Figure 3.2 and 3.3 show the RMS error
and bivariate correlation for 1-60 days lead prediction skill and the 15 and 25 days lead
prediction curves. The MJO prediction skill in the paper is comparable to this internal
prediction skill, suggesting the low-order nonlinear stochastic model has significant skill
for determining the predicability limits of the large scale cloud patterns of the boreal
winter MJO.

0 50 100 150 200 250 300
−5

0

5

0 50 100 150 200 250 300
−5

0

5

Training period Prediction period

u
1

u
2

Months

Figure 3.1: Twin experiment. The signal is generated from nonlinear model (1.1) that
has the same length as the MJO data with the training period (1983/09/03–1999/12/31)
and prediction period (2000/01/01–2006/06/30).
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Figure 3.2: Twin experiment. Skill scores with RMSE (top) and bivariate correlation
(bottom) for prediction in different years.
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Figure 3.3: Twin experiment. Prediction skill of u1 at a 15 (top) and 25 (bottom) days
lead. The blue line shows the true signal and the red line shows the ensemble average of
the predicted signal with 50 ensemble members.
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