
Blended Particle Filters for Large Dimensional
Chaotic Dynamical Systems
Andrew J. Majda ∗, Di Qi ∗ , Themistoklis P. Sapsis †

∗Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012,
and †Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Contributed by Andrew J. Majda

A major challenge in contemporary data science is the devel-
opment of statistically accurate particle filters to capture non-
Gaussian features in large dimensional chaotic dynamical sys-
tems. Blended particle filters which capture non-Gaussian fea-
tures in an adaptively evolving low dimensional subspace through
particles interacting with evolving Gaussian statistics on the re-
maining portion of phase space are introduced here. These
blended particle filters are constructed below through a mathe-
matical formalism involving conditional Gaussian mixtures com-
bined with statistically nonlinear forecast models compatible with
this structure developed recently with high skill for uncertainty
quantification. Stringent test cases for filtering involving the
forty dimensional Lorenz 96 model with a five dimensional adap-
tive subspace for nonlinear blended filtering in various turbulent
regimes with at least nine positive Lyapunov exponents are uti-
lized here. These cases demonstrate the high skill of the blended
particle filter algorithms in capturing both highly non-Gaussian
dynamical features as well as crucial nonlinear statistics for ac-
curate filtering in extreme filtering regimes with sparse infrequent
high quality observations. The formalism developed here is also
useful for multi-scale filtering of turbulent systems and a simple
application is sketched below.

Data assimilation | Curse of dimensionality | Hybrid filters | Turbulent dy-
namical systems

Many contemporary problems in science ranging from protein
folding in molecular dynamics to scaling up of small scale ef-

fects in nanotechnology to making accurate predictions of the cou-
pled atmosphere-ocean system involve partial observations of ex-
tremely complicated large dimensional chaotic dynamical systems.
Filtering is the process of obtaining the best statistical estimate of a
natural system from partial observations of the true signal from na-
ture. In many contemporary applications in science and engineering,
real time filtering or data assimilation of a turbulent signal from na-
ture involving many degrees of freedom is needed to make accurate
predictions of the future state.

Particle filtering of low-dimensional dynamical systems is an es-
tablished discipline [9]. When the system is low dimensional, Monte-
Carlo approaches such as the particle filter with its various up-to-date
resampling strategies [14] provide better estimates than the Kalman
filter in the presence of strong nonlinearity and highly non-Gaussian
distributions. However, these accurate nonlinear particle filtering
strategies are not feasible for large dimensional chaotic dynamical
systems since sampling a high dimensional variable is computation-
ally impossible for the foreseeable future. Recent mathematical the-
ory strongly supports this curse of dimensionality for particle filters
[8, 6]. In the second direction, Bayesian hierarchical modeling [7]
and reduced order filtering strategies [15, 4, 3] based on the Kalman
filter [12] have been developed with some success in these extremely
complex high dimensional nonlinear systems. There is an inherently
difficult practical issue of small ensemble size in filtering statisti-
cal solutions of these complex problems due to the large computa-
tional overload in generating individual ensemble members through
the forward dynamical operator. Numerous ensemble based Kalman
filters [2, 5, 11, 10, 13] show promising results in addressing this
issue for synoptic scale midlatitude weather dynamics by imposing
suitable spatial localization on the covariance updates; however, all

these methods are very sensitive to model resolution, observation fre-
quency, and the nature of the turbulent signals when a practical lim-
ited ensemble size (typically less than 100) is used.

Recent attempts without a major breakthrough to use particle fil-
ters with small ensemble size directly on large dimensional chaotic
dynamical systems are surveyed in Chapter 15 of [1]. The goal here
is to develop blended particle filters for large dimensional chaotic
dynamical systems. For the blended particle filters developed be-
low for a state vector u ∈ RN , there are two subspaces which typ-
ically evolve adaptively in time where u = (u1,u2), uj ∈ RNj ,
N1 +N2 = N with the property that N1 is low dimensional enough
so that the non-Gaussian statistics ofu1 can be calculated from a par-
ticle filter while the evolving statistics of u2 are conditionally Gaus-
sian given u1. Statistically nonlinear forecast models with this struc-
ture with high skill for uncertainty quantification have been devel-
oped recently by two of the authors [33, 32, 31, 30] and are utilized
below in the blended filters.

The mathematical foundation for implementing the analysis step
where observations are utilized in the conditional Gaussian mixture
framework are developed in the next section followed by a summary
of the nonlinear forecast models as well as crucial issues for prac-
tical implementation. The skill of the blended filters in capturing
significant non-Gaussian features as well as crucial nonlinear dynam-
ics is tested below in a forty dimensional chaotic dynamical system
with at least nine positive Lyapunov exponents in various turbulent
regimes where the adaptive non-Gaussian subspace with a particle
filter is only five dimensional with excellent performance for the
blended filters. The mathematical formalism for filtering with con-
ditionally Gaussian mixtures should be useful as a framework for
multi-scale data assimilation of turbulent signals and a simple appli-
cation is sketched below. An earlier strategy related to the approach
developed here is simply to filter the solution on an evolving low di-
mensional subspace which captures the leading variance adaptively
[28] while ignoring the other degrees of freedom; simple examples
for non-normal linear systems [31] demonstrate the poor skill of such
an approach for reduced filtering in general; for filtering linear non-
normal systems, the optimal reduced basis instead is defined through
balanced truncation [3].

Mathematical Foundations for Blended Particle Filters
Here we consider real time filtering or data assimilation algorithms
for a state vector u ∈ RN from a nonlinear turbulent dynamical
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system where the state u is forecast by an approximate dynamical
model between successive observation times, m∆t, and the state of
the system is updated through use of the observations at the discrete
times m∆t in the analysis step. For the blended particle filters de-
veloped below, there are two subspaces which typically evolve adap-
tively in time (although that dependence is suppressed here) where
u = (u1,u2), uj ∈ RNj , N1 +N2 = N with the property that N1

is low dimensional enough so that the statistics of u1 can be calcu-
lated from a particle filter while the statistics of u2 are conditionally
Gaussian given u1. Thus, at any analysis time step m∆t, we have
the prior forecast density given by

p− (u) = p− (u1) pG− (u2 | u1) , [1]

where pG− (u2 | u1) is a Gaussian distribution determined by the con-
ditional mean and covariance, pG− (u2 | u1) = N

(
ū−2 (u1) , R−2 (u1)

)
.

We assume that the marginal distribution, p− (u1), is approximated
by Q-particles,

p− (u1) =

Q∑
j=1

pj,−δ (u1 − u1,j) , [2]

with non-negative particle weights, pj,− with
∑
j pj,− = 1. Be-

low we will sometimes abuse notation as in [2] and refer to the con-
tinuous distribution in [1] and the particle distribution in [2] inter-
changeably. Here it is assumed that the nonlinear observation opera-
torG (u) maps RN to RM , withM observations at the analysis time,
m∆t, and has the form

v = G (u) + σ0 = G0 (u1) +G1 (u1)u2 + σ0, [3]

whereG1 (u1) has rankM and the observational noise, σ0, is Gaus-
sian σ0 = N (0, R0). Note that the form in [3] is the leading Taylor
expansion aroundu1 of general nonlinear observation operator. Now,
start with the conditional Gaussian particle distribution, p− (u1,u2)
given from the forecast distribution

p− (u) =

Q∑
j=1

pj,−δ (u1 − u1,j)N
(
ū−2,j , R

−
2,j

)
, [4]

and compute the posterior distribution in the analysis step through
Bayes theorem, p+ (u | v) ∼ p (v | u) p− (u). The key fact is the
following.

Proposition 1. Assume the prior distribution from the forecast
is the blended particle filter conditional Gaussian distribution in [4]
and assume the observations have the structure in [3], then the pos-
terior distribution in the analysis step taking into account the obser-
vations in [3] is also a blended particle filter conditional Gaussian
distribution, i.e. there are explicit formulas for the updated weights,
pj,+, 1 ≤ j ≤ Q, and conditional mean, ū+

2,j , and covariance,R+
2,j ,

so that

p+ (u) =

Q∑
j=1

pj,+δ (u1 − u1,j)N
(
ū+

2,j , R
+
2,j

)
. [5]

In fact, the distributions N
(
ū+

2,j , R
+
2,j

)
are updated by suitable

Kalman filter formulas with the mean update for ū+
2,j depending non-

linearly on u1,j in general.
The proof of Proposition 1 is a direct calculation similar to those

in [27, 26] for other formulations of Gaussian mixtures over the en-
tire state space and the explicit formulas can be found in the sup-
plementary material. However, there is a crucial difference that here
conditional Gaussian mixtures are applied in the reduced subspace
u2 blended with particle filter approximations only in the lower di-
mensional subspace, u1, unlike the previous work.

Here we consider algorithms for filtering turbulent dynamical
systems with the form,

ut = Lu+B (u,u) + F , [6]

where B (u,u) involves energy conserving nonlinear interactions
with u ·B (u,u) = 0 while L is a linear operator including damp-
ing as well as anisotropic physical effects; many turbulent dynami-
cal systems in geosciences and engineering have the structure in [6]
[25, 24].

Application to Multi-scale Filtering of a Slow-Fast System. A typ-
ical direct use of the above formalism is briefly sketched. In many
applications in the geosciences, there is a fixed subspace u1 repre-
senting the slow (vortical) waves and a fixed subspace u2 represent-
ing the fast (gravity) waves with observations of pressure and veloc-
ity for example, which naturally mix the slow and fast waves at each
analysis step [17, 16, 1]. A small parameter ε � 1 characterizes the
ratio of the fast time scale to the slow time scale. A well known for-
malism for stochastic mode reduction has been developed for such
multi-scale systems [18, 19] with a simplified forecast model valid in
the limit ε→ 0 with the form

p (u1,u2) (t) = p (u1) (t) p (u2 | u1)

= p (u1) (t)N (0, R2) , [7]

where p (u1) (t) satisfies a reduced Fokker-Planck equation for the
slow variables alone and R2 is a suitable background covariance ma-
trix for the fast variables. A trivial application of Proposition 1 guar-
antees that there is a simplified algorithm consisting of a particle filter
for the slow variables alone updated at each analysis step through
Proposition 1 which mixes the slow and fast components through
the observations. More sophisticated multi-scale filtering algorithms
with this flavor designed to capture unresolved features of turbulence
are developed recently in [23].

Blended Statistical Nonlinear Forecast Models. While the above
formulation can be applied to hybrid particle filters with conditional
Kalman filters on fixed subspaces, defined by u1 and u2 as sketched
above, a more attractive idea is to utilize statistical forecast models
that adaptively change these subspaces as time evolves in response
to the uncertainty without a separation of time scales. Recently two
of the authors [33, 32, 31, 30] have developed nonlinear statistical
forecast models of this type, the quasilinear Gaussian dynamical or-
thogonality method (QG-DO) and the more sophisticated modified
quasilinear Gaussian dynamical orthogonality method (MQG-DO)
for turbulent dynamical systems with the structure in [6]. It is shown
in [33] and [32] respectively that both QG-DO and MQG-DO have
significant skill for uncertainty quantification for turbulent dynamical
systems with MQG-DO superior to QG-DO although more calibra-
tion is needed for MQG-DO in the statistical steady state.

The starting point for these nonlinear forecast models is a quasi-
linear Gaussian (QG) statistical closure [33, 31] for [6] or a more
statistically accurate modified quasilinear Gaussian (MQG) closure
[32, 31]; the QG and MQG forecast models incorporate only Gaus-
sian features of the dynamics given by mean and covariance. The
more sophisticated QG-DO and MQG-DO methods have an adap-
tively evolving lower dimensional subspace where non-Gaussian fea-
tures are tracked accurately and allow for the exchange of statistical
information between the evolving subspace with non-Gaussian statis-
tics and the evolving Gaussian statistical background. We illustrate
the simpler QG-DO scheme below and refer to [32, 31] for the details
of the more sophisticated MQG-DO scheme. The QG-DO statistical
forecast model is the following algorithm:

The subspace is represented as

u (t) = ū (t) +

s∑
j=1

Yj (t;ω) ej (t) [8]
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where ej (t), j = 1, · · · s are time-dependent orthonormal modes
and s � N is the reduction order. The modes and the stochastic
coefficients Yj (t;ω) evolve according to the DO condition [29]. In
particular the equations for the QG-DO scheme are as follows.

• Equation for the mean
The equation for the mean is obtained by averaging the original
system equation in [6]

dū

dt
= (L+D) ū+B (ū, ū) +RijB (vi,vj) + F . [9]

• Equation for the stochastic coefficients and the modes
Both the stochastic coefficients and the modes evolve according
to the DO equations [29]. The coefficient equations are obtained
by a direct Galerkin projection and the DO condition

dYi
dt

= Ym [(L+D) em +B (ū, em) +B (em, ū)] · ei

+ (YmYn − Cmn)B (em, en) · ei [10]

with Cmn = 〈YmY ∗n 〉. Moreover, the modes evolve according
to the equation obtained by stochastic projection of the original
equation to the DO coefficients

∂ei
∂t

= M i − ej (M i · ej) , [11]

with

M i = (L+D) ei +B (ū, ei) +B (ei, ū)

+B (em, en) 〈YmYnYk〉C−1
ik .

• Equation for the covariance
The equation for the covariance starts with the exact equation in-
volving third order moments with approximated nonlinear fluxes

dR

dt
= LvR+RL∗v +QF,s [12]

where the nonlinear fluxes are computed using reduced-order in-
formation from the DO subspace

QF,s = 〈YmYnYk〉 (B (em, en) · vi) (vj · ek)

+ 〈YmYnYk〉 (B (em, en) · vj) (vi · ek) .[13]

The last expression is obtained by computing the nonlinear fluxes
inside the subspace and projecting those back to the full N -
dimensional space.

The QG statistical forecast model is the special case with s = 0 so
that [9] and [12] with QF,s ≡ 0 are approximate statistical dynam-
ical equations for the mean and covariance alone. The MQG-DO
algorithm is a more sophisticated variant based on MQG with signif-
icantly improved statistical accuracy [33, 32, 31].

Blended Particle Filter Algorithms
The QG-DO and MQG-DO statistical forecast models are solved by
a particle filter or Monte-Carlo simulation of the stochastic coeffi-
cients Yj (t), 1 ≤ j ≤ s from [8] through the equations in [10]
coupled to the deterministic equations in [9] and [12] for the statis-
tical mean and covariance and the DO basis equations in [11]. Let
E (t) = {e1 (t) , · · · , es (t)} denote the s-dimensional stochastic
subspace in the forecast; at any analysis time, t = m∆t, u1 denote
the projection of u ∈ RN to E (t). Complete the dynamical basis
E with an orthonormal basis E⊥ and define u2 at any analysis time
as the projection on E⊥ (the flexibility in choosing E⊥ can be ex-
ploited eventually). Thus, forecasts by QG-DO or MQG-DO lead to
the following data from the forecast statistics at each analysis time:

A) A particle approximation for the marginal distribution

p− (u1) =

Q∑
j=1

pj,−δ (u1 − u1,j) ; [14]

B) The mean ū−2 and the covariance matrix

R =

(
R1 R12

RT
12 R2

)
[15]

where R is the covariance matrix in the basis
{
E,E⊥

}
.

In order to apply Proposition 1 in the analysis step, we need to find a
probability density p− (u) with the form in [1] recovering the statis-
tics in [14] and [15]. Below, for simplicity in exposition, we assume
linear observations in [3]. We seek this probability density in the
form

p− (u1,u2) =

Q∑
j=1

pj,−δ (u1 − u1,j)N
(
ū−2,j , R

−
2

)
[16]

so that [14] is automatically satisfied by [16] while ū−2,j and R−2
need to be chosen to satisfy [15]; note that R−2 is a constant matrix
independent of j. Let 〈g (u)〉 denote the expected value of g with
respect to p− so that for example, 〈u1〉 = ū−1 , 〈u2〉 = ū−2 and let
u′1 = u1 − 〈u1〉, u′2 = u2 − 〈u2〉 denote fluctuations about this
mean. Part I of the blended filter algorithm consists of two steps:

• Solve the following linear system to find the conditional mean
ū2 (u1,j) = ū−2,j

p1u
′1
1,1 · · · pQu

′Q
1,1

...
. . .

...
p1u
′1
1,N1

· · · pQu
′Q
1,N1

p1 · · · pQ




u′12,1 · · · u′12,N2
u′22,1 · · · u′22,N2

...
. . .

...
u
′Q
2,1 · · · u

′Q
2,N2

 =
[
R12

0

]
.

[17]
Note that this is an underdetermined system for a sufficiently large
number of particles, Q, and ‘–’ notation is suppressed here.

• Calculate the covarianceR−2 in theu2 subspace by requiring from
[15] and [16]

R−2 = R2 + 〈u2〉 ⊗ 〈u2〉 −
∫
ū2 (u1)⊗ ū2 (u1) p (u1) du1

= R2 −
∫
ū′2 (u1)⊗ ū′2 (u1) p (u1) du1

= R2 −
∑
j

ū′2,j ⊗ ū′2,jpj,−. [18]

Any solution of [17] and [18] with R−2 ≥ 0 automatically guar-
antees that [14] and [15] are satisfied by the probability density
in [16].

Part II of the analysis step for the blended particle filter algorithm is
an application of Proposition 1 to [16].

• Use Kalman filter updates in the u2 subspace

ū+
2,j = ū−2,j +K

(
v −GEu1,j −GE⊥ū−2,j

)
, [19a]

R̃+
2 =

(
I −KGE⊥

)
R−2 , [19b]

K = R−2

(
GE⊥

)T
(
GE⊥R−2

(
GE⊥

)T

+R0

)−1

,

[19c]

with the (linear) observation operator G (u1,u2) = GEu1 +
GE⊥u2, where R0 is the covariance matrix for the observational
noise.
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• Update the particle weights in the u1 subspace by pj,+ ∝ pj,−Ij ,
with

Ij = exp

[
1

2

(
ū+T

2,j

(
R̃+

2

)−1

ū+
2,j − ū

−T
2,j

(
R−2
)−1

ū−2,j

)
− (v −GEu1,j)

T R−1
0 (v −GEu1,j)

]
. [20]

• Normalize the weights pj,+ =
pj,−Ij∑
j pj,−Ij

and use residual resam-
pling (see the supplementary material for the details).

• Get the posterior mean and covariance matrix from the posterior
particle presentation

ū+
1 =

∑
j

u1,jpj,+, ū
+
2 =

∑
j

ū+
2,jpj,+, [21a]

and
R+

1,ij =
∑
k

Yi,kY
∗
j,kpk,+, 1 ≤ i, j ≤ s, [21b]

R+
12,ij =

∑
k

Yi,kū
′+∗
j,k pk,+, 1 ≤ i ≤ s, s+1 ≤ j ≤ N, [21c]

R+
2 = R̃+

2 +
∑
j

ū′+2,j ⊗ ū
′+
2,jpj,+. [21d]

• Rotate the stochastic coefficients and basis to principal directions
in the s-dimensional stochastic subspace.

This completes the description of the blended particle filter algo-
rithms.

Realizability in the Blended Filter Algorithms A subtle issue in im-
plementing the blended filter algorithms occurs in [17] and [18]
from part I of the analysis step; a particular solution of the linear
system in [17], denoted here as LU2 = F , may yield a candidate
covariance matrix, R−2 , defined in [18] which is not positive defi-
nite, i.e. realizability is violated. Here we exploit the fact that the
subspace for particle filtering is low dimensional so that in general,
the number of particles satisfies Q ≥ N1 + 1 so the linear system
LU2 = F is a strongly underdetermined linear system. The em-
pirical approach which we utilize here is to seek the least squares
solution of LU2 = F which minimizes the weighted L2-norm,

Q∑
j=1

∣∣ū′2,j∣∣2 pj . [22]

This solution is given as the standard least squares solution through

the pseudo-inverse for the auxiliary variable v̄′2,j = p
1
2
j ū
′
2,j . Such

a least squares solution guarantees that the trace of R−2 , defined in
[18] is maximized; however, this criterion still does not guarantee
that R−2 = R2 −

∑
j ū
′
2,j ⊗ ū′2,jpj is realizable; to help guarantee

this, we add extra inflation terms αj ∈ [0, 1] such that

R−2 = R2 −
∑
j

αjpjū
′
2,j ⊗ ū′2,j .

Here the inflation coefficients αj can be chosen according to

• αj = 1, if ū′T2,j
(
R2 −

∑
k ū
′
2,k ⊗ ū′2,kpk

)
ū′2,j > ε0;

• αj = 1− ε0−ū′T2,j(R2−
∑

k ū′2,k⊗ū′2,kpk)ū′2,j
pj |ū′2,j |4

, otherwise;

where ε0 � 1 is a small number chosen to avoid numerical errors,
and 1 ≤ j ≤ Q.

We find that this empirical approach works very well in practice
as shown in subsequent sections. An even simpler but cruder variance

inflation algorithm is to set R−2 = R2 ≥ 0. Further motivation for
the constrained least squares solution of LU2 = F minimizing [22]
comes from the maximum entropy principle [24]; the least biased
probability density satisfying LU2 = F in [17] formally maximizes
the entropy of R−2 , i.e.

ū′2,j = argmax log det

(
R2 −

∑
j

pjū
′
2,j ⊗ ū′2,j

)

= argmax log det

(
I −

∑
j

(
p

1
2
j R
− 1

2
2 ū′2,j

)

⊗
(
p

1
2
j R
− 1

2
2 ū′2,j

))
. [23]

The high dimensional nonlinear optimization problem in [23] is
too expensive to solve directly but the small amplitude expansion,
det (I − εR) = −εtrR + O

(
ε2
)

of [23] becomes a weighted
least squares optimization problem for the new variable, v̄′2,j =

p
1
2
j R
− 1

2
2 ū′2,j constrained by LU2 = F . If we choose R2 = I , the

least squares solution from [22] is recovered. While the algorithm
utilizing v̄′2,j has a nice theoretical basis, it requires the singular value
decomposition of the large covariance matrix,R2, and the solution in
[22] avoids this expensive procedure. Incidentally, the max-entropy
principle alone does not guarantee realizability.

Numerical Tests of the Blended Particle Filters
Major challenges for particle filters for large dimensional turbulent
dynamical systems involve capturing substantial non-Gaussian fea-
tures of the partially observed turbulent dynamical system as well as
skillful filtering for spatially sparse infrequent high quality observa-
tions of the turbulent signal (see Chapter 15 of [1]). In this last set-
ting, the best ensemble filters require extensive tuning to avoid catas-
trophic filter divergence and quite often cheap filters based on lin-
ear stochastic forecast models are more skillful [1]. Here the perfor-
mance of the blended particle filter is assessed for two stringent test
regimes, elucidating the above challenges, for the Lorenz 96 (L-96)
model [22, 21]; the L-96 model is a forty dimensional turbulent dy-
namical system which is a popular test model for filter performance
for turbulent dynamical systems [1]. The L-96 model is a discrete
periodic model given by

dui
dt

= ui−1 (ui+1 − ui−2)− ui + F, i = 0, · · · , J − 1, [24]

with J = 40 and F the deterministic forcing parameter. The model
is designed to mimic baroclinic turbulence in the midlatitude atmo-
sphere with the effects of energy conserving nonlinear advection and
dissipation represented by the first two terms in [24]. For sufficiently
strong constant forcing values such as F = 5, 8, or 16, the L-96
model is a prototype turbulent dynamical system that exhibits fea-
tures of weakly chaotic turbulence (F = 5) , strongly chaotic tur-
bulence (F = 8), and strong turbulence (F = 16) [20, 24, 1]. Be-
cause the L-96 model is translation invariant, twenty discrete Fourier
modes can be utilized to study its statistical properties. In all filter-
ing experiments described below with the blended particle filters, we
use s = 5 with 10,000 particles. Thus, non-Gaussian effects are
captured in a five dimensional subspace through a particle filter in-
teracting with a low order Gaussian statistical forecast model in the
remaining thirty-five dimensions. The numbers of positive Lyapunov
exponents on the attractor for the forcing values F = 5, 8, 16 consid-
ered here are 9, 13, and 16 respectively [20] so the five dimensional
adaptive subspace with particle filtering can contain at most half of
the unstable directions on the attractor; also, non-Gaussian statistics
are most prominent in the weakly turbulent regime, F = 5, with
nearly Gaussian statistics for F = 16, the strongly turbulent regime,
and intermediate statistical behavior for F = 8.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



Capturing Non-Gaussian Statistics through Blended Particle Fil-
ters. As mentioned above, the L-96 model in the weakly turbulent
regime with F = 5 has nine positive Lyapunov exponents on the at-
tractor while Fourier modes û7 and û8 are the two leading Empirical
Orthogonal Functions (EOFs) that contain most of the energy. As
shown in Figure 1, where the probability density functions (pdfs) of
|û7|, |û8| are plotted, there is significant non-Gaussian behavior in
these modes since the pdfs for |û7|, |û8| are far from a Rayleigh dis-
tribution; see the supplementary material for the scatter plot of their
joint distribution exhibiting strongly non-Gaussian behavior. For the
filtering experiments below, sparse spatial observations are utilized
with every fourth grid point observed with moderate observational
noise variance r0 = 2 and moderate observation frequency ∆t = 1
compared with the decorrelation time 4.4 for F = 5. We tested the
QG-DO, MQG-DO blended filters as well as the Gaussian MQG fil-
ter and the ensemble adjustment Kalman filter (EAKF) with optimal
tuned inflation and localization with 10, 000 ensemble members. All
four filters were run for many assimilation steps and forecast pdfs
for |û7|, |û8| as well as forecast error pdfs for the real part of û7,
û8 are plotted in Figure 1. The blended MQG-DO filter accurately
captures the non-Gaussian features and has the tightest forecast er-
ror pdf; the Gaussian MQG filter outperforms the blended QG-DO
filter with a tighter forecast error distribution while EAKF yields in-
correct Gaussian distributions with the largest forecast error spread.
The RMS error and pattern correlation plots reported in the supple-
mentary material confirm the above behavior as well as the scatter
plots of the joint pdf for |û7|, |û8| reported there. This example il-
lustrates that a Gaussian filter like MQG with an accurate statistical
forecast operator can have a sufficiently tight forecast error pdf and
be a very good filter yet can fail to capture significant non-Gaussian
features accurately. On the other hand, for the QG-DO blended algo-
rithm in this example, the larger forecast errors of the QG dynamics
compared with MQG swamp the effect of the blended particle filter.
However, all three methods significantly improve upon the perfor-
mance of EAKF with many ensemble members.

Filter Performance with Sparse Infrequent High Quality Obser-
vations. Demanding tests for filter performance are the regimes of
spatially sparse, infrequent in time, high quality (low observational
noise) observations for a strongly turbulent dynamical system. Here
the performances of the blended MQG-DO, QG-DO filters as well as
the MQG filter are assessed in this regime. For the strongly chaotic
regime, F = 8, for the L-96 model, observations are taken every
fourth grid point with variance r0 = 0.01 and observation time
∆t = 0.25 which is nearly the decorrelation time, 0.33; the per-
formance of EAKF as well as the rank histogram and maximum en-
tropy particle filters has already been assessed for this difficult test
problem in Figure 15.14 of [1] with large intervals in time with filter
divergence (RMS errors much larger than one) for all three methods.
A similar test problem for the strongly turbulent regime, F = 16,
with spatial observations every fourth grid point with r0 = 0.01
and ∆t = 0.1 compared with the decorrelation time, 0.12, is uti-
lized here. In all examples with L-96 tested here, we find that the
MQG-DO algorithm with the approximation described in the para-
graph below [18] is always realizable and is the most robust accu-
rate filter; on the other hand, for the QG-DO filtering algorithm, the
performance of the blended algorithm with crude variance inflation,
R−2 = R2, significantly outperforms the basic QG-DO blended al-
gorithm due to incorrect energy transfers in the QG forecast models
for the long forecast times utilized here (see the supplementary mate-
rial). Figure 2 reports the filtering performance of the MQG-DO and
QG-DO blended filters and the MQG Gaussian filter in these tough

regimes for F = 8, 16 through the RMS error and pattern correla-
tion. There are no strong filter divergences with the MQG-DO and
QG-DO blended filters for both F = 8, 16 in contrast to other meth-
ods as shown in Figure 15.14 from [1]. The much cheaper MQG
filter for F = 16 exhibits a long initial regime of filter divergence
but eventually settles down to comparable filter performance as the
blended filters. The blended MQG-DO filter is the most skillful ro-
bust filter over all these strongly turbulent regimes F = 8, 16, as the
observational noise and observation time are varied; see the examples
in the supplementary material.

Concluding Discussion
Blended particle filters which capture non-Gaussian features in an
adaptive evolving low dimensional subspace through particles in-
teracting with evolving Gaussian statistics on the remaining phase
space are introduced here. These blended particle filters have been
developed here through a mathematical formalism involving condi-
tional Gaussian mixtures combined with statistically nonlinear fore-
cast models developed recently [33, 32, 31] with high skill for uncer-
tainty quantification which are compatible with this structure. Strin-
gent test cases for filtering involving the forty dimensional L-96
model with a five dimensional adaptive subspace for nonlinear filter-
ing in various regimes of chaotic dynamics with at least nine positive
Lyapunov exponents are utilized here. These test cases demonstrate
the high skill of these blended filters in capturing both non-Gaussian
dynamical features and crucial nonlinear statistics for accurate fil-
tering in extreme regimes with sparse infrequent high quality ob-
servations. The formalism developed here is also useful for multi-
scale filtering of turbulent systems and a simple application has been
sketched here.
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Fig. 1. Comparison of pdfs of the absolute values of the first two leading Fourier
modes û7, û8 (first row), and pdfs of the forecast error u−j − utruth (second
row, only real parts are shown) captured by different filtering methods.
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Fig. 2. Comparison of RMS errors (left) and pattern correlations (right) between different filtering methods in regimes F = 8 (first row) and F = 16 (second and
third rows) with sparse infrequent high quality observations.
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